当前位置:文档之家› 高中数学复习数列求和裂项相消法

高中数学复习数列求和裂项相消法

高中数学复习数列求和裂项相消法
高中数学复习数列求和裂项相消法

裂项相消法求和

把数列的通项拆成两项之差、正负相消剩下首尾若干项。 1、 特别是对于?

??

??

?

+1n n a a c ,其中{}n a 是各项均不为0的等差数列,通常用裂项相消法,即利用1+n n a a c =???

? ??-+111n n a a d c ,其中()n n a a d -=+1 2、 常见拆项:

1

11)1(1+-=+n n n n

)1

21

121(21)12)(12(1+--=+-n n n n

])

2)(1(1

)1(1[21)2)(1(1++-+=++n n n n n n n

!)!1(!n n n n -+=?

)!

1(1

!1)!1(+-=+n n n n

例1 求数列1

{}(1)

n n +的前n 和n S .

例2 求数列1

{}(2)

n n +的前n 和n S .

例3 求数列1

{}(1)(2)

n n n ++的前n 和n S .

例4 求数列???++???++,1

1,

,3

21,

2

11n n 的前n 项和.

例5:求数列311?,421?,5

31

?,…,)2(1+n n ,…的前n 项和S

例6、 求和)

12)(12()2(5343122

22+-++?+?=n n n S n

一、累加法

1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。 2.若1()n n a a f n +-=(2)n ≥,

21321(1)

(2) ()

n n a a f a a f a a f n +-=-=-=

两边分别相加得 111

()n

n k a a f n +=-=

例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则

11232211

2

()()()()[2(1)1][2(2)1](221)(211)1

2[(1)(2)21](1)1(1)2(1)1

2

(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-++

+?++?++=-+-++++-+-=+-+=-++=

所以数列{}n a 的通项公式为2

n a n =。

例2 已知数列{}n a 满足112313n

n n a a a +=+?+=,,求数列{}n a 的通项公式。

解法一:由1231n n n a a +=+?+得1231n

n n a a +-=?+则

11232211122112211()()()()(231)(231)(231)(231)3

2(3333)(1)3

3(13)2(1)3

13

331331

n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=?++?+++?++?++=+++++-+-=+-+-=-+-+=+-

所以3 1.n

n a n =+-

解法二:13231n n n a a +=+?+两边除以1

3n +,得

111

21

3333n n n n n a a +++=++

, 则

11121

3333

n n n n n a a +++-=+,故 11223211

2232

111122122()()()(

)33333

333

212121213

()()()()3333333332(1)11111()1

333333

n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++

因此1

1(13)

2(1)2113133133223n n n n n

a n n ---=++=+-

-?, 则211

33.322

n n n a n =

??+?- 练习

1.已知数列{}n a 的首项为

1,且

*12()

n n a a n n N +=+∈写出数列

{}n a 的通项公式.

答案:12

+-n n

练习2.已知数列

}

{n a 满足31=a ,

)

2()1(1

1≥-+

=-n n n a a n n ,求此数列的通项公式.

答案:裂项求和

n a n 1

2-

=

评注:已知a a =1,)

(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分

a

①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;

③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。

例3.已知数列

}

{n a 中,

>n a 且

)(21n n n a n a S +=

,求数列}{n a 的通项公式.

解:由已知

)(21n n n a n a S +=

得)(2111---+-=n n n n n S S n

S S S ,

化简有

n

S S n n =--2

12,由类型(1)有

n

S S n ++++= 32212

,

又11a S =得11=a ,所以

2)

1(2

+=

n n S n ,又0>n a ,

2)

1(2+=

n n s n ,

2)

1(2)1(2--+=

n n n n a n

此题也可以用数学归纳法来求解.

二、累乘法

1.适用于: 1()n n a f n a += ----------这是广义的等比数列 累乘法是最基本的二个方法之二。

2.若

1()n n a f n a +=,则31212(1)(2)()n n

a a

a

f f f n a a a +===,,, 两边分别相乘得,1

11

1()n

n k a a f k a +==?∏ 例4 已知数列{}n a 满足112(1)53n

n n a n a a +=+?=,,求数列{}n a 的通项公式。

解:因为112(1)53n

n n a n a a +=+?=,,所以0n a ≠,则

1

2(1)5n n n

a n a +=+,故

1

32

112

21

12211(1)(2)21

(1)1

2

[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53

32

5

!

n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=

?????=-+-+??+?+??=-?????=???

所以数列{}n a 的通项公式为(1)1

2

32

5

!.n n n n a n --=???

例5.设{}n a 是首项为1的正项数列,且

()0

112

21=+-+++n n n n a a na a n (n =1,2, 3,…),则它的

通项公式是n a =________.

解:已知等式可化为:

[]0

)1()(11=-++++n n n n na a n a a

0>n a (*

N n ∈)∴(n+1)01=-+n n na a , 即

1

1+=+n n

a a n n

∴2≥n 时,

n

n a a n n 1

1-=-

112211a a a a a a a a n n n n n ????=

--- =121121??--?- n n n

n =n 1. 评注:本题是关于

n

a 和

1

+n a 的二次齐次式,可以通过因式分解(一般情况时用求根公式)得到

n

a 与

1

+n a 的更为明显的关系式,从而求出

n

a .

练习.已知

1

,111->-+=+a n na a n n ,求数列{an}的通项公式.

答案:

=n a )

1()!1(1+?-a n -1.

评注:本题解题的关键是把原来的递推关系式

,

11-+=+n na a n n 转化为

),

1(11+=++n n a n a 若令

1

+=n n a b ,则问题进一步转化为

n

n nb b =+1形式,进而应用累乘法求出数列

的通项公式.

相关主题
文本预览
相关文档 最新文档