运筹学 论文
- 格式:doc
- 大小:91.00 KB
- 文档页数:8
大学生运筹学论文第一篇:大学生运筹学论文论数学与生活内容提要:步入大学,我们的学习已经不再停留于刻板的书本,我们学习的目的也不仅仅是去掌握那些常规的知识,大学学习,我们更多的是去学习一种思想,学习一种态度,然后用我们所学去实践生活。
当我们用心思考,我们也会发现,陪伴我们十几年的恼人的数学也蕴含了丰富的人生哲理。
关键字:生活,思考,哲理一、数学里的奇妙现象有时候我们会思考:无穷的边缘是什么?就像我们弄不懂广袤宇宙的边境是什么,无论多么科学的解释我们也始终想不明白怎么可以存在这样的一个空间去包括宇宙以及宇宙之外的东西。
而代表着这个含义的π=3.1415……..,无穷尽的不规则小数,没有尽头,但是它却确确实实是我们每天都会用到的具有现实意义的数值;二、最美丽的数字——0.618(1)人体上的黄金分割《达芬奇密码》一书中说讲,肩膀到指尖的距离除以肘关节到指尖的距离;臀部到地面的距离除以膝盖到地面的距离。
再看看手指关节、脚趾、脊柱的分节,都会得到PHI(黄金分割比)。
真的会这样吗?我半信半疑地进行了一点近似的计算。
按照一个正常体型的人为例:肩膀到指尖的距离:70㎝肘关节到指尖的距离:43㎝43÷70≈0.614 臀部到地面的距离:80㎝膝盖到地面的距离:49㎝49÷80≈0.613 这些数据的结果都接近于0.618。
(2)生理上的黄金分割再如网上说,人在环境气温22℃-24℃下生活感到最适宜.因为人体的正常体温是36℃-37℃,这个体温与0.618的乘积恰好是22.4℃-22.8℃,而且在这一环境温度中,人体的生理功能、生活节奏等新陈代谢水平均处于最佳状态。
37℃×0.618=22.866℃所以当所有的这些都和黄金分割比联系上时,我们不得不感叹数学的奥秘,真的很不可思议,如果说是巧合,但是当种种现象都联系在一起的时候,就不仅仅是巧合可以解释的了,我们不得不承认这就是数学中蕴含的奥妙。
吴禹锟一院八队201101044032 运筹学摘要:临近年末,家中生产的冰糖橙到了一个大卖的时候,采摘下来的冰糖橙需要合理的保存,才能够长期保鲜。
而摘下来的冰糖橙需要进行进一步包装,才能卖到一个更好的价格。
最后就是运输问题,怎样用最少的运价运到更多的地方。
这就需要制定一个严密的计划,使自己所用的花费最少。
关键字:生产与存储 动态规划 经济批量订货模型 运输问题 lingo正文:研究背景:家中种有3000余棵冰糖橙树,每年到年底时,也就是冰糖橙成熟的时候。
冰糖橙采摘需分阶段,且采摘需要请员工,这会产生一个费用,存贮需要存储空间,就会产生一个存储费用。
这就涉及到一个生产与存储的问题,可以建立一个数学模型。
采摘下来的冰糖橙,需要装入保鲜袋,然后装进箱子中,箱子需要订购。
这就会涉及到一个经济批量(EOQ )问题,是一个优化问题,且不允许缺货。
最后就是卖往各个地区,这里还可能产生产销不平衡的情况,需要寻求最优解。
研究内容:一、生产与存储问题:这是一个动态规划问题,需要合理的安排生产与库存的问题,达到既要满足需求,又要尽量降低成本费用。
一次,确定不同时期的的的生产量和库存量,以使总的雇佣费与库存费之和最小。
设d k 为第k 阶段对产品的需求量,x k 为第k 阶段该产品的生产数量,sk 为第k 阶段初的产品数量,则有z k =s k -1+x k -1-d k -1。
C k (x k )表示第k 阶段生产xk 数量的产品使的成本费用,它包括生产准备费用k 和产品城北ax k 两项费用。
即C k (x k )={0, xk =0k +axk,0<xk ≤mk其中m k 为第k 阶段生产xk 数量的上限。
用h k (s k )表示在地k 阶段初库存量为s k 时的存储费用。
因此,第k 阶段的成本费用为C k (x k )+h k (s k )所以,上述问题的数学模型为Minz=∑ck (xk )+ℎk(sk )n k=1s.t.{s0=0,sn +1=0sk =∑(xj −dj ), k =1,2,…,n −1k j=10≤xk ≤mk, k =1,2,…,n xk 为正整数用动态规划方法求解,s k 为状态变量,他表示第k 阶段开始时的库存量x k 为决策变量,他表示第k 阶段的生产量;状态转移方程为S k+1=s k +x k -d k , k=1,2,…,n 最优值函数f k (s k )表示从第k 阶段初始库存量为s k 到底n 阶段末的最小总费用。
运筹学论文摘要本论文主要探讨了运筹学在管理决策中的应用。
首先介绍了运筹学的基本概念和相关理论,然后分析了运筹学在企业管理中的实际应用案例,最后总结了运筹学的优势和局限性,并对未来运筹学研究方向进行了展望。
1. 引言随着企业管理的复杂性和竞争的加剧,越来越多的企业开始重视运筹学在管理决策中的应用。
运筹学作为一门应用数学学科,通过运筹学方法和技术来解决企业面临的各种问题,帮助企业高效运营和优化决策。
本文将从运筹学的基本概念、实际应用案例和研究展望三个方面展开论述。
2. 运筹学基本概念2.1 定义运筹学是一门研究如何对复杂系统进行优化决策的学科。
它以数学为基础,涉及多个学科领域,如线性规划、整数规划、图论、排队论等。
2.2 运筹学方法运筹学通过建立数学模型来描述和分析问题,然后采用优化算法和技术对模型进行求解,得到最优解或近似最优解。
常用的运筹学方法包括线性规划、整数规划、动态规划、启发式算法等。
3. 运筹学在企业管理中的应用案例3.1 生产调度优化运筹学可以帮助企业优化生产调度,提高生产效率和资源利用率。
通过建立生产调度模型,运用线性规划、整数规划等方法,可以实现最优生产调度方案的确定,使得生产过程更加高效。
3.2 配送路径优化对于物流企业来说,配送路径的优化是提高物流效率和降低成本的关键。
运筹学可以通过图论、整数规划等方法,确定最优的配送路径,减少行驶里程和时间,达到节约成本的目的。
3.3 库存管理优化运筹学可以帮助企业优化库存管理,减少库存成本和缺货风险。
通过建立库存模型,根据需求、供应、存储成本等因素,利用线性规划、动态规划等方法,确定最优的库存策略,实现库存成本的最小化和保证供应的可靠性。
4. 运筹学的优势与局限性4.1 优势 - 运筹学可以提供量化的决策支持,帮助企业从数据驱动的角度优化决策; - 运筹学方法和技术可以快速求解大规模、复杂的优化问题; - 运筹学可以提供全局最优解或近似最优解,并具有较高的准确性和可信度。
农业院校运筹学教学论文农业院校运筹学教学论文【摘要】本文从农业院校运筹学发展历史出发,介绍了当前农业院校中运筹学课程在课程性质、教学内容和教学方法方面的发展变化,分析了农业院校开展运筹学教学的优势及对传统学科发展的意义,展望了农业院校中运筹学教学与科研实践相结合的发展前景。
【关键词】运筹学农业院校农业系统一、运筹学课程在农业院校的历史运筹学是一门20世纪30年代在英美发展起来的科学,首先应用于军事,二战结束后转入民用,[1]20世纪 50年代后期,由钱学森、许国志将其引入我国,并由华罗庚等一大批科学家结合国情加以大力推广。
运筹学主要是以建立数学模型的方法,辅之以计算机运算,来研究和解决各类系统中的最优化问题。
在钱学森提出的系统科学体系结构中,运筹学和控制论、信息论一样,属于基础科学之下的技术科学,可应用于各类工程技术,如军事系统工程、能源系统工程等各类系统工程。
[2]运筹学在农业系统工程中也有着广阔的应用空间和众多优秀应用范例,可用于粮食调运、场地选址、劳力安排、作物布局、沟渠管道铺设等诸多方面,[3~4]例如我国运筹学运用初期最广为人知和容易明白的“打麦场选址”问题,曾于 1988年获国家科技进步二等奖的“黄淮海平原农业时空开发配置模型”,曾于 1996年获国家科技进步三等奖的“全国粮食产量预测”等。
1985年在西安举办了首届非运筹专业运筹学课程教学讨论会,我国的一些农业院校,如华中农业大学、西北农林大学、华南农业大学等院校中已有多年开设运筹学课程的历史,一般作为经济管理、工程、计算机与数学等专业的必修或专业选修课程。
目前,随着高校课程体系设置的全面改革与调整,农业院校里运筹学课程面临着新的挑战与机遇。
二、农业院校运筹学课程变化与发展1.课程性质的扩展一方面,因为培养方案的改革需要进行课程压缩与调整,所以运筹学在一些原来将其作为专业必修课或专业选修课的商学院、工学院中面临着学时压缩或者被取消的局面;另一方面,越来越多的农业院校将运筹学纳入了公共选修课范围,使得更多农科专业的学生也有机会接受运筹学优化思想和方法的学习,农业院校中普及运筹学教育有如下两点益处:(1)有助于调整和完善农科专业学生的知识和技能结构。
运筹学论文1. "运筹学在制造业中的应用案例分析"这篇论文可以研究运筹学在制造业中的应用案例,探讨如何运用运筹学方法来优化制造流程、减少生产成本、提高生产效率等方面的实践经验。
2. "运筹学在物流管理中的应用及挑战"这篇论文可以研究运筹学在物流管理中的应用,分析运筹学方法在物流优化、路线规划、货物配送等方面的应用,并讨论实施这些方法面临的挑战和解决方案。
3. "基于运筹学的供应链管理优化研究"这篇论文可以研究基于运筹学的供应链管理优化方法,分析如何利用运筹学方法来改善供应链的效率和响应能力,以及解决供应链中的库存管理、订单分配等问题。
4. "运筹学在项目管理中的应用研究"这篇论文可以研究运筹学在项目管理中的应用,探讨如何利用运筹学方法来优化项目进度安排、资源分配、风险管理等方面的实践经验,并探讨这些方法在项目管理中的效果和局限性。
5. "基于运筹学的决策支持系统研究"这篇论文可以研究基于运筹学的决策支持系统的开发和应用,分析如何利用运筹学方法来辅助决策制定,提供精确的数据分析和模型建立,以及讨论这些系统在实际决策中的应用效果和局限性。
6. "运筹学在金融风险管理中的应用研究"这篇论文可以研究运筹学在金融风险管理中的应用,分析如何利用运筹学方法来评估和控制金融风险,包括市场风险、信用风险等方面,以及讨论这些方法的优点和局限性。
7. "运筹学在医疗资源优化中的应用研究"这篇论文可以研究运筹学在医疗资源优化中的应用,探讨如何利用运筹学方法来优化医疗资源的配置、排班安排、手术室管理等方面,以提高医疗服务的效率和质量。
8. "基于运筹学的环境保护决策研究"这篇论文可以研究基于运筹学的环境保护决策方法,分析如何利用运筹学方法来评估不同环境保护措施的效果,并对环境保护决策进行优化,以达到经济、社会和环境的可持续发展。
浅析运筹学【摘要】:早在“孙子兵法”中运筹学思想、方法就被古人实施运用。
他的产生、发展与具体实施运用均随着其在各个领域的推广而深入人心。
运筹学是一种科学决策的方法,是依据给定目标和条件从众多方案中选择最优方案的最优化技术。
通过对本学科的学习,我深刻认识到运筹学思想的重要性和实用性,并将其运用于以后的学习、生活和工作中。
【Abstract】 As early as in "sun tzu's" operations research ideas and methods will be the ancients implement use. His emergence, development and implementation are with its use in various fields of promotion and thorough popular feeling. Operations research is a scientific decision-making method, is based on a given goal and choose from so many conditions scheme of the best plan optimization technology. Based on a subject of study, I realized the importance of operations research ideasand practical, and was applied in the later study, life and work. 【关键词】:运筹学、运用、发展、心得体会【key words】operational research, apply, develop, comments一、运筹学的产生运筹学思想的出现可以追溯到很早——“田忌赛马”(对策论)、孙子兵法等都体现了优化的思想。
运筹学课程论文运筹学在现代社会中的应用班级:运筹学2班年级:2014级学院:园艺园林教师:陈涛姓名:宋春雄学号:222014325052030摘要:运筹学发展至今,它的应用已经不仅仅局限于军事领域了,运筹学已被广泛应用于工商企业,民政企业等研究组织内的统筹协调问题,既对各种经营进行创造性的科学研究,又涉及到组织的实际管理问题,它具有很强的实践性,最终应能向决策者提供建设性意见,并应收到实效。
运筹学在管理方面有着很突出的作用。
管理就是“运筹帷幄之中,决胜千里之外”的最佳解释。
关键字:企业管理,生活,筹划正文:运筹学是现代管理学的一门重要专业基础课。
它是20世纪30年代初发展起来的一门新兴学科,其主要目的是在决策时为管理人员提供科学依据,是实现有效管理、正确决策和现代化管理的重要方法之一。
该学科是一应用数学和形式科学的跨领域研究,利用统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答.运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。
研究运筹学的基础知识包括实分析、矩阵论、随机过程、离散数学和算法基础等。
而在应用方面,多与仓储、物流、算法等领域相关。
因此运筹学与应用数学、工业工程、计算机科学、经济管理等专业密切相关。
运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。
虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。
运筹学的思想在古代就已经产生了。
敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外"的说法。
但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却相对较晚。
也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支.运筹学的具体内容包括:规划论(包括线性规划、非线性规划、整数规划和动态规划)、库存论、图论、决策论、对策论、排队论、博弈论、可靠性理论等。
运筹学论文-运筹学案例分析报告一、背景运筹学是一门研究解决实际问题的科学,它专注于提高组织、企业和政府的生产效率,优化执行过程,使其能够有效地获得最大价值。
本案例旨在探讨一个具体的现实例子,概述如何使用运筹学进行解释以及识别和解决可能存在的潜在问题。
二、案例概述本案例涉及解决一个具体的实际问题,即如何利用有限的资源,有效的改变一个公司的业务流程,以降低其成本。
该方案涉及一家名为“关爱社会”的非营利组织,致力于为社会弱势群体提供支持和帮助。
该机构的活动主要集中在受支持者的社区中,提供技能培训、帮扶活动、营养指导和教育补助等服务。
该机构最近发现,其资金有限,从而导致社会服务无法有效现实受助者的需求。
通过运筹学方法分析,可以辨别机构拥有资源的可用性,从而重新安排和调整该机构对社会服务的投入,以优化执行过程。
三、运筹学原理运筹学方法可以帮助分析和解决实际问题。
运用运筹学,可以避免直接决策而遭受不必要的损失,改善组织的绩效,使其能够有效的改善锁定的资源,同时有效地改变业务流程,以获得最大价值。
四、案例分析针对本案例,我们首先对“关爱社会”机构的资源进行评估和分析,这包括人力资源、金融资源、工作经验和机构的实力等。
这样,我们可以更好的识别和分配公司的资源,以实现最优的结果。
在进而分析资源可用性的基础上,另一项重要的工作是对“关爱社会”机构所提供的服务的全面审查和审查。
由于公司的资源有限,因此必须仔细考虑每一项服务的重要性,并以此来决定机构把资源投入在哪里。
调整业务流程,将投入重点放到最需要的领域上是提高服务质量的最佳选择。
五、结论通过本次运筹学案例分析,我们有了更清晰的认识,即如何使用运筹学方法有效的改善现有的业务流程,使其能够更好的服务于受支持者的社区。
只有有效的资源安排和有效调整,“关爱社会”才能真正实现自身的价值,而运筹学正能够提供这样的解决方案。
运筹学教学方法研究的论文运筹学教学方法研究的论文运筹学教学方法研究的论文篇1论文关键词:运筹学教学实践论文摘要:运筹学是经管系普遍开设的一门主干课程、学位课程,教学中存在着课程难度较大,教学方式单一等问题,本文从教学实践出发,总结了目前教学过程中存在的一些问题,并对课程教学方法进行了研究。
运筹学课程以定量化为主的管理科学方法与信息技术相结合,寻求现实中的满意决策方案,培养学生分析、解决实际问题的能力,使他们在处理日常事务时能够自觉地优化问题,也为今后从事经济管理工作的学生奠定扎实的基础。
1、运筹学在教学过程中存在的问题目前,运筹学课程建设正在逐步完善,但实际教学效果有时往往达不到预期的目标。
本课程教学中存在以下几个方面的问题。
(1)课程难度大,学生积极性不高。
运筹学课程和数学知识联系密切,很多例题都是由数学运算得出的,而这门课程一般在大二时才开设,由于学生大多数都是高中时努力学习,上大学后只求及格,所以在大一开设的数学类基础课没有好好学,以至于到开设运筹学课程时基础差,学起来很困难。
(2)教学方式单一化。
运筹学教学仍是教师在板书授课内容,学生记笔记,这样大部分时间用在推导和计算上,令学生感觉枯燥。
(3)与实践联系不很紧密。
运筹学尽管是以应用性为主的学科,但由于学时的限制,老师在每节课多数时间是在讲解某种类型例题的求解方法和计算过程,由于题较复杂,在90分钟时间内只能讲解一、两种类型例题,再加上学生练习,所以时间很紧迫,老师和学生都把会做题作为课程学习的目标,从而认为课程与实际联系不大。
2、教学改革思路对于运筹学教学中出现的问题,笔者认为可以采取以下措施。
(1)针对“课程难度大,学生积极性不高”这一点,我们应适当加入案例。
经过查阅大量资料和教学实践,笔者认为理论和案例的比例在1:2比较合适,即每节课90分中,用30分左右讲解理论,其余时间讲解案例。
这样可以让学生将所学的理论知识有的放矢,既懂得了理论,又能将其应用到实际生活中。
浅谈企业管理中的运筹学***********学院摘要:运筹学自二战以来开始打来那个应用在除战争以外的许多领域,尤其在企业管理中表现的尤为突出。
运筹学的思想贯穿了企业管理的始终,在企业战略管理、生产计划、市场营销、运输问题、库存管理、人事管理、财务会计等各个方面都具有重要的作用,对企业管理的发展产生重要影响。
本文主要通过对运筹学和企业管理的分析,浅谈了运筹学在企业管理中的具体应用以及运筹学对企业管理的影响。
关键词:运筹学;企业管理;企业发展运筹学是一门定量优化的决策科学,它广泛应用现有的科学技术知识和数学方法,解决实际中提出的专门问题、为决策者选择最优决策提供定量依据,其英文名字为Operational Research.50年代中期,钱学森等教授将其由西方引入我国,并结合我国国情实际运用。
运筹学的特点是利用数学、管理科学、计算机科学技术等研究事物的数量化规律,使得有限的人、财、物、时、空、信息等资源得到合理充分合理的利用。
它以数学为工具,寻找解决各种问题的最优方案,并从系统的观点出发研究全局的规划。
运筹学早期应用在军事领域,二战后转为民用,并且在企业管理中的越来越广泛,取得了良好的经济效益。
运筹学的思想贯穿了企业管理的始终,运筹学对各种决策方案进行科学评估,为管理决策服务,使得企业管理者更有效合理地利用有限资源。
优胜劣汰,适者生存,这是自然界的生存法则,也是企业的生存法则。
只有那些能够成功地应付环境挑战的企业,才是得以继续生存和发展的企业。
作为企业的管理者,把握并运用好运筹学的理念定会取得“运筹帷幄之中,决胜千里之外”之功效。
一、运筹学的原则及工作步骤、企业管理的基本阐述运筹学在其发展过程中形成了一些原则,如:合伙原则、催化原则、互相渗透原则、独立原则、宽容原则、平衡原则。
而这些原则在企业管理中也得到了充分的应用。
比如说,在管理学中,“协调”是管理的重要职能之一,强调彼此之间的合作,管理者必须在组织分工的基础之上努力争取合作,使个人、部门目标与企业整体目标保持一致[1]。
运筹学案例分析报告
摘要:本文通过对基本情况的分析,经过抽象和延伸,建立了农产品最优种植策略研究的通用线性规划模型,对模型求解分析,得出相应的最优决策方案,和某市中心交通路口的多目标决策层次评价模型;结合模型的特点,对模型的求解进行了讨论和分析。
关键字:线性规划,多目标规划,投资决策,多层次分析模型。
引言
对于劳动管理者,在生产管理的过程中一般要解决两类问题:一类是在有限的劳动力,时间,资金等资源的条件下,如何合理安排,获得最好的经济效果;另一类是为了达到一定的目标——生产指标或其他指标,研究如何组织生产,或合理安排工艺流程,或调整产品的成分或类型。
而这些问题可以归类为:目标规划,下料,生产组织计划,人力资源的分配及运输规划等典型的运筹学问题。
问题一:线性规划问题
某农户计划用12亩田地生产玉米、和大豆,根据以往的经验和市场的行情得出以下数据:
表一人工费用表
问题:问怎样安排才能使总的净收入最高?
解:1)分析该农民资金投入已固定,目标是如何实现年最大收益,因此需在有限的条件下对两种作物的种植面积进行分配。
2)根据问题建立线性规划问题模型如下:
(1)设两种农作物的种植面积分别为x1、x2。
(2)条件:
资金限制:360 x1+240 x2≤3600
工时限制:6 x1+6 x2≤48
土地资源: x1+ x2≤12
x1≥0,x2≥0
(3)目标分析:maxf(x)= 200 x1+300 x2
整理得:maxf(x)= 200 x1+300 x2
360 x1+240 x2≤3600
6 x1+6 x2≤48
x1+ x2≤12
x1≥0,x2≥0
经计算得其最优解,即最优生产计划为:x1=6; x2=6;f(X)max=3000。
问题二:多目标规划问题
由于该农户想从3600中拿出一部分钱种植另外一种农作物,同时要保证这块地的年收益不低于3000以维持正常开支,问题:该农民如何实现这一目标?
分析:(1)假设年收入与基本支出40000之间存在正偏差d1+,负偏差d1-,原线性规划可表示为:
200 x1+300 x2- d1++ d1-=3000。
(2)假设今年的全部投资与3600元之间纯在这正偏差d2+,负偏差d2-,
由于想节约资金,所以应使d2+尽量小,d2-尽量大,d2+- d2-尽量小。
年基本收益赋予优先因子P1,资金使用赋予优先因子P2,则目标函数为:minZ={P1 d1-,P2(d2+- d2-)}
目标约束:
基本收益:200 x1+300 x2- d1++ d1-=3000
资金使用:360 x1+240 x2- d2++ d2-=3600
环境约束:
≤48
6 x
x1+ x2≤12
非负约束:x1、x2、d1+、d1-、d2+、d2-≥0
如果农民不再种其他农作物,但是要保证总收益不低于3000,如何实现?
解:由于该农户不再增加其他农作物,则d1++ d1-应该尽量小,在和模型(1)相同优先级的条件下,此目标函数应为:
minZ={P1 d1-,P2(d2++ d2-)}
目标约束:
基本收益:200 x1+300 x2- d1++ d1-=3000
资金使用:360 x1+240 x2- d2++ d2-=3600
环境约束:
6 x
≤48
x1+ x2≤12
非负约束:x1、x2、d1+、d1-、d2+、d2-≥0
问题三:多目标决策问题
一、问题
某市中心十字交通路口,由于人员车辆流量过大,经常造成交通堵塞。
市政府决定解决这个问题。
经过有关专家会商研究,制定出两个可行方案: C1:在十字交通路口修建一座环形天桥; C2:在十字交通路口修建地下人行通道。
决策的总目标是改善市中心交通环境。
根据当地的具体条件和有关情况,专家组拟定可行方案的评价准则,试对该市改善市中心交通环境问题作出决策分析。
1、根据专家咨询意见,建立层次结构模型
构建方案权重并赋值
表1 重要性标度含义表
2、构造判断矩阵,并由专家填写
3、层析单排序与检验
对于已经填写好的矩阵,利用数学方法进行排序。
层次单排序是指每一个判断矩阵各因素针对其准则的相对权重,所以本质上是计算向量。
具体计算公式:
1
1
1n
ij
t n
j kl
k a W n a
===∑
∑
对矩阵进行一致性检验,步骤如下: 计算一致性指标C.I
max .1
n
C I n λ-=
-
确定相应的平均随机一致性指标R.I
表3 平均随机一致性指标R.I 表
计算一致性比例C.R 并进行判断:
.....C I C R R I =
表4 B 层次总排序表
表5 C层次总排序表
经计算判断矩阵的整体一致性可以接受。
4、结果分析:从方案层总排序结果来看,建设天桥的权重远大于开挖地下通道的权重,所以最经的决策方案是建设天桥。
总结
通过对问题基本情况的分析和理解,问题的简化抽象和延伸,首先在提出问题具体背景的情况下,建立起了农作物种植分配策略的线性规划模型,并结合模型的结构特点,对模型的求解方法进行条件限制,再由条件限制建立目标规划模型,并针对现实问题而采用的层次分析策略,也是为得出最优方案而进行分析研究。
参考文献
[1]魏广玉,薛小龙.多目标决策方法在房地产开发中应用[J].建筑管理现代化,2005
[2]蒋绍忠.管理运筹学教程[M].杭州:浙江大学出版社,2006
[2]范国兵.投资决策的线性规划模型及其应用[J].科技和产业,2010。