江苏省宜兴市洋溪中学2016届九年级数学下册第一次月考试题
- 格式:doc
- 大小:229.50 KB
- 文档页数:8
九年级数学下册第一次月考试题(含答案)以下是查字典数学网为您推荐的九年级数学下册第一次月考试题(含答案),希望本篇文章对您学习有所帮助。
九年级数学下册第一次月考试题(含答案)一、选择题(本大题共 8小题,每小题3分,共24 分)1.绝对值是6的有理数是 ( )A.6B.6C.-6D.2.计算的结果是 ( )A. B. C. D.3.半径为6的圆的内接正六边形的边长是 ( )A.2B.4C.6D.84.如图是一个几何体的三视图,已知主视图和左视图都是边长为2的等边三角形,则这个几何体的全面积为 ( )A. B. C. D.5.某校共有学生600 名,学生上学的方式有乘车、骑车、步行三种. 如图是该校学生乘车、骑车、步行上学人数的扇形统计图.,乘车的人数是 ( )A.180B.270C.150D.2006.函数的自变量X的取值范围是 ( )A. B. C. D.7. 如右图, 是一个下底小而上口大的圆台形容器,将水以恒速(即单位时间内注入水的体积相同)注入,设注水时间为t,容器内对应的水高度为h,则h 与t的函数图象只可能是 ( )8. 如图所示的正方体的展开图是 ( )A. B. C. D.二、填空题(本大题共7 小题,每小题3分,共21分.)9、.若分式的值为零 , 则 .10. 已知反比例函数的图象经过点 (3,-4),则这个函数的解析式为11 已知两圆内切,圆心距,一个圆的半径,那么另一个圆的半径为12. 用科学记数法表示20 120427的结果是 (保留两位有效数字);13.二次函数的图象向右平移 1个单位,再向下平移1个单位,所得图象的与X轴的交点坐标是: ;14.如图,已知梯形ABCD,AD∥BC,对角线AC,BD相交于点O,△AOD与△BOC的面积之比为1:9,若AD=1,则BC的长是 .15. 如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第 ( 是大于0的整数)个图形需要黑色棋子的个数是 .三、解答题(本大题共10小题,共75分.解答应写出文字说明,证明过程或演算步骤.)17、(本小题5分) 计算:18. (本小题5分)先化简,再求值,其中x= 。
2018-2019学年江苏省无锡市宜兴市洋溪中学九年级(下)第一次月考数学试卷一、选择题(每题3分)1.cos30°的值是()A.B.C.D.2.在△ABC中,∠C=90°,BC=4,,则边AC的长是()A. B.6 C.D.3.如图,在△ABC中,DE∥BC,如果DE=2,BC=5,那么的值是()A.B.C.D.4.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器厚度,则球的半径为()A.5cm B.6cm C.7cm D.8cm5.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)6.抛物线y=x2+4x+5是由抛物线y=x2+1经过某种平移得到,则这个平移可以表述为()A.向左平移1个单位 B.向左平移2个单位C.向右平移1个单位 D.向右平移2个单位7.点P(x,y)为二次函数y=﹣x2+2x+3图象上一点,且﹣2≤x≤2,则y的取值范围为()A.﹣5<y<3 B.﹣5≤y≤3 C.﹣5≤y≤4 D.﹣5<y<48.如图,Rt△OAB的顶点O与坐标原点重合,∠AOB=90°,AO=2BO,当A点在反比例函数y=(x>0)的图象上移动时,B点坐标满足的反比例函数解析式为()A.y=﹣(x<0)B.y=﹣(x<0)C.y=﹣(x<0)D.y=﹣(x<0)9.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12,AD=4,BC=9,点P是AB上一动点.若△PAD与△PBC是相似三角形,则满足条件的点P的个数有()A.1个B.2个C.3个D.4个10.如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD 先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2015次变换后,正方形ABCD的对角线交点M的坐标变为()A.(﹣2013,2) B.(﹣2013,﹣2)C.(﹣2014,﹣2)D.(﹣2014,2)二、填空题(每题2分)11.已知α为锐角,且sin(α﹣10°)=,则α等于度.12.如图,已知直线l1∥l2∥3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则tanα=.13.如图,PA、PB分别切⊙O于A、B,∠APB=50°,则∠AOP=°.14.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则⊙O的半径是.15.如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为.16.抛物线y=2x2+4x+m与x轴的一个交点坐标为(﹣3,0),则与x轴的另一个交点坐标为.17.如图,正方形ABCD的边长为6,点E,F分别在边AB,BC上,AE=BF=2,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P所经过的路程长为.18.如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为.三、解答题19.计算:(1)(﹣5)0﹣()2+|﹣3|(2)解不等式:﹣1<2x.20.(1)解方程:x2﹣3x﹣4=0(2)已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.21.如图,在▱ABCD中,E、F为对角线BD上的两点.(1)若AE⊥BD,CF⊥BD,证明BE=DF.(2)若AE=CF,能否说明BE=DF?若能,请说明理由;若不能,请画出反例.22.如图,⊙O的直径AB=10,CD是⊙O的弦,AC与BD相交于点P.(1)判断△APB与△DPC是否相似?并说明理由;(2)若CE⊥BD于E,且PE:EC=3:4,求弦CD的长.23.已知,△ABC在直角坐标平面内,三个顶点的坐标分别为A(﹣2,2)、B(﹣1,0)、C(0,1)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC关于y轴的轴对称图形△A1B1C1;(2)以点O为位似中心,在网格内画出所有符合条件的△A2B2C2,使△A2B2C2与△A1B1C1位似,且位似比为2:1;(3)求△A1B1C1与△A2B2C2的面积比.24.如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)25.如图,在平面直角坐标系中,点A、C的坐标分别为(0,8)、(6,0),以AC为直径作⊙O,交坐标轴于点B,点D是⊙O 上一点,且弧BD=弧AD,过点D作DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)判断直线ED与⊙O的位置关系,并说明理由;(3)求线段CE的长.26.已知:直角三角形的铁片ABC的两条直角边BC、AC的长分别为6和8,如图所示,分别采用(1)(2)两种方法,剪出一块正方形铁片,为使剪去正方形铁片后剩下的边角料较少,试比较哪种剪法较为合理,并说明理由.2015-2016学年江苏省无锡市宜兴市洋溪中学九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分)1.cos30°的值是()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值直接求解即可.【解答】解:cos30°=.故选A.2.在△ABC中,∠C=90°,BC=4,,则边AC的长是()A. B.6 C.D.【考点】解直角三角形.【分析】首先根据∠A的正弦值求得斜边,再根据勾股定理求得AC的长.【解答】解:在△ABC中,∠C=90°,BC=4,,∴AB==6,根据勾股定理,得AC===2.故选:A.3.如图,在△ABC中,DE∥BC,如果DE=2,BC=5,那么的值是()A.B.C.D.【考点】相似三角形的判定与性质.【分析】先由平行线证明△ADE∽△ABC,得出对应边成比例=,即可得出的值.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=,∴;故选:B .4.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器厚度,则球的半径为( )A .5cmB .6cmC .7cmD .8cm【考点】垂径定理的应用;勾股定理.【分析】设正方体上底面所在平面截球得小圆M ,可得圆心M 为正方体上底面正方形的中心.设球的半径为R ,根据题意得球心到上底面的距离等于(R ﹣2)cm ,而圆M 的半径为4,由球的截面圆性质建立关于R 的方程并解出R 即可.【解答】解:设正方体上底面所在平面截球得小圆M ,则圆心M 为正方体上底面正方形的中心.如图.设球的半径为R ,根据题意得球心到上底面的距离等于(R ﹣2)cm ,而圆M 的半径为4,由球的截面圆性质,得R 2=(R ﹣2)2+42,解得:R=5.故选:A .5.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是( )A .点(0,3)B .点(2,3)C .点(5,1)D .点(6,1)【考点】切线的性质;坐标与图形性质;勾股定理;垂径定理.【分析】根据垂径定理的性质得出圆心所在位置,再根据切线的性质得出,∠OBD+∠EBF=90°时F点的位置即可.【解答】解:连接AC,作AC,AB的垂直平分线,交格点于点O′,则点O′就是所在圆的圆心,∴三点组成的圆的圆心为:O′(2,0),∵只有∠O′BD+∠EBF=90°时,BF与圆相切,∴当△BO′D≌△FBE时,∴EF=BD=2,F点的坐标为:(5,1),∴点B与下列格点的连线中,能够与该圆弧相切的是:(5,1).故选:C.6.抛物线y=x2+4x+5是由抛物线y=x2+1经过某种平移得到,则这个平移可以表述为()A.向左平移1个单位 B.向左平移2个单位C.向右平移1个单位 D.向右平移2个单位【考点】二次函数图象与几何变换.【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【解答】解:原抛物线的顶点为(0,1),新抛物线的顶点为(﹣2,1),∴是抛物线y=x2+1向左平移2个单位得到,故选B.7.点P(x,y)为二次函数y=﹣x2+2x+3图象上一点,且﹣2≤x≤2,则y的取值范围为()A.﹣5<y<3 B.﹣5≤y≤3 C.﹣5≤y≤4 D.﹣5<y<4【考点】二次函数的性质.【分析】先求出二次函数的对称轴,再根据二次函数的增减性求出最大值和最小值即可,然后写出y的取值范围即可.【解答】解:二次函数的对称轴为直线x=﹣=1,∵a=﹣1<0,∴当x=1时,有最大值为﹣12+2×1+3=4,当x=﹣2时,有最小值为﹣(﹣2)2+2×(﹣2)+3=﹣5,∴y的取值范围为﹣5≤y≤4.故选C.8.如图,Rt△OAB的顶点O与坐标原点重合,∠AOB=90°,AO=2BO,当A点在反比例函数y=(x>0)的图象上移动时,B点坐标满足的反比例函数解析式为()A.y=﹣(x<0)B.y=﹣(x<0)C.y=﹣(x<0)D.y=﹣(x<0)【考点】相似三角形的判定与性质;待定系数法求反比例函数解析式.【分析】过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,设B点坐标满足的函数解析式是y=,易得△AOC∽△OBD,然后由相似三角形面积比等于相似比的平方,求得S△AOC:S△BOD=4,继而求得答案.【解答】解:如图,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,设B点坐标满足的函数解析式是y=,∴∠ACO=∠BDO=90°,∴∠AOC+∠OAC=90°,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∴∠BOD=∠OAC,∴△AOC∽△OBD,∴S△AOC:S△BOD=,∵AO=2BO,∴S△AOC:S△BOD=4,∵当A点在反比例函数y=(x>0)的图象上移动,∴S△AOC=OC•AC=•x•=,∴S△BOD=DO•BD=(﹣x•)=﹣k,∴=4×(﹣k),解得k=﹣∴B点坐标满足的函数解析式y=﹣(x<0).故选:B.9.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12,AD=4,BC=9,点P是AB上一动点.若△PAD与△PBC是相似三角形,则满足条件的点P的个数有()A.1个B.2个C.3个D.4个【考点】相似三角形的判定;直角梯形.【分析】由于∠PAD=∠PBC=90°,故要使△PAD与△PBC相似,分两种情况讨论:①△APD∽△BPC,②△APD∽△BCP,这两种情况都可以根据相似三角形对应边的比相等求出AP的长,即可得到P点的个数.【解答】解:∵AB⊥BC,∴∠B=90°.∵AD∥BC∴∠A=180°﹣∠B=90°,∴∠PAD=∠PBC=90°.设AP的长为x,则BP长为12﹣x.若AB边上存在P点,使△PAD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则AP:BP=AD:BC,即x:(12﹣x)=4:9,解得:x=;②若△APD∽△BCP,则AP:BC=AD:BP,即x:9=4:(12﹣x),解得:x=6.∴满足条件的点P的个数是2个,故选:B.10.如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD 先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2015次变换后,正方形ABCD的对角线交点M的坐标变为()A.(﹣2013,2) B.(﹣2013,﹣2)C.(﹣2014,﹣2)D.(﹣2014,2)【考点】规律型:点的坐标;翻折变换(折叠问题);坐标与图形变化-平移.【分析】首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),继而求得把正方形ABCD连续经过2015次这样的变换得到正方形ABCD的对角线交点M的坐标.【解答】解:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2﹣1,﹣2),即(1,﹣2),第2次变换后的点M的对应点的坐标为:(2﹣2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2﹣3,﹣2),即(﹣1,﹣2),第n次变换后的点M的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),∴连续经过2015次变换后,正方形ABCD的对角线交点M的坐标变为(﹣2013,﹣2).故选B二、填空题(每题2分)11.已知α为锐角,且sin(α﹣10°)=,则α等于70度.【考点】特殊角的三角函数值.【分析】根据sin60°=解答.【解答】解:∵α为锐角,sin(α﹣10°)=,sin60°=,∴α﹣10°=60°,∴α=70°.12.如图,已知直线l1∥l2∥3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则tanα=.【考点】全等三角形的判定与性质;正方形的性质;锐角三角函数的定义.【分析】根据正方形的性质就可以得出AE=AD,由平行线的性质就可以得出∠α=∠ADE,就可以求出结论.【解答】解:∵四边形ABCD是平行四边形,∴AD=AB,∠A=90°.∵l1∥l2∥3∥l4,相邻两条平行直线间的距离都是1,∴AE=AB,∠α=∠ADE.∴AE=AD.∴.∵tan∠ADE=,∴tanα=,∴tanα=.故答案为:13.如图,PA、PB分别切⊙O于A、B,∠APB=50°,则∠AOP=65°.【考点】切线的性质.【分析】根据切线长定理求得∠APO,根据切线的性质定理得到直角∠OAP,再进一步根据直角三角形的两个锐角互余进行求解.【解答】解:∵PA、PB分别切⊙O于A、B,∠APB=50°,∴∠APO=∠APB=25°,∵PA切⊙O于A,∴∠OAP=90°,∴∠AOP=90°﹣25°=65°.故答案为:65.14.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则⊙O的半径是1.【考点】圆周角定理;等边三角形的判定与性质.【分析】连结OB、OC,根据圆周角定理得∠BOC=2∠BAC=60°,而OB=OC,于是可判断△OBC为等边三角形,所以OB=BC=1.【解答】解:连结OB、OC,如图,∵∠BOC=2∠BAC=2×30°=60°,而OB=OC,∴△OBC为等边三角形,∴OB=BC=1,即⊙O的半径为1.故答案为1.15.如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为300π.【考点】圆锥的计算;扇形面积的计算.【分析】首先根据底面圆的面积求得底面的半径,然后结合弧长公式求得扇形的半径,然后利用扇形的面积公式求得侧面积即可.【解答】解:∵底面圆的面积为100π,∴底面圆的半径为10,∴扇形的弧长等于圆的周长为20π,设扇形的母线长为r,则=20π,解得:母线长为30,∴扇形的面积为πrl=π×10×30=300π,故答案为:300π.16.抛物线y=2x2+4x+m与x轴的一个交点坐标为(﹣3,0),则与x轴的另一个交点坐标为(1,0).【考点】抛物线与x轴的交点.【分析】把交点坐标代入抛物线解析式求m的值,再令y=0解一元二次方程求另一交点的横坐标.【解答】解:把点(﹣3,0)代入抛物线y=2x2+4x+m中,得m=﹣6,所以,原方程为y=2x2+4x﹣6,令y=0,解方程2x2+4x﹣6=0,得x1=1,x2=﹣3,∴抛物线与x轴的另一个交点的坐标是(1,0).故答案为:(1,0).17.如图,正方形ABCD的边长为6,点E,F分别在边AB,BC上,AE=BF=2,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P所经过的路程长为12.【考点】正方形的性质.【分析】根据已知中的点E,F的位置,可知入射角的正切值为,通过相似三角形,来确定反射后的点的位置,从而可得反射的次数.再由勾股定理就可以求出小球经过的路径的总长度.【解答】解:根据已知中的点E,F的位置,可知入射角的正切值为,第一次碰撞点为F,在反射的过程中,根据入射角等于反射角及平行关系的三角形的相似可得第二次碰撞点为G,在DA上,且DG=DA,第三次碰撞点为H,在DC上,且DH=DC,第四次碰撞点为M,在CB上,且CM=BC,第五次碰撞点为N,在DA上,且AN=AD,第六次回到E点,AE=AB.由勾股定理可以得出EF==2,FG=3,GH=,HM=2,MN=3,NE=,故小球经过的路程为:2+3++2+3+=12,故答案为:12.18.如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为或.【考点】翻折变换(折叠问题).【分析】连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.【解答】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC 交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.三、解答题19.计算:(1)(﹣5)0﹣()2+|﹣3|(2)解不等式:﹣1<2x.【考点】实数的运算;零指数幂;解一元一次不等式.【分析】(1)原式第一项利用零指数幂法则计算,第二项利用算术平方根定义计算,第三项利用绝对值的代数意义化简,计算即可得到结果;(2)不等式去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)原式=1﹣3+3=1;(2)去分母得:x+2﹣3<6x,移项合并得:5x>﹣1,解得:x>﹣0.2.20.(1)解方程:x2﹣3x﹣4=0(2)已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.【考点】整式的混合运算—化简求值;解一元二次方程-因式分解法.【分析】(1)方程利用因式分解法求出解即可;(2)原式利用平方差公式,完全平方公式化简,整理后将已知等式代入计算即可求出值.【解答】解:(1)分解因式得:(x﹣4)(x+1)=0,解得:x1=4,x2=﹣1;(2)原式=4x2﹣12x+9﹣x2+y2﹣y2=3x2﹣12x+9=3(x2﹣4x)+9,由x2﹣4x﹣1=0,得到x2﹣4x=1,则原式=3+9=12.21.如图,在▱ABCD中,E、F为对角线BD上的两点.(1)若AE⊥BD,CF⊥BD,证明BE=DF.(2)若AE=CF,能否说明BE=DF?若能,请说明理由;若不能,请画出反例.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)证明△AEB≌△CFD,即可得出结论;(2)画出图形说明即可.【解答】解:(1)∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD,在△AEB和△CFD中,,∴△AEB≌△CFD(AAS),∴BE=DF.(2)答:不能.反例:.22.如图,⊙O的直径AB=10,CD是⊙O的弦,AC与BD相交于点P.(1)判断△APB与△DPC是否相似?并说明理由;(2)若CE⊥BD于E,且PE:EC=3:4,求弦CD的长.【考点】相似三角形的判定与性质;圆周角定理.【分析】(1)根据圆周角定理得到∠D=∠A,∠DCA=∠B,由相似三角形的判定定理即可得到结论;(2)连接BC,设PE=3x,CE=4x,根据勾股定理得到PC=5x,由三角函数的定义得到cos∠BPC==,求得cos∠BPC==,根据相似三角形的性质即可得到结论.【解答】解:(1)△APB与△DPC相似,∵∠D=∠A,∠DCA=∠B,∴△APB∽△DPC;(2)连接BC,∵CE⊥BD于E,且PE:EC=3:4,∴设PE=3x,CE=4x,∴PC=5x,∴cos∠BPC==,∵AB是⊙O的直径,∴∠PCB=90°,∴cos∠BPC==,∵△APB∽△CDP,∴=,∵AB=10,∴CD=6.23.已知,△ABC在直角坐标平面内,三个顶点的坐标分别为A(﹣2,2)、B(﹣1,0)、C(0,1)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC关于y轴的轴对称图形△A1B1C1;(2)以点O为位似中心,在网格内画出所有符合条件的△A2B2C2,使△A2B2C2与△A1B1C1位似,且位似比为2:1;(3)求△A1B1C1与△A2B2C2的面积比.【考点】作图-位似变换;作图-轴对称变换.(1)由△ABC关于y轴的轴对称图形△A1B1C1,根据轴对称的性质,可求得△A1B1C1【分析】各点的坐标,继而画出△A1B1C1;(2)由△A2B2C2与△A1B1C1位似,且位似比为2:1;根据位似的性质,可求得△A2B2C2各点的坐标,继而画出△A2B2C2;(3)由相似三角形的面积比等于相似比的平方,即可求得△A1B1C1与△A2B2C2的面积比.【解答】解(1)如图:A1(2,2),B1(1,0),C1(0,1);(2)如图:A1(4,4),B1(2,0),C1(0,2)或A1(﹣4,﹣4),B1(﹣2,0),C1(0,﹣2);(3)∵△A2B2C2与△A1B1C1位似,且位似比为2:1,∴△A1B1C1与△A2B2C2的面积比=()2=.24.如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)【考点】解直角三角形的应用-方向角问题.【分析】(1)过点P作PD⊥AB于点D,设PD=xkm,先解Rt△PBD,用含x的代数式表示BD,再解Rt△PAD,用含x的代数式表示AD,然后根据BD+AD=AB,列出关于x的方程,解方程即可;(2)过点B作BF⊥AC于点F,先解Rt△ABF,得出BF=AB=1km,再解Rt△BCF,得出BC=BF=km.【解答】解:(1)如图,过点P作PD⊥AB于点D.设PD=xkm.在Rt△PBD中,∠BDP=90°,∠PBD=90°﹣45°=45°,∴BD=PD=xkm.在Rt△PAD中,∠ADP=90°,∠PAD=90°﹣60°=30°,∴AD=PD=xkm.∵BD+AD=AB,∴x+x=2,x=﹣1,∴点P到海岸线l的距离为(﹣1)km;(2)如图,过点B作BF⊥AC于点F.根据题意得:∠ABC=105°,在Rt△ABF中,∠AFB=90°,∠BAF=30°,∴BF=AB=1km.在△ABC中,∠C=180°﹣∠BAC﹣∠ABC=45°.在Rt△BCF中,∠BFC=90°,∠C=45°,∴BC=BF=km,∴点C与点B之间的距离为km.25.如图,在平面直角坐标系中,点A、C的坐标分别为(0,8)、(6,0),以AC为直径作⊙O,交坐标轴于点B,点D是⊙O 上一点,且弧BD=弧AD,过点D作DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)判断直线ED与⊙O的位置关系,并说明理由;(3)求线段CE的长.【考点】圆的综合题.【分析】(1)根据四边形ABCD是⊙O内接四边形,可得∠DCE=∠BAD,根据弧BD=弧AD,可得∠BAD=∠ACD,等量代换得到∠DCE=∠ACD,从而求解;(2)直线ED与⊙O相切.连接OD.根据圆的性质和等边对等角可得∠ODC=∠OCD,等量代换得到∠DCE=∠ODC,根据平行线的判定和性质得到∠ODE=∠DEC,再根据垂直的定义和性质可得OD⊥DE,根据切线的判定即可求解;(3)延长DO交AB于点H.根据三角形中位线定理可得HO=BC=3,根据勾股定理可得OD,得到HD,再根据矩形的判定和性质得到BE=HD=8,从而得到CE的长.【解答】解:(1)∵四边形ABCD是⊙O内接四边形,∴∠BAD+∠BCD=180°,又∵∠BCD+∠DCE=180°,∴∠DCE=∠BAD,∵弧BD=弧AD,∴∠BAD=∠ACD,∴∠DCE=∠ACD,∴CD平分∠ACE.(2)直线ED与⊙O相切.连接OD.∵OC=OD,∴∠ODC=∠OCD,又∵∠DCE=∠ACD,∴∠DCE=∠ODC,∵OD∥BE,∴∠ODE=∠DEC,又∵DE⊥BC,∴∠DEC=90°,∴∠ODE=90°∴OD⊥DE,∴ED与⊙O相切.(3)延长DO交AB于点H.∵OD∥BE,O是AC的中点,∴H是AB的中点,∴HO是△ABC的中位线,∴HO=BC=3,又∵AC为直径,∴∠ADC=90°,又∵O是AC的中点∴OD=AC=×=5,∴HD=3+5=8,∵∠ABC=∠DEC=∠ODE=90°,∴四边形BEDH是矩形,∴BE=HD=8,∴CE=8﹣6=2.26.已知:直角三角形的铁片ABC的两条直角边BC、AC的长分别为6和8,如图所示,分别采用(1)(2)两种方法,剪出一块正方形铁片,为使剪去正方形铁片后剩下的边角料较少,试比较哪种剪法较为合理,并说明理由.【考点】相似三角形的应用.【分析】求出两个正方形的边长,根据面积大的比较合理来选择.【解答】解:图1中,设DE=CD=EF=CF=x,∵DE∥BC,∴,∴,∴x=,图2中,作CM⊥AB垂足为M交DE于N.设正方形DEFG边长为y.在RT△ABC中,∵AC=8,BC=6,∴AB==10,CM==4.8,∵DE∥AB,∴△CDE∽△CBA,∴,∴,∴y=.∵x>y,∴图1中正方形面积大,故图1的剪法较为合理.2016年4月30日。
2015-2016学年江苏省无锡市宜兴市周铁学区九年级(下)月考数学试卷(3月份)一、选择题(本大题共10题,每小题2分,共计20分.)1.下面四个图形中不是轴对称图形的是()A.B.C.D.2.下列运算正确的是()A.a2+a3=a5B.(﹣2x)3=﹣2x3C.D.(a﹣b)(﹣a+b)=﹣a2﹣2ab﹣b23.如图所示的几何体是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.4.若x1,x2是一元二次方程x2+10x+16=0的两个根,则x1+x2的值是()A.﹣10 B.10 C.﹣16 D.165.圆锥的底面半径为2,母线长为4,则它的全面积为()A.8πB.12π C.4πD.4π6.下面一组数据是10名学生测试跳绳项目的成绩(单位:个/分钟).176 180 184 180 170 176 172 164 186 180该组数据的众数、中位数、平均数分别为()A.180,180,178 B.180,178,178C.180,178,176.8 D.178,180,176.87.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30° B.25°C.20°D.15°8.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A. cm B. cm C. cm D.1cm9.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.1 B. C.2 D. +110.如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C 的圆心坐标为(0,﹣1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是()A.3 B.C.D.4二、填空题(本大题共8小题,每小题2分共16分.请把答案直接填写在答题卡相应位置上.)11.函数y=中,自变量x的取值范围是.12.据报载,2014年我国发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为.13.圆心角为120°,半径为6cm的扇形的弧长是cm.14.已知方程x2﹣3x+k=0有两个相等的实数根,则k=.15.抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为.16.如图,AB是⊙O的直径,CD是⊙O的弦.若∠BAC=23°,则∠ADC的度数为.17.如图,平行四边形AOBC中,对角线交于点E,双曲线(k>0)经过A,E两点,若平行四边形AOBC的面积为18,则k=.18.若直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是.三、解答题(本大题共10小题共84分,解答需写出必要的文字说明或演算步骤.)19.(1)计算:﹣12008+2sin45°+(3﹣π)0+(﹣)﹣1(2)解不等式组:.20.解方程:(1)x2﹣6x﹣2=0(2)=﹣3.21.如图,正方形ABCD中,点E在对角线AC上,连接EB、ED.(1)求证:△BCE≌△DCE;(2)延长BE交AD于点F,若∠DEB=140°,求∠AFE的度数.22.在一个不透明的布袋里装有4个完全相同的标有数字1、2、3、4的小球.小明从布袋里随机取出一个小球,记下数字为x,小红从布袋里剩下的小球中随机取出一个,记下数字为y.计算由x、y确定的点(x,y)在函数y=﹣x+5的图象上的概率.23.巴中市对初三年级学生的体育、物理实验操作、化学实验操作成绩进行抽样调查,成绩评定为A,B,C,D四个等级.现抽取这三种成绩共1000份进行统计分析,其中A,B,C,D分别表示优秀,良好,合格,不合格四个等级.相关数据统计如下表及图所示.A B C D物理实验操作120 90 20化学实验操作90 110 30体育140 160 27(1)请将上表补充完整(直接填数据,不写解答过程).(2)巴中市共有40000名学生参加测试,试估计该市初三年级学生化学实验操作合格及合格以上大约有多少人?(3)在这40000名学生中,体育成绩不合格的大约有多少人?24.小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.25.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.26.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.27.已知:二次函数y=ax2+bx+6(a≠0)的图象与x轴交于A、B两点(点A在点B的左侧),点A、点B的横坐标是方程x2﹣4x﹣12=0的两个根.(1)求出该二次函数的表达式及顶点坐标;(2)如图,连接AC、BC,点P是线段OB上一个动点(点P不与点O、B重合),过点P作PQ∥AC交BC于点Q,当△CPQ的面积最大时,求点P的坐标.28.已知,在矩形ABCD中,E为BC边上一点,AE⊥DE,AB=12,BE=16,F为线段BE上一点,EF=7,连接AF.如图①,现有一张硬质纸片△GMN,∠NGM=90°,NG=6,MG=8,斜边MN与边BC在同一直线上,点N与点E重合,点G在线段DE 上.如图②,△GMN从图①的位置出发,以每秒1个单位的速度沿EB向点B匀速移动,同时,点P从A点出发,以每秒1个单位的速度沿AD向点D匀速移动,点Q为直线GN与线段AE的交点,连接PQ.当点N到达终点B时,△GMN和点P同时停止运动.设运动时间为t秒,解答下列问题:(1)在整个运动过程中,当点G在线段AE上时,求t的值.(2)在整个运动过程中,是否存在点P,使△APQ是等腰三角形?若存在,求出t的值;若不存在,说明理由.(3)在整个运动过程中,设△GMN与△AEF重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.2015-2016学年江苏省无锡市宜兴市周铁学区九年级(下)月考数学试卷(3月份)参考答案与试题解析一、选择题(本大题共10题,每小题2分,共计20分.)1.下面四个图形中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形可得答案.【解答】解:A不是轴对称图形,B、C、D都是轴对称图形,故选:A.2.下列运算正确的是()A.a2+a3=a5B.(﹣2x)3=﹣2x3C.D.(a﹣b)(﹣a+b)=﹣a2﹣2ab﹣b2【考点】二次根式的加减法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】分别根据幂的乘方与积的乘方法则、合并同类项的法则对各选项进行逐一分析即可.【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、(﹣2x)3=﹣8x3,故本选项错误;C、+=+2=3,故本选项正确;D、(a﹣b)(﹣a+b)=﹣a2+2ab﹣b2,故本选项错误.故选C.3.如图所示的几何体是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】俯视图是从上面看到的图形.【解答】解:从上面看,左边和中间都是2个正方形,右上角是1个正方形,故选D.4.若x1,x2是一元二次方程x2+10x+16=0的两个根,则x1+x2的值是()A.﹣10 B.10 C.﹣16 D.16【考点】根与系数的关系.【分析】根据一元二次方程的根与系数的关系得到两根之和即可.【解答】解:∵x1,x2一元二次方程x2+10x+16=0两个根,∴x1+x2=﹣10.故选:A.5.圆锥的底面半径为2,母线长为4,则它的全面积为()A.8πB.12π C.4πD.4π【考点】圆锥的计算.【分析】首先求得底面周长,即侧面展开图的扇形弧长,然后根据扇形的面积公式即可求得侧面积,即圆锥的侧面积,再求得圆锥的底面积,侧面积与底面积的和就是全面积.【解答】解:底面周长是:2×2π=4π,则侧面积是:×4π×4=8π,底面积是:π×22=4π,则全面积是:8π+4π=12π.故选B.6.下面一组数据是10名学生测试跳绳项目的成绩(单位:个/分钟).176 180 184 180 170 176 172 164 186 180该组数据的众数、中位数、平均数分别为()A.180,180,178 B.180,178,178C.180,178,176.8 D.178,180,176.8【考点】众数;加权平均数;中位数.【分析】根据众数的定义找出出现次数最多的数,根据中位数的定义把这组数据从小到大排列,求出最中间两个数的平均数,根据平均数的计算公式列式计算即可.【解答】解:∵180出现了3次,出现的次数最多,∴众数是180;把这组数据从小到大排列为:164,170,172,176,176,180,180,180,184,186,最中间两个数的平均数是÷2=178,则中位数是178;这组数据的平均数是÷10=176.8;故选C.7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30° B.25°C.20°D.15°【考点】平行线的性质.【分析】本题主要利用两直线平行,同位角相等作答.【解答】解:根据题意可知,两直线平行,同位角相等,∴∠1=∠3,∵∠3+∠2=45°,∴∠1+∠2=45°∵∠1=20°,∴∠2=25°.故选:B.8.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A. cm B. cm C. cm D.1cm【考点】正多边形和圆.【分析】连接AC,作BD⊥AC于D;根据正六边形的特点求出∠ABC的度数,再由等腰三角形的性质求出∠BAD的度数,由特殊角的三角函数值求出AD的长,进而可求出AC 的长.【解答】解:连接AC,过B作BD⊥AC于D;∵AB=BC,∴△ABC是等腰三角形,∴AD=CD;∵此多边形为正六边形,∴∠ABC==120°,∴∠ABD==60°,∴∠BAD=30°,AD=AB•cos30°=2×=,∴a=2cm.故选A.9.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.1 B. C.2 D. +1【考点】轴对称-最短路线问题;菱形的性质.【分析】先根据四边形ABCD是菱形可知,AD∥BC,由∠A=120°可知∠B=60°,作点P 关于直线BD的对称点P′,连接P′Q,PC,则P′Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP′⊥AB时PK+QK的值最小,再在Rt△BCP′中利用锐角三角函数的定义求出P′C的长即可.【解答】解:∵四边形ABCD是菱形,∴AD∥BC,∵∠A=120°,∴∠B=180°﹣∠A=180°﹣120°=60°,作点P关于直线BD的对称点P′,连接P′Q,P′C,则P′Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP′⊥AB时PK+QK的值最小,在Rt△BCP′中,∵BC=AB=2,∠B=60°,∴P′Q=CP′=BC•sinB=2×=.故选:B.10.如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C 的圆心坐标为(0,﹣1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是()A.3 B.C.D.4【考点】切线的性质;三角形的面积.【分析】当射线AD与⊙C相切时,△ABE面积的最大.设EF=x,由切割线定理表示出DE,可证明△CDE∽△AOE,根据相似三角形的性质可求得x,然后求得△ABE面积.【解答】解:当射线AD与⊙C相切时,△ABE面积的最大.连接AC,∵∠AOC=∠ADC=90°,AC=AC,OC=CD,∴Rt△AOC≌Rt△ADC,∴AD=AO=2,连接CD,设EF=x,∴DE2=EF•OE,∵CF=1,∴DE=,∴△CDE∽△AOE,∴=,即=,解得x=,S△ABE===.故选:B.二、填空题(本大题共8小题,每小题2分共16分.请把答案直接填写在答题卡相应位置上.)11.函数y=中,自变量x的取值范围是x≤3.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,3﹣x≥0,解得x≤3.故答案为:x≤3.12.据报载,2014年我国发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 2.5×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将25000000用科学记数法表示为2.5×107.故答案为:2.5×107.13.圆心角为120°,半径为6cm的扇形的弧长是4πcm.【考点】弧长的计算.【分析】弧长的计算公式为l=,将n=120°,R=6cm代入即可得出答案.【解答】解:由题意得,n=120°,R=6cm,故可得:l==4πcm.故答案为:4π.14.已知方程x2﹣3x+k=0有两个相等的实数根,则k=.【考点】根的判别式.【分析】根据题意可知△=0,推出9﹣4k=0,通过解方程即可推出k的值.【解答】解:∵x2﹣3x+k=0有两个相等的实数根,∴△=0,∴9﹣4k=0,∴k=.故答案为.15.抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为4.【考点】二次函数的性质.【分析】已知抛物线的对称轴,利用对称轴公式可求b的值.【解答】解:∵y=2x2﹣bx+3,对称轴是直线x=1,∴=1,即﹣=1,解得b=4.16.如图,AB是⊙O的直径,CD是⊙O的弦.若∠BAC=23°,则∠ADC的度数为67°.【考点】圆周角定理.【分析】首先根据直径所对的圆周角是直角,得到△ABC是直角三角形,求得∠ABC的度数,然后根据同弧所对的圆周角相等求解.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC=90°﹣∠BAC=90°﹣23°=67°,∴∠ADC=∠ABC=67°.故答案是:67°.17.如图,平行四边形AOBC中,对角线交于点E,双曲线(k>0)经过A,E两点,若平行四边形AOBC的面积为18,则k=6.【考点】反比例函数综合题;反比例函数的性质;三角形中位线定理;平行四边形的性质.【分析】分别过点A、E作AM、EN垂直于x轴于M、N,先求出OM=MN=BN,再求出平行四边形面积求出即可.【解答】解:分别过点A、E作AM、EN垂直于x轴于M、N,则AM∥EN,∵A、E在双曲线上,∴三角形AOM与三角形OEN的面积相等,∵四边形AOBC是平行四边形,∴AE=BE,∵AM∥EN,∴MN=NB,∴EN=AM,∴OM=ON,根据三角形的中位线,可得MN=BN,∴OM=MN=BN,设A(x,y),由平行四边形的面积=OB×AM=18,∴3x×y=18,xy=6,即k=6;故答案为:6.18.若直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是0<m<2.【考点】二次函数的图象;反比例函数的图象.【分析】首先作出分段函数y=的图象,根据函数的图象即可确定m的取值范围.【解答】解:分段函数y=的图象如图:故要使直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,常数m的取值范围为0<m<2,故答案为:0<m<2.三、解答题(本大题共10小题共84分,解答需写出必要的文字说明或演算步骤.)19.(1)计算:﹣12008+2sin45°+(3﹣π)0+(﹣)﹣1(2)解不等式组:.【考点】实数的运算;解一元一次不等式组.【分析】(1)原式利用乘方的意义,特殊角的三角函数值,零指数幂、负整数指数幂法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可求出不等式组的解集.【解答】解:(1)原式=﹣1++1﹣2=﹣2;(2),由①得:x>﹣1,由②得:x≤3,则不等式组的解集为﹣1<x≤3.20.解方程:(1)x2﹣6x﹣2=0(2)=﹣3.【考点】解一元二次方程-配方法;解分式方程.【分析】(1)方程利用配方法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)x2﹣6x+9=11配方得:(x﹣3)2=11,开方得:x﹣3=±,解得:x1=3+,x2=3﹣;(2)去分母得:1=x﹣1﹣3x+6,解得:x=2,经检验x=2是增根,分式方程无解.21.如图,正方形ABCD中,点E在对角线AC上,连接EB、ED.(1)求证:△BCE≌△DCE;(2)延长BE交AD于点F,若∠DEB=140°,求∠AFE的度数.【考点】全等三角形的判定与性质;正方形的性质.【分析】(1)根据正方形的性质得出BC=DC,∠BCE=∠DCE=45°,根据SAS推出即可;(2)根据全等求出∠DEC=∠BEC=70°,根据三角形内角和定理求出∠FBC,根据平行线的性质求出即可.【解答】(1)证明:∵正方形ABCD中,E为对角线AC上一点,∴BC=DC,∠BCE=∠DCE=45°,在△BCE和△DCE中∴△BCE≌△DCE(SAS);(2)解:由全等可知,∠BEC=∠DEC=∠DEB=×140°=70°,∵在△BCE中,∠CBE=180°﹣70°﹣45°=65°,∴在正方形ABCD中,AD∥BC,有∠AFE=∠CBE=65°.22.在一个不透明的布袋里装有4个完全相同的标有数字1、2、3、4的小球.小明从布袋里随机取出一个小球,记下数字为x,小红从布袋里剩下的小球中随机取出一个,记下数字为y.计算由x、y确定的点(x,y)在函数y=﹣x+5的图象上的概率.【考点】列表法与树状图法;一次函数图象上点的坐标特征.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(x,y)在函数y=﹣x+5的图象上的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有等可能的结果12种:(x,y)为(1,2)、(1,3)、(1,4)、(2,1)、(2,3)、(2,4)、(3,1)、(3,2)、(3,4)、(4,1)、(4,2)、(4,3);其中(x,y)所表示的点在函数y=﹣x+5的图象上的有4种,∴P(点(x,y)在函数y=﹣x+5的图象上)==.23.巴中市对初三年级学生的体育、物理实验操作、化学实验操作成绩进行抽样调查,成绩评定为A,B,C,D四个等级.现抽取这三种成绩共1000份进行统计分析,其中A,B,C,D分别表示优秀,良好,合格,不合格四个等级.相关数据统计如下表及图所示.A B C D物理实验操作120 7090 20化学实验操作90 110 30 20体育123140 160 27(1)请将上表补充完整(直接填数据,不写解答过程).(2)巴中市共有40000名学生参加测试,试估计该市初三年级学生化学实验操作合格及合格以上大约有多少人?(3)在这40000名学生中,体育成绩不合格的大约有多少人?【考点】扇形统计图;用样本估计总体;统计表.【分析】(1)根据体育、物理实验操作、化学实验操作所占的百分比分别乘以1000求得各科目人数,然后减去其他等级的人数,从而完整表格;(2)用全市所有人数乘以化学实验操作合格及合格以上所占的百分比即可;(3)用全市所有人数乘以体育成绩不合格的所占的百分比即可;【解答】解:(1)A B C D物理实验操作120 70 90 20化学实验操作90 110 30 20体育123 140 160 27(2)样本中化学实验操作合格及合格以上的比例为:∴该市初三年级学生化学实验操作合格及合格以上的大约有:40000×=36800(人);(3)体育成绩不合格的比例为:∴该市初三年级体育成绩不合格的大约有:40000×=2400(人).24.小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.【考点】解直角三角形的应用-坡度坡角问题.【分析】延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出∠CAD=180°﹣∠ODB﹣∠ACD=90°,解Rt△ACD,得出AD=AC•tan∠ACD=米,CD=2AD=3米,再证明△BOD是等边三角形,得到BD=OD=OA+AD=4.5米,然后根据BC=BD﹣CD即可求出浮漂B与河堤下端C之间的距离.【解答】解:延长OA交BC于点D.∵AO的倾斜角是60°,∴∠ODB=60°.∵∠ACD=30°,∴∠CAD=180°﹣∠ODB﹣∠ACD=90°.在Rt△ACD中,AD=AC•tan∠ACD=•=(米),∴CD=2AD=3米,又∵∠O=60°,∴△BOD是等边三角形,∴BD=OD=OA+AD=3+=4.5(米),∴BC=BD﹣CD=4.5﹣3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.25.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.【考点】切线的判定与性质;勾股定理;圆周角定理;相似三角形的判定与性质;解直角三角形.【分析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.(2)利用已知条件证得△AGC∽△ABF,利用比例式求得线段的长即可.【解答】(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴∠1=∠CAB.∵∠CBF=∠CAB,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线.(2)解:过点C作CG⊥AB于G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵在Rt△AEB中,∠AEB=90°,AB=5,∴BE=AB•sin∠1=,∵AB=AC,∠AEB=90°,∴BC=2BE=2,在Rt△ABE中,由勾股定理得AE==2,∴sin∠2===,cos∠2===,在Rt△CBG中,可求得GC=4,GB=2,∴AG=3,∵GC∥BF,∴△AGC∽△ABF,∴∴BF==26.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,=﹣2×452+180×45+2000=6050,当x=45时,y最大当50≤x≤90时,y随x的增大而减小,=6000,当x=50时,y最大综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.27.已知:二次函数y=ax2+bx+6(a≠0)的图象与x轴交于A、B两点(点A在点B的左侧),点A、点B的横坐标是方程x2﹣4x﹣12=0的两个根.(1)求出该二次函数的表达式及顶点坐标;(2)如图,连接AC、BC,点P是线段OB上一个动点(点P不与点O、B重合),过点P作PQ∥AC交BC于点Q,当△CPQ的面积最大时,求点P的坐标.【考点】二次函数综合题.【分析】(1)首先求出x2﹣4x﹣12=0的两根,进而求出点A和点B的坐标,利用待定系数法列出a和b的二元一次方程组,求出a和b的值,即可求出二次函数的解析式;(2)设点P的横坐标为m,则0<m<6,连接AQ,用m表示出△CPQ的面积,利用二次函数的性质,求出当△CPQ的面积最大时,点P的坐标.【解答】解:(1)由x2﹣4x﹣12=0,解得x=﹣2或x=6,点A、点B的横坐标是方程x2﹣4x﹣12=0的两个根,故A(﹣2,0)、B(6,0),则,解得.故二次函数y=﹣x2+2x+6,顶点坐标(2,8);(2)设点P的横坐标为m,则0<m<6,连接AQ,直线BC的解析式为y=﹣x+6,直线AC的解析式为y=3x+6,设Q点坐标为(a,6﹣a),由PQ∥AC,可知,解得a=,6﹣a=(6﹣m),S△CPQ=S△APQ=(m+2)•(6﹣m),=﹣( m2﹣4m﹣12)=﹣(m﹣2)2+6,=6,当m=2时,S最大所以,当△CPQ的面积最大时,点P的坐标是(2,0).28.已知,在矩形ABCD中,E为BC边上一点,AE⊥DE,AB=12,BE=16,F为线段BE上一点,EF=7,连接AF.如图①,现有一张硬质纸片△GMN,∠NGM=90°,NG=6,MG=8,斜边MN与边BC在同一直线上,点N与点E重合,点G在线段DE 上.如图②,△GMN从图①的位置出发,以每秒1个单位的速度沿EB向点B匀速移动,同时,点P从A点出发,以每秒1个单位的速度沿AD向点D匀速移动,点Q为直线GN与线段AE的交点,连接PQ.当点N到达终点B时,△GMN和点P同时停止运动.设运动时间为t秒,解答下列问题:(1)在整个运动过程中,当点G在线段AE上时,求t的值.(2)在整个运动过程中,是否存在点P,使△APQ是等腰三角形?若存在,求出t的值;若不存在,说明理由.(3)在整个运动过程中,设△GMN与△AEF重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.【考点】四边形综合题.【分析】(1)如答图1所示,证明QEMG为平行四边形,则运动路程QG=EM=10,t值可求;(2)△APQ是等腰三角形,分为三种情形,需要分类讨论,避免漏解.如答图2、答图3、答图4所示;(3)整个运动过程分为四个阶段,每个阶段重叠图形的形状各不相同,如答图5﹣答图8所示,分别求出其面积的表达式.【解答】解:(1)在Rt△GMN中,GN=6,GM=8,∴MN=10.由题意,易知点G的运动线路平行于BC.如答图1所示,过点G作BC的平行线,分别交AE、AF于点Q、R.∵∠AED=∠EGM=90°,∴AE∥GM.∴四边形QEMG为平行四边形,∴QG=EM=10.∴t==10秒.(2)存在符合条件的点P.在Rt△ABE中,AB=12,BE=16,由勾股定理得:AE=20.设∠AEB=θ,则sinθ=,cosθ=.∵NE=t,∴QE=NE•cosθ=t,AQ=AE﹣QE=20﹣t.△APQ是等腰三角形,有三种可能的情形:①AP=PQ.如答图2所示:过点P作PK⊥AE于点K,则AK=AP•cosθ=t.∵AQ=2AK,∴20﹣t=2×t,解得:t=;②AP=AQ.如答图3所示:有t=20﹣t,解得:t=;③AQ=PQ.如答图4所示:过点Q作QK⊥AP于点K,则AK=AQ•cosθ=(20﹣t)×=16﹣t.∵AP=2AK,∴t=2(16﹣t),解得:t=.综上所述,当t=,或秒时,存在点P,使△APQ是等腰三角形;(3)如答图1所示,点N到达点F的时间为t=7;由(1)知,点G到达点Q的时间为t=10;QE=10×=8,AQ=20﹣8=12,∵GR∥BC,∴,即,∴QR=.∴点G到达点R的时间为t=10+=;点N到达终点B的时间为t=16.则在△GMN运动的过程中:①当0≤t<7时,如答图5所示:QE=NE•cosθ=t,QN=NE•sinθ=t,S=QE•QN=•t•t=t2;②当7≤t<10时,如答图6所示:设QN与AF交于点I,∵tan∠INF==,tan∠IFN==,∴∠INF=∠IFN,△INF为等腰三角形.底边NF上的高h=NF•tan∠INF=×(t﹣7)×=(t﹣7).S△INF=NF•h=×(t﹣7)×(t﹣7)=(t﹣7)2,∴S=S△QNE﹣S△INF=t2﹣(t﹣7)2=﹣t2+t﹣;③当10≤t<时,如答图7所示:由②得:S△INF=(t﹣7)2,∴S=S△GMN﹣S△INF=24﹣(t﹣7)2=﹣t2+t+;④当<t≤16时,如答图8所示:FM=FE﹣ME=FE﹣(NE﹣MN)=17﹣t.设GM与AF交于点I,过点I作IK⊥MN于点K.∵tan∠IFK==,∴可设IK=4x,FK=3x,则KM=3x+17﹣t.∵tan∠IMF===,解得:x=(17﹣t).∴IK=4x=(17﹣t).∴S=FM•IK=(t﹣17)2.综上所述,S与t之间的函数关系式为:S=.2016年5月2日。
一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √3B. -2/3C. πD. 0.1010010001……2. 已知等差数列{an}的首项为2,公差为3,则第10项为()A. 29B. 30C. 31D. 323. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为()A. 60°B. 75°C. 90°D. 105°4. 已知二次函数y=ax^2+bx+c(a≠0)的图像与x轴有两个交点,且a>0,则下列说法正确的是()A. a+b+c>0B. a+b+c<0C. ab+c>0D. ab+c<05. 下列函数中,为奇函数的是()A. y=x^2B. y=x^3C. y=|x|D. y=1/x6. 已知等比数列{an}的首项为3,公比为2,则第5项为()A. 48B. 24C. 12D. 67. 在△ABC中,∠A=30°,∠B=75°,则∠C的度数为()A. 45°B. 60°C. 75°D. 90°8. 已知二次函数y=ax^2+bx+c(a≠0)的图像与y轴有一个交点,且a>0,则下列说法正确的是()A. b^2-4ac>0B. b^2-4ac<0C. b^2-4ac=0D. b^2-4ac≠09. 下列函数中,为偶函数的是()A. y=x^2B. y=x^3C. y=|x|D. y=1/x10. 已知等比数列{an}的首项为3,公比为2,则第6项为()A. 192B. 96C. 48D. 24二、填空题(每题5分,共50分)11. 已知等差数列{an}的首项为2,公差为3,则第10项为______。
12. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为______。
九年级下册第一次月考数学试卷一.选择题:(每小题3分共30分)1.在△ABC中,∠C=90°,∠B=2∠A,则cosA等于()A.B.C.D.2.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形3.如图,AB是⊙O的直径,弦CD⊥AB于点E,连结OC,若OC=5,CD=8,则tan∠COE=()A.B.C.D.4.已知二次函数的图象经过点(1,10),顶点坐标为(﹣1,﹣2),则此二次函数的解析式为()A.y=3x2+6x+1 B.y=3x2+6x﹣1 C.y=3x2﹣6x+1 D.y=﹣3x2﹣6x+15.二次函数y=x2+4x+3的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是()A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位6.如图,⊙O是△ABC的外接圆,已知∠B=60°,则∠CAO的度数是()A.15°B.30°C.45°D.60°7.二次函数y=﹣x2﹣2x+3的图象与x轴交于A、B两点(A在B的左边),它的顶点为C点.连接AC、BC,则tan∠CAB的值是()A.B.C.D.28.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80°B.100°C.110° D.130°9.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8 C.2D.210.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0②当﹣1≤x≤3时,y<0③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2④9a+3b+c=0其中正确的是()A.①②④B.①④C.①②③D.③④二、填空题(共6小题,每小题4分,满分24分)11.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是.12.如图,△ABC的三个顶点分别在边长为1的正方形网格的格点上,则tan(α+β)tanα+tanβ.(填“>”“=”“<”)13.如图所示,DE是△ABC的内切圆I的切线,又BC=2cm,△ADE的周长为4cm,则△ABC的周长是cm.14.如图,直径为10的⊙A经过点C(0,6)和点O(0,0),与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则cos∠OBC的值为.15.已知,A、B、C三点在⊙O上,OD⊥BC于点D,∠BOD=40°,则∠BAC的度数等于.16.如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm.动点P从A点开始沿AB 向B点以1cm/s的速度运动(不与B点重合),动点Q从B点开始沿BC以2cm/s 的速度向C点运动(不与C重合).如果P、Q同时出发,四边形APQC的面积最小时,要经过秒.三.解答题17.计算:①6tan230°﹣sin60°﹣2cos45°②已知α是锐角,且sin(α+15°)=,计算﹣4cosα﹣(π﹣3.14)°+tanα+()﹣1的值.18.如图,点A是圆弧BC上一点,用尺规作图法找出圆心O点(保留作图痕迹,不写做法)19.如图,斜坡AB的坡度是i=1:2,坡角B处有一棵树BC,某一时刻测得树BC在斜坡AB上的影子BD的长度是10米,这时测得太阳光线与水平线的夹角为60°,则树BC的高度为多少米?(结果保留根号).20.如图,AB是⊙O的直径,点C在⊙O上(异于A、B两点),AD⊥CD.①若BC=3,AB=5,求AC的长?②若AC是∠DAB的平分线,求证:直线CD与⊙O相切.21.如图,二次函数y=﹣x2+bx+c的图象经过坐标原点,与x轴交于点A(﹣2,0).(1)求此二次函数的顶点B的坐标;=1,请直接写出点P的坐标.(2)在抛物线上有一点P,满足S△AOP22.某商品成本价每个80元,1月销售额20000元.2月促销在1月的基础上打九折销售,结果多卖出去50个,销售额也增加了7000元.①求1月的销售单价;②如果2月搞打折销售时,折数x与销量y之间满足y=﹣50x+600.试求商场打几折时利润最大?最大利润是多少元?23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.24.如图,以E(3,0)为圆心,5为半径的⊙E与x轴交于A、B两点,与y轴交于C点,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点,顶点为F.(1)求A、B、C三点的坐标;(2)求抛物线的解析式及顶点F的坐标;=S△ABC,连接PF,判断(3)已知P是抛物线上位于第四象限的点,且满足S△ABP直线PF与⊙E的位置关系并说明理由.九年级(下)第一次月考数学试卷参考答案与试题解析一.选择题:(每小题3分共30分)1.在△ABC中,∠C=90°,∠B=2∠A,则cosA等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据三角形内角和定理求出角的度数后解答.【解答】解:∵△ABC中,∠C=90°,∠B=2∠A,∴设∠A=x,则∠B=2x.由三角形内角和定理得:x+2x+90°=180°,解得x=30°.∴cosA=cos30°=.故选A.2.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值得出∠A,∠B的度数,进而得出三角形的形状.【解答】解:∵cosA=,tanB=,∴∠A=45°,∠B=60°,∴∠C=75°,则这个三角形一定是锐角三角形.故选:D.3.如图,AB是⊙O的直径,弦CD⊥AB于点E,连结OC,若OC=5,CD=8,则tan∠COE=()A.B.C.D.【考点】垂径定理;勾股定理;锐角三角函数的定义.【分析】由直径AB的长求出半径的长,再由直径AB垂直于弦CD,利用垂径定理得到E为CD的中点,由CD的长求出CE的长,在直角三角形OCE中,利用勾股定理求出OE的长,再利用锐角三角函数定义即可求出tan∠COE的值.【解答】解:∵直径AB=10,∴OA=OC=OB=5,∵AB⊥CD,∴E为CD的中点,又CD=8,∴CE=DE=4,在Rt△OCE中,根据勾股定理得:OC2=CE2+OE2,∴OE=3,则tan∠COE==.故选B.4.已知二次函数的图象经过点(1,10),顶点坐标为(﹣1,﹣2),则此二次函数的解析式为()A.y=3x2+6x+1 B.y=3x2+6x﹣1 C.y=3x2﹣6x+1 D.y=﹣3x2﹣6x+1【考点】待定系数法求二次函数解析式.【分析】根据抛物线的顶点坐标设出,抛物线的解析式为:y=a(x+1)2﹣2,再把(1,10)代入,求出a的值,即可得出二次函数的解析式.【解答】解:设抛物线的解析式为:y=a(x+1)2﹣2,把(1,10)代入解析式得10=4a﹣2,解得a=3,则抛物线的解析式为:y=3(x+1)2﹣2=3x2+6x+1.故选A.5.二次函数y=x2+4x+3的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是()A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位【考点】二次函数图象与几何变换.【分析】把二次函数y=x2+4x+3化为顶点坐标式,再观察它是怎样通过二次函数y=x2的图象平移而得到.【解答】解:根据题意y=x2+4x+3=(x+2)2﹣1,按照“左加右减,上加下减”的规律,它可以由二次函数y=x2先向左平移2个单位,再向下平移1个单位得到.故选B.6.如图,⊙O是△ABC的外接圆,已知∠B=60°,则∠CAO的度数是()A.15°B.30°C.45°D.60°【考点】三角形的外接圆与外心.【分析】连接OC,根据圆周角定理求出∠AOC,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:连接OC,由圆周角定理得,∠AOC=2∠B=120°,∵OA=OC,∴∠CAO=×=30°,故选:B.7.二次函数y=﹣x2﹣2x+3的图象与x轴交于A、B两点(A在B的左边),它的顶点为C点.连接AC、BC,则tan∠CAB的值是()A.B.C.D.2【考点】抛物线与x轴的交点;解直角三角形.【分析】利用待定系数法求出A、B、C三点坐标,设对称轴交x轴于D,在Rt△ACD中,∠ADC=90°,AD=2,CD=4,根据tan∠CAB=,计算即可.【解答】解:对于抛物线y=﹣x2﹣2x+3,令y=0,得﹣x2﹣2x+3=0,解得x=﹣3或1,∴A(﹣3,0),B(1,0),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点C(﹣1,4),如图,设对称轴交x轴于D.在Rt△ACD中,∠ADC=90°,AD=2,CD=4,∴tan∠CAB==2,故选D.8.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80°B.100°C.110° D.130°【考点】圆周角定理.【分析】连接OC,然后根据等边对等角可得:∠OCB=∠OBC=40°,然后根据三角形内角和定理可得∠BOC=100°,然后根据周角的定义可求:∠1=260°,然后根据圆周角定理即可求出∠A的度数.【解答】解:连接OC,如图所示,∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=100°,∵∠1+∠BOC=360°,∴∠1=260°,∵∠A=∠1,∴∠A=130°.故选:D.9.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8 C.2D.2【考点】垂径定理;勾股定理;圆周角定理.【分析】先根据垂径定理求出AC的长,设⊙O的半径为r,则OC=r﹣2,由勾股定理即可得出r的值,故可得出AE的长,连接BE,由圆周角定理可知∠ABE=90°,在Rt△BCE中,根据勾股定理即可求出CE的长.【解答】解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,设⊙O的半径为r,则OC=r﹣2,在Rt△AOC中,∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE===6,在Rt△BCE中,∵BE=6,BC=4,∴CE===2.故选:D.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0②当﹣1≤x≤3时,y<0③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2④9a+3b+c=0其中正确的是()A.①②④B.①④C.①②③D.③④【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征.【分析】①函数图象的对称轴为:x=﹣==1,所以b=﹣2a,即2a+b=0;②由抛物线的开口方向可以确定a的符号,再利用图象与x轴的交点坐标以及数形结合思想得出当﹣1≤x≤3时,y≤0;③由图象可以得到抛物线对称轴为x=1,由此即可确定抛物线的增减性;④由图象过点(3,0),即可得出9a+3b+c=0.【解答】解:①∵函数图象的对称轴为:x=﹣==1,∴b=﹣2a,即2a+b=0,故①正确;②∵抛物线开口方向朝上,∴a>0,又∵二次函数y=ax2+bx+c的图象与x轴交点为(﹣1,0)、(3,0),∴当﹣1≤x≤3时,y≤0,故②错误;③∵抛物线的对称轴为x=1,开口方向向上,∴若(x1,y1)、(x2,y2)在函数图象上,当1<x1<x2时,y1<y2;当x1<x2<1时,y1>y2;故③错误;④∵二次函数y=ax2+bx+c的图象过点(3,0),∴x=3时,y=0,即9a+3b+c=0,故④正确.故选:B.二、填空题(共6小题,每小题4分,满分24分)11.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是51°.【考点】圆心角、弧、弦的关系.【分析】由==,可求得∠BOC=∠EOD=∠COD=34°,继而可求得∠AOE的度数;然后再根据等腰三角形的性质和三角形内角和定理来求∠AEO的度数.【解答】解:如图,∵==,∠COD=34°,∴∠BOC=∠EOD=∠COD=34°,∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=78°.又∵OA=OE,∴∠AEO=∠OAE,∴∠AEO=×=51°.故答案为:51°.12.如图,△ABC的三个顶点分别在边长为1的正方形网格的格点上,则tan(α+β)>tanα+tanβ.(填“>”“=”“<”)【考点】特殊角的三角函数值;等腰直角三角形;锐角三角函数的定义.【分析】根据正切的概念和正方形网格图求出tanα和tanβ,根据等腰直角三角形的性质和tan45°的值求出tan(α+β),比较即可.【解答】解:由正方形网格图可知,tanα=,tanβ=,则tanα+tanβ=+=,∵AC=BC,∠ACB=90°,∴α+β=45°,∴tan(α+β)=1,∴tan(α+β)>tanα+tanβ,故答案为:>.13.如图所示,DE是△ABC的内切圆I的切线,又BC=2cm,△ADE的周长为4cm,则△ABC的周长是8cm.【考点】切线长定理.【分析】首先根据题意可得⊙I与EC、ED、BC、BD分别相切,可得EG=EH,DH=DF,BF=BM,CG=CM,根据BC=2cm,可得CG+BF=2cm,三角形ABC的周长可化为△AED的周长+2倍BC的长度求解.【解答】解:∵⊙I与EC、ED、BC、BD分别相切于G、H、M、F,∴EG=EH,DH=DF,BF=BM,CG=CM,∴EG+DF=EH+DH=DE,CG+BF=CM+BM=BC,∵BC=2,AD+AE+DE=4,∴△ABC的周长=AD+AE+(EG+DF)+(CG+BF)+BC=(AD+AE+DE)+BC+BC=4+2+2=8.故答案为:8.14.如图,直径为10的⊙A经过点C(0,6)和点O(0,0),与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则cos∠OBC的值为.【考点】勾股定理;圆周角定理;锐角三角函数的定义.【分析】连接CD,易得CD是直径,在直角△OCD中运用勾股定理求出OD的长,得出cos∠ODC的值,又由圆周角定理,即可求得cos∠OBC的值.【解答】解:连接CD,∵∠COD=90°,∴CD是直径,即CD=10,∵点C(0,6),∴OC=6,∴OD==8,∴cos∠ODC===,∵∠OBC=∠ODC,∴cos∠OBC=.故答案为:.15.已知,A、B、C三点在⊙O上,OD⊥BC于点D,∠BOD=40°,则∠BAC的度数等于40°或140°.【考点】圆周角定理;垂径定理.【分析】由在⊙O中,OD⊥BC,根据垂径定理的即可求得:=,然后利用圆周角定理求解即可求得答案.【解答】解:连接OC,∵在⊙O中,OD⊥BC,∴=,∴∠BOC=2∠BOD=80°.∴∠BAC=BOC=40°,∴∠BA′C=180°﹣40°=140°,∴∠BAC的度数等于40°或140°,故答案为:40°或140°.16.如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm.动点P从A点开始沿AB 向B点以1cm/s的速度运动(不与B点重合),动点Q从B点开始沿BC以2cm/s 的速度向C点运动(不与C重合).如果P、Q同时出发,四边形APQC的面积最小时,要经过3秒.【考点】二次函数的应用;勾股定理.=S△ABC﹣S△PBQ 【分析】设经过x秒时,四边形APQC的面积为y,根据S四边形APQC列出函数解析式,配方成顶点式即可得.【解答】解:设经过x秒时,四边形APQC的面积为y,则BP=6﹣x,BQ=2x,则y=×6×12﹣×(6﹣x)•2x=x2﹣6x+36=(x﹣3)2+27,∴当x=3时,y最大=27,故答案为:3.三.解答题17.计算:①6tan230°﹣sin60°﹣2cos45°②已知α是锐角,且sin(α+15°)=,计算﹣4cosα﹣(π﹣3.14)°+tanα+()﹣1的值.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】①先把各个角的三角函数值代入,再求出即可;②先求出α的度数,再根据特殊角的三角函数值、零指数幂、负整数指数幂分别求出每一部分的值,再求出即可.【解答】解:①6tan230°﹣sin60°﹣2cos45°=6×()2﹣×﹣2×=2﹣﹣=;②∵α是锐角,sin(α+15°)=,∴α+15°=60°,∴α=45°,∴﹣4cosα﹣(π﹣3.14)°+tanα+()﹣1=2﹣4×﹣1+1+3=3.18.如图,点A是圆弧BC上一点,用尺规作图法找出圆心O点(保留作图痕迹,不写做法)【考点】作图—复杂作图;垂径定理.【分析】利用垂径定理得出两弦的垂直平分线交点O即可.【解答】解:如图所示:19.如图,斜坡AB的坡度是i=1:2,坡角B处有一棵树BC,某一时刻测得树BC在斜坡AB上的影子BD的长度是10米,这时测得太阳光线与水平线的夹角为60°,则树BC的高度为多少米?(结果保留根号).【考点】解直角三角形的应用﹣坡度坡角问题.【分析】根据题意首先利用勾股定理得出DF,DE的长,再利用锐角三角函数关系得出EC的长,进而得出答案.【解答】解:过点D作DF⊥BG,垂足为F,∵斜坡AB的坡度i=1:2,∴设DF=x,BF=2x,则DB=10m,∴x2+(2x)2=102,解得:x=2,故DE=4,BE=DF=2,∵测得太阳光线与水平线的夹角为60°,∴tan60°===,解得:EC=4,故BC=EC+BE=(2+4)(m).20.如图,AB是⊙O的直径,点C在⊙O上(异于A、B两点),AD⊥CD.①若BC=3,AB=5,求AC的长?②若AC是∠DAB的平分线,求证:直线CD与⊙O相切.【考点】切线的判定.【分析】①首先根据直径所对的圆周角为直角得到直角三角形,然后利用勾股定理求得AC的长即可;②连接OC,证OC⊥CD即可;利用角平分线的性质和等边对等角,可证得∠OCA=∠CAD,即可得到OC∥AD,由于AD⊥CD,那么OC⊥CD,由此得证.【解答】解:①∵AB是⊙O的直径,∴∠ACB=90°,∵BC=3,AB=5,∴AC===4;②证明:连接OC∵AC是∠DAB的角平分线,∴∠DAC=∠BAC,又∵AD⊥DC,∴∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴∠DCA=∠CBA,又∵OA=OC,∴∠OAC=∠OCA,∵∠OAC+∠OBC=90°,∴∠OCA+∠ACD=∠OCD=90°,∴DC是⊙O的切线.21.如图,二次函数y=﹣x2+bx+c的图象经过坐标原点,与x轴交于点A(﹣2,0).(1)求此二次函数的顶点B的坐标;=1,请直接写出点P的坐标.(2)在抛物线上有一点P,满足S△AOP【考点】二次函数的性质.【分析】(1)把A(﹣2,0)、O(0,0)代入解析式y=﹣x2+bx+c,可得出二次函数解析式,即可得出B的坐标;(2)利用三角形的面积可得出P点的纵坐标,可求出点P的横坐标,即可得出点P的坐标.【解答】解:(1)将A(﹣2,0)、O(0,0)代入解析式y=x2+bx+c,得c=0,﹣4﹣2b+c=0,解得c=0,b=﹣2,所以二次函数解析式:y=﹣x2﹣2x=﹣(x+1)2+1,所以,顶点B坐标(﹣1,1);=1,(2)∵AO=2,S△AOP∴P点的纵坐标为:±1,∴﹣x2﹣2x=±1,当﹣x2﹣2x=1,解得:x1=x2=﹣1,当﹣x2﹣2x=﹣1时,解得:x1=1+,x2=1﹣,∴点P的坐标为(﹣1,1)或(1+,﹣1))或(1﹣,﹣1).22.某商品成本价每个80元,1月销售额20000元.2月促销在1月的基础上打九折销售,结果多卖出去50个,销售额也增加了7000元.①求1月的销售单价;②如果2月搞打折销售时,折数x与销量y之间满足y=﹣50x+600.试求商场打几折时利润最大?最大利润是多少元?【考点】二次函数的应用.【分析】①设1月份的销售单价为x元/个,则2月的销售单价为0.9x元/个,根据“1月份的销售量+50=2月份的销售量”列分式方程求解可得;②根据“总利润=单件利润×销售量”列出总利润W关于折数x的函数解析式,再根据二次函数的性质可得其最值情况.【解答】解:①设1月份的销售单价为x元/个,则2月的销售单价为0.9x元/个,根据题意可得: +50=,解得:x=200,经检验x=200是原分式方程的解,答:1月的销售单价为200元/个;②设商场所获利润为W,则W=(﹣50x+600)=﹣1000(x﹣8)2+16000,∴当x=8时,W取得最大值,最大值为16000元,答:商场打8折时利润最大,最大利润是16000元.23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.【考点】相似三角形的判定与性质;垂径定理;切线的性质.【分析】(1)由平行线的性质得出EF⊥AD,由线段垂直平分线的性质得出FA=FD,由等腰三角形的性质得出∠FAD=∠D,证出∠DCB=∠G,由对顶角相等得出∠GCF=∠G,即可得出结论;(2)连接AC,由圆周角定理证出AC是⊙O的直径,由弦切角定理得出∠DCB=∠CAB,证出∠CAB=∠G,再由∠CBA=∠GBA=90°,证明△ABC∽△GBA,得出对应边成比例,即可得出结论.【解答】证明:(1)∵EF∥BC,AB⊥BG,∴EF⊥AD,∵E是AD的中点,∴FA=FD,∴∠FAD=∠D,∵GB⊥AB,∴∠GAB+∠G=∠D+∠DCB=90°,∴∠DCB=∠G,∵∠DCB=∠GCF,∴∠GCF=∠G,∴FC=FG;(2)连接AC,如图所示:∵AB⊥BG,∴AC是⊙O的直径,∵FD是⊙O的切线,切点为C,∴∠DCB=∠CAB,∵∠DCB=∠G,∴∠CAB=∠G,∵∠CBA=∠GBA=90°,∴△ABC∽△GBA,∴=,∴AB2=BC•BG.24.如图,以E(3,0)为圆心,5为半径的⊙E与x轴交于A、B两点,与y轴交于C点,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点,顶点为F.(1)求A、B、C三点的坐标;(2)求抛物线的解析式及顶点F的坐标;=S△ABC,连接PF,判断(3)已知P是抛物线上位于第四象限的点,且满足S△ABP直线PF与⊙E的位置关系并说明理由.【考点】圆的综合题.【分析】(1)由题意可直接得到点A、B的坐标,连接CE,在Rt△OCE中,利用勾股定理求出OC的长,则得到点C的坐标;(2)已知点A、B、C的坐标,利用交点式与待定系数法求出抛物线的解析式,由解析式得到顶点F的坐标;(3)首先求出点P的坐标;连接EP,PF,过点P作PG⊥对称轴EF于点G,求出PE,推出点P在⊙E上;再利用勾股定理求出PF的长度,则利用勾股定理的逆定理可判定△EPF为直角三角形,∠EPF=90°,所以直线PF与⊙E相切.【解答】解:(1)∵以E(3,0)为圆心,以5为半径的⊙E与x轴交于A,B 两点,∴A(﹣2,0),B(8,0).如解答图所示,连接CE.在Rt△OCE中,OE=AE﹣OA=5﹣2=3,CE=5,由勾股定理得:OC===4,∴C(0,﹣4).(2)∵点A(﹣2,0),B(8,0)在抛物线上,∴可设抛物线的解析式为:y=a(x+2)(x﹣8).∵点C(0,﹣4)在抛物线上,∴﹣4=a×2×﹣8,解得a=∴抛物线的解析式为:y=(x+2)(x﹣8)=x2﹣x﹣4=(x﹣3)2﹣,∴顶点F的坐标为(3,﹣).(3)直线PF与⊙E相切.理由如下:∵△ABC中,底边AB上的高OC=4,∴若△ABC与△ABP面积相等,则抛物线上的点P须满足条件:|y P|=4,∵点P在第四象限,∴y p=﹣4,则x2﹣x﹣4=﹣4,整理得:x2﹣6x=0,解得x=6或x=0(与点C重合,故舍去).∴点P的坐标为(6,﹣4),连接EP,PF,过点P作PG⊥对称轴EF于点G,则PG=3,EG=4.在Rt△PEG中,由勾股定理得:PE===5,∴点P在⊙E上.由(2)知,顶点F的坐标(3,﹣),∴EF=,∴FG=EF﹣EG=.在Rt△PGF中,由勾股定理得:PF===.在△EFP中,∵EP2+PF2=52+()2=()2=EF2,∴△EFP为直角三角形,∠EPF=90°.∵点P在⊙E上,且∠EPF=90°,∴直线PF与⊙E相切.。
2016年年春学期九年级数学第一次单元检测试题(考试时间:120分钟满分:150分)命题人:孙晓祥一、选择题(本大题共6小题,每小题3分,共18分)1.计算4-2的结果为(▲)A.-8 B .16 C.-16 D.2.下列运算正确的是(▲)A.a2+a3=a5B.(-2a3)2=4a6C.a6÷a3=a2D.(a+2b)2=a2+2ab+b23.一个不透明的袋中装有除颜色外完全相同的4个白球和2个黑球,摸一次,摸到黑球的概率为(▲)A.B.C.D.14.已知点G为△ABC的重心,若△ABC的面积为12,则△BCG的面积为(▲)A.6 B .4 C .3 D.25.半径为2的⊙O中,弦AB=2,弦AB所对的圆周角的度数为(▲)A.60°B.60°或120°C.45°或135°D.30°或150°6.一元二次方程x2+bx+c=0有一个根为x=2,则二次函数y=2x2-bx-c的图像必过点(▲)A.(2,12)B.(2,0)C.(-2,12)D.(-2,0)二、填空题(本大题共10小题,每小题3分,共30分)7.函数y=的自变量x的取值范围为▲.8.因式分解64-4x2= ▲.9.“中国好人”张凤芝开办培训学校,据统计她共为近2000人免去学费,省去近120万元费用,120万用科学计数法表示为▲.10.在Rt△ABC中,∠C=90°,AC=5,BC=12,sinA= ▲.11.圆锥的底面半径为2,母线长为6,圆锥的侧面积为▲.12.一组数-1、x、2、2、3、3的众数为3,这组数的方差为▲.13.圆内接四边形ABCD中,∠A∶∠B∶∠C=1∶2∶3,则∠D=▲°.14.关于x的方程-2x2+bx+c=0的解为x1、x2(x1<x2), -2x2+bx+c=1的解为x3、x4,(x3<x4),用“<”连接x1、x2、x3、x4为▲.家长学生无所谓反对赞成30803040140类别人数2802101407015.如图,在半圆中AB 为直径,弦AC=CD=6,DE=EB=2,弧CDE 的长度为 ▲16.如图,矩形ABCD 的顶点AB 在x 轴上,点D 的坐标为(6,8),点E 在边BC 上,△CDE 沿D E 翻折后点C 恰好落在x 轴上点F 处,若△ODF 为等腰三角形,点E 的坐标为 ▲102分) 17.(本题满分12分)(1)计算:.(2)化简(a+b )2-(a+2b)(a-2b)-2a(a-3b). 18.(本题满分8分)化简(x2+4x -4)÷ x2-4 x2+2x并求值,其中x 满足x 2-2x-8=0. 19.(本题满分8分)“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?学生及家长对中学生带手机的态度统计图 家长对中学生带手机的态度统计图图① 图②20.(本题满分8分)有3张扑克牌,分别是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张. (1)列表或画树状图表示所有取牌的可能性;(2)甲、乙两人做游戏,现有两种方案:A 方案:若两次抽得相同花色则甲胜,否则乙胜;B 方案:若两次抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案胜率更高?21.(本题满分10分)已知不等臂跷跷板AB 长为4米,如图1,当AB 的一端A 碰到地面时,15题图16题图AB与地面的夹角为α,如图2,当AB的另一端B碰到地面时,AB与地面的夹角为β,已知α=30°,β=37°求跷跷板AB的支撑点O到地面的高度OH(sin37°=0.6,cos37°=0.8,tan37°=0.75).22.(本题满分10分)已知等边△ABC内接于⊙O,AD为O的直径交线段BC于点M,DE ∥BC,交AB的延长线于点E.(1)求证:DE是⊙O的切线;(2)若等边△ABC的边长为6,求BE的长.23.(本题满分10分)已知△ABC中,∠ACB=90°,AC=3,tanA=,CD⊥AB于点D,DE⊥AC,点F在线段BC上,EF交CD于点M.(1)求CD的长;(2)若△EFC与△ABC相似,试求线段EM的长.24.(本题满分10分)在平面直角坐标系中,直线y1=x+m与双曲线y2=交于点A、B,已知点A、B的横坐标为2和-1.(1).求k的值及直线与x轴的交点坐标;(2). 直线y=2x交双曲线y=于点C、D(点C在第一象限)求点C、D的坐标;(3).设直线y=ax+b与双曲线y=(ak≠0)的两个交点的横坐标为x 1、x2,直线与 x轴交点的横坐标为x0,结合(1)、 (2)中的结果,猜想x1、x2、x0之间的等量关系并证明你的猜想.25. (本题满分12分)已知直线y=-x+2分别交x 、y 轴于点A 、B ,点C 为线段OA 的中点,动点P 从坐标原点出发,以2个单位长度/秒的速度向终点A 运动,动点Q 从点C 出发,以个单位长度/秒的速度向终点B 运动。
九年级下学期第一次月考数学试卷一、选择题:本大题共8小题,每小题3分,共24分.1.﹣的倒数是()A.3 B.﹣3 C.D.﹣2.下列计算中正确的是()A.a2+a3=2a5 B.a2•a3=a6C.a2•a3=a5D.(a3)2=a93.函数y=的自变量x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤14.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()A.B.C.D.5.关于二次函数y=2x2+3,下列说法中正确的是()A.它的开口方向是向下B.当x<﹣1时,y随x的增大而减小C.它的顶点坐标是(2,3)D.当x=0时,y有最大值是36.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定7.已知一次函数y=kx+b的图象如图,则关于x的不等式k(x﹣4)﹣2b>0的解集为()A.x>﹣2 B.x<﹣2 C.x>2 D.x<38.如图,在平面直角坐标系中,正方形ABCO的顶点A、C分别在y轴、x轴上,以AB 为弦的⊙M与x轴相切,若点A的坐标为(0,﹣4),则圆心M的坐标为()A.(﹣2,2.5)B.(2,﹣1.5)C.(2.5,﹣2)D.(2,﹣2.5)二、填空题:本大题共8小题,每小题3分,共24分.9.分解因式:4﹣y2=.10.一个圆锥的母线长为4,侧面积为12π,则这个圆锥的底面圆的半径是.11.一组数据2,﹣1,3,5,6,5的中位数是.12.已知x、y满足方程组,则y﹣x的值是.13.将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是.14.如图所示,DE是△ABC的中位线,则△ADE与△ABC的周长比为.15.如图,在⊙O中,直径CD垂直弦AB于点E,连接OB,CB,已知⊙O的半径为2,AB=,则∠BCD=度.16.关于x的分式方程的解为正数,则m的取值范围是.三、解答题:本大题共10小题,172每题6分,234题每题8分,256每题10分,共72分.17.计算:()﹣2﹣2sin60°+.18.求不等式组的整数解.19.先化简(),然后从﹣3≤x≤3的范围内选取一个合适的整数作为x的值代入求值.20.已知:如图,在▱ABCD中,点E、F在对角线AC上,且AF=CE,求证:四边形BFDE 是平行四边形.(1)将表中空缺的数据填写完整,并补全频数分布直方图;(2)这个班同学这次跳绳成绩的众数是个,中位数是个;(3)若跳满90个可得满分,学校初三年级共有720人,试估计该中学初三年级还有多少人跳绳不能得满分.22.如图,已知点E在直角△ABC的斜边AB上,以AE为直径的⊙O与直角边BC相切于点D.(1)求证:AD平分∠BAC;(2)若BE=2,BD=4,求⊙O的半径.23.如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线y=(x>0)交于D点,过点D作DC⊥x轴,垂足为C,连接OD.已知△AOB∽△ACD,相似比为.(1)如果b=﹣2,求k的值;(2)试探究k与b的数量关系,并直接写出直线OD的解析式.24.如图,△ABC中,AB=AC,∠A=36°,BD平分∠ABC.求证:.25.我市荸荠喜获丰收,某生产基地收获荸荠40吨.经市场调查,可采用批发、零售、加15吨.(1)求y与x之间的函数关系式;(2)若零售量不超过批发量的4倍,求该生产基地按计划全部售完荸荠后获得的最大利润.26.如图所示,抛物线y=ax2+bx+3与x轴交于点A、B两点(A在B的左侧)与y轴交于C点,且OA:OC=1:3,S△ABC=6.(1)求抛物线的函数关系式;(2)抛物线上是否存在一点D(点C除外),使S△ABD=S△ABC?若存在,求出D点坐标;若不存在,说明理由.(3)抛物线上是否存在一点E(点B除外),使S△ACE=S△ABC?若存在,求出E点坐标;若不存在,说明理由.九年级下学期第一次月考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分.1.﹣的倒数是()A.3 B.﹣3 C.D.﹣【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣的倒数是﹣3,故选:B.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下列计算中正确的是()A.a2+a3=2a5 B.a2•a3=a6C.a2•a3=a5D.(a3)2=a9【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据合并同类项,可判断A,根据同底数幂的乘法,可判断B、C,根据幂的乘方,可判断D.【解答】解:A、指数不能相加,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相加,故C正确;D、底数不变指数相乘,故D错误;故选:C.【点评】本题考查了幂的乘方与积的乘方,根据法则计算是解题关键.3.函数y=的自变量x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤1【考点】函数自变量的取值范围.【专题】计算题.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:由题意得x﹣1≥0,解得x≥1.故选C.【点评】考查求函数自变量的取值;用到的知识点为:二次根式的被开方数为非负数.4.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()A.B.C.D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】由俯视图想象出几何体的特征形状,然后按照三视图的要求,得出该几何体的正视图和侧视图.【解答】解:由俯视图可知,几个小立方体所搭成的几何体如图所示,故正视图为,故选D.【点评】本题是基础题,考查空间想象能力,绘图能力,常考题型.5.关于二次函数y=2x2+3,下列说法中正确的是()A.它的开口方向是向下B.当x<﹣1时,y随x的增大而减小C.它的顶点坐标是(2,3)D.当x=0时,y有最大值是3【考点】二次函数的性质.【分析】分别利用二次函数的性质分析得出即可.【解答】解:A、∵a=2>0,故它的开口方向是向上,故此选项错误;B、在y轴左侧,y随x的增大而减小,故当x<﹣1时,y随x的增大而减小,正确;C、它的顶点坐标是(0,3),故此选项错误;D、当x=0时,y有最小值是3,故此选项错误;故选:B.【点评】此题主要考查了二次函数的性质,正确把握二次函数的性质是解题关键.6.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定【考点】三角形中位线定理.【专题】压轴题.【分析】因为R不动,所以AR不变.根据中位线定理,EF不变.【解答】解:连接AR.因为E、F分别是AP、RP的中点,则EF为△APR的中位线,所以EF=AR,为定值.所以线段EF的长不改变.故选:C.【点评】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.7.已知一次函数y=kx+b的图象如图,则关于x的不等式k(x﹣4)﹣2b>0的解集为()A.x>﹣2 B.x<﹣2 C.x>2 D.x<3【考点】一次函数与一元一次不等式.【分析】根据函数图象知:一次函数过点(3,0);将此点坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x﹣4)﹣2b>0中进行求解.【解答】解:∵一次函数y=kx+b经过点(3,0),∴3k+b=0,∴b=﹣3k.将b=﹣3k代入k(x﹣4)﹣2b>0,得k(x﹣4)﹣2×(﹣3k)>0,去括号得:kx﹣4k+6k>0,移项、合并同类项得:kx>﹣2k;∵函数值y随x的增大而减小,∴k<0;将不等式两边同时除以k,得x<﹣2.故选B.【点评】本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.8.如图,在平面直角坐标系中,正方形ABCO的顶点A、C分别在y轴、x轴上,以AB 为弦的⊙M与x轴相切,若点A的坐标为(0,﹣4),则圆心M的坐标为()A.(﹣2,2.5)B.(2,﹣1.5)C.(2.5,﹣2)D.(2,﹣2.5)【考点】切线的性质;坐标与图形性质;正方形的性质.【分析】过M作MN⊥AB于N,连接MA,设⊙M的半径是R,根据正方形性质求出OA=AB=BC=CO=8,根据垂径定理求出AN,得出M的横坐标,在△AMN中,由勾股定理得出关于R的方程,求出R,即可得出M的纵坐标.【解答】解:∵四边形ABCO是正方形,A(0,﹣4),∴AB=OA=CO=BC=4,过M作MN⊥AB于N,连接MA,由垂径定理得:AN=AB=2,设⊙M的半径是R,则MN=8﹣R,AM=R,由勾股定理得:AM2=MN2+AN2,R2=(4﹣R)2+22,解得:R=,∵AN=2,四边形ABCO是正方形,⊙M于x轴相切,∴M的横坐标是2,即M(2,﹣).故选D.【点评】本题考查了勾股定理、切线的性质、正方形性质,垂径定理等知识点,本题综合性比较强,是一道比较好的题目.二、填空题:本大题共8小题,每小题3分,共24分.9.分解因式:4﹣y2=(2﹣y)(2+y).【考点】因式分解-运用公式法.【分析】直接运用平方差公式进行因式分解.【解答】解:4﹣y2=(2﹣y)(2+y).【点评】此题考查了利用平方差公式分解因式.公式:a2﹣b2=(a+b)(a﹣b).10.一个圆锥的母线长为4,侧面积为12π,则这个圆锥的底面圆的半径是3.【考点】圆锥的计算.【分析】根据圆锥的侧面积=底面半径×母线长×π,进而求出即可.【解答】解:∵母线为4,设圆锥的底面半径为x,∴圆锥的侧面积=π×4×x=12π.解得:x=3.故答案为:3.【点评】本题考查了圆锥的计算,熟练利用圆锥公式求出是解题关键.11.一组数据2,﹣1,3,5,6,5的中位数是4.【考点】中位数.【分析】先排序,然后计算该组数据的中位数即可.【解答】解:数据2,﹣1,3,5,6,5的中位数是(5+3)÷2=4,故答案为:4.【点评】本题考查了中位数的定义,特别是求中位数时候应先排序.12.已知x、y满足方程组,则y﹣x的值是﹣1.【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】方程组两方程相减即可求出y﹣x的值.【解答】解:,②﹣①得:y﹣x=﹣1.故答案为:﹣1.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.13.将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是y=(x+2)2﹣2.【考点】二次函数图象与几何变换.【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【解答】解:抛物线y=x2+1的顶点坐标为(0,1),向左平移2个单位,向下平移3个单位后的抛物线的顶点坐标为(﹣2,﹣2),所以,平移后的抛物线的解析式为y=(x+2)2﹣2.故答案为:y=(x+2)2﹣2.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.14.如图所示,DE是△ABC的中位线,则△ADE与△ABC的周长比为1:2.【考点】三角形中位线定理.【分析】根据题意DE是△ABC的中位线,那么DE∥BC,再利用平行线分线段成比例定理的推论,可得△ADE∽△ABC,再利用相似三角形的周长比等于相似即可求出答案.【解答】解:∵DE是△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=,根据相似三角形的性质△ADE与△ABC的周长之比是1:2.故选1:2.【点评】本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质,本题中求证△ADE∽△ABC是解题的关键.15.如图,在⊙O中,直径CD垂直弦AB于点E,连接OB,CB,已知⊙O的半径为2,AB=,则∠BCD=30度.【考点】垂径定理;特殊角的三角函数值.【专题】计算题;压轴题.【分析】首先在直角三角形OEB中利用锐角三角函数求得∠EOB的度数,然后利用同弧所对的圆心角和圆周角之间的关系求得∠BCD的度数即可.【解答】解:∵直径CD垂直弦AB于点E,AB=,∴EB=AB=,∵⊙O的半径为2,∴sin∠EOB=,∴∠EOB=60°,∴∠BCD=30°.故答案为30.【点评】本题考查了垂径定理及特殊角的三角函数值,解题的关键是利用垂径定理得到直角三角形.16.关于x的分式方程的解为正数,则m的取值范围是m>2且m≠3.【考点】分式方程的解.【专题】计算题.【分析】方程两边同乘以x﹣1,化为整数方程,求得x,再列不等式得出m的取值范围.【解答】解:方程两边同乘以x﹣1,得,m﹣3=x﹣1,解得x=m﹣2,∵分式方程的解为正数,∴x=m﹣2>0且x﹣1≠0,即m﹣2>0且m﹣2﹣1≠0,∴m>2且m≠3,故答案为m>2且m≠3.【点评】本题考查了分式方程的解,要注意分式的分母不为0的条件,此题是一道易错题,有点难度.三、解答题:本大题共10小题,172每题6分,234题每题8分,256每题10分,共72分.17.计算:()﹣2﹣2sin60°+.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用负指数幂法则计算,第二项利用特殊角的三角函数值计算,最后一项化为最简二次根式,合并即可得到结果.【解答】解:原式=4﹣2×+2=4+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.求不等式组的整数解.【考点】一元一次不等式组的整数解.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定解集中的整数解即可.【解答】解:,由①得x≥3,由②得x<5,则不等式组的解集是:3≤x<5.整数解是3,4.【点评】本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.先化简(),然后从﹣3≤x≤3的范围内选取一个合适的整数作为x的值代入求值.【考点】分式的化简求值.【专题】计算题.【分析】先把括号内通分和除法运算化为乘法运算,再把分子分母因式分解,然后约分得到原式=x+1,再根据分式有意义的条件把x=3代入计算即可.【解答】解:原式=•=•=x+1,当x=3时,原式=3+1=4.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.已知:如图,在▱ABCD中,点E、F在对角线AC上,且AF=CE,求证:四边形BFDE 是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】首先连接BD,交AC于O点,进而得出EO=FO,BO=DO即可得出四边形BFDE 是平行四边形.【解答】证明:连接BD,交AC于O点.∵四边形ABCD是平行四边形,O是对角线AC、BD的交点.∴AO=CO.又∵点E、F在对角线AC上,且AF=CE,∴AF﹣AO=CE﹣CO,即FO=EO①∵四边形ABCD是平行四边形,∴BO=DO②,由①②得四边形BFDE是平行四边形.【点评】此题主要考查了平行四边形的判定与性质,得出BO=DO,EO=FO是解题关键.(1)将表中空缺的数据填写完整,并补全频数分布直方图;(2)这个班同学这次跳绳成绩的众数是95个,中位数是95个;(3)若跳满90个可得满分,学校初三年级共有720人,试估计该中学初三年级还有多少人跳绳不能得满分.【考点】频数(率)分布直方图;用样本估计总体;中位数;众数.【分析】(1)首先根据直方图得到95.5﹣100.5小组共有13人,由统计表知道跳100个的有5人,从而求得跳98个的人数;(2)根据众数和中位数的定义填空即可;(3)用样本估计总体即可.【解答】解:(1)根据直方图得到95.5﹣100.5小组共有13人,由统计表知道跳100个的有5人,∴跳98个的有13﹣5=8人,跳90个的有40﹣1﹣2﹣8﹣11﹣8﹣5=5人,(2)观察统计表知:众数为95个,中位数为95个;(3)估计该中学初三年级不能得满分的有720×=54人.【点评】本题考查了频数分布表及频率分布直方图的知识,解题的关键是读懂题意并读懂两个统计图,难度中等.22.如图,已知点E在直角△ABC的斜边AB上,以AE为直径的⊙O与直角边BC相切于点D.(1)求证:AD平分∠BAC;(2)若BE=2,BD=4,求⊙O的半径.【考点】切线的性质;相似三角形的判定与性质.【分析】(1)先连接OD,再由OD⊥BC和AC⊥BC可知OD∥AC从而得证;(2)利用切割线定理可先求出AB,进而求出圆的直径,半径则可求出.【解答】(1)证明:连接OD,∵BC是⊙O的切线,∴OD⊥BC,又∵AC⊥BC,∴OD∥AC,∴∠2=∠3;∵OA=OD,∴∠1=∠3,∴∠1=∠2,∴AD平分∠BAC;(2)解:∵BC与圆相切于点D.∴BD2=BE•BA,∵BE=2,BD=4,∴BA=8,∴AE=AB﹣BE=6,∴⊙O的半径为3.【点评】本题考查了圆的切线性质和切割线定理,遇到圆的切线的问题,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.23.如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线y=(x>0)交于D点,过点D作DC⊥x轴,垂足为C,连接OD.已知△AOB∽△ACD,相似比为.(1)如果b=﹣2,求k的值;(2)试探究k与b的数量关系,并直接写出直线OD的解析式.【考点】反比例函数综合题.【分析】(1)首先求出直线y=2x﹣2与坐标轴交点的坐标,然后由△AOB≌△ACD得到CD=OB,AO=AC,即可求出D坐标,由点D在双曲线y=(x>0)的图象上求出k的值;(2)首先直线y=2x+b与坐标轴交点的坐标为A(﹣,0),B(0,b),再根据△AOB≌△ACD得到CD=DB,AO=AC,即可求出D坐标,把D点坐标代入反比例函数解析式求出k和b 之间的关系,进而也可以求出直线OD的解析式.【解答】解:(1)当b=﹣2时,直线y=2x﹣2与坐标轴交点的坐标为A(1,0),B(0,﹣2).∵△AOB∽△ACD,∴CD=2OB,AO=2AC,∴点D的坐标为(3,4).∵点D在双曲线y=(x>0)的图象上,∴k=3×4=12.(2)直线y=2x+b与坐标轴交点的坐标为A(﹣,0),B(0,b).∵△AOB∽△ACD,∴CD=2OB,AC=2AO,∴点D的坐标为(b,2b)∵点D在双曲线y=(x>0)的图象上,∴k=()•(2b)=3b2,即k与b的数量关系为:k=3b2.直线OD的解析式为:y=x.【点评】本题主要考查反比例函数的综合题的知识点,解答本题的关键是熟练掌握反比例函数的性质以及反比例函数图象的特征,此题难度不大,是一道不错的2016届中考试题.24.如图,△ABC中,AB=AC,∠A=36°,BD平分∠ABC.求证:.【考点】黄金分割.【专题】证明题.【分析】根据等腰三角形的性质和角平分线的定义证明△ABC∽△BDC,根据黄金分割的概念计算即可.【解答】解∵AB=AC,∠A=36°,∴∠ABC=∠C=(180°﹣36°)=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=∠ABC=36°,∴DA=DB,∵∠BDC=∠A+∠ABD=72°,∴BD=BC,∴AD=BC,∵∠A=∠CBD,∠C=∠C,∴△ABC∽△BDC,∴BC:DC=AC:BC,∴AD:DC=AC:AD,∴点D为AC的黄金分割点,∴=,∴.【点评】本题考查考查的是黄金分割的概念、相似三角形的性质和等腰三角形的性质,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,它们的比值叫做黄金比.25.我市荸荠喜获丰收,某生产基地收获荸荠40吨.经市场调查,可采用批发、零售、加15吨.(1)求y与x之间的函数关系式;(2)若零售量不超过批发量的4倍,求该生产基地按计划全部售完荸荠后获得的最大利润.【考点】一次函数的应用;一元一次不等式组的应用.【专题】销售问题.【分析】(1)根据总利润=批发的利润+零售的利润+加工销售的利润就可以得出结论;(2)由(1)的解析式,根据零售量不超过批发量的4倍,建立不等式求出x的取值范围,由一次函数的性质就可以求出结论.【解答】解:(1)依题意可知零售量为(25﹣x)吨,则y=12x+22(25﹣x)+30×15∴y=﹣10x+1000;(2)依题意有:,解得:5≤x≤25.∵k=﹣10<0,∴y随x的增大而减小.=950百元.∴当x=5时,y有最大值,且y最大∴最大利润为950百元.【点评】本题考查了总利润=批发的利润+零售的利润+加工销售的利润的运用,一元一次不等式组的运用,一次函数的性质的运用,解答时求出一次函数的解析式是关键.26.如图所示,抛物线y=ax2+bx+3与x轴交于点A、B两点(A在B的左侧)与y轴交于C点,且OA:OC=1:3,S△ABC=6.(1)求抛物线的函数关系式;(2)抛物线上是否存在一点D(点C除外),使S△ABD=S△ABC?若存在,求出D点坐标;若不存在,说明理由.(3)抛物线上是否存在一点E(点B除外),使S△ACE=S△ABC?若存在,求出E点坐标;若不存在,说明理由.【考点】二次函数综合题.【分析】(1)根据三角形的面积,可得AB的长,根据线段的和差,可得B点坐标,根据待定系数法,可得函数解析式;(2)根据平行线间的距离相等,可得D点的纵坐标,根据函数值,可得答案;(3)根据平行线的一次函数的一次项系数相等,可得BE的解析式,根据解方程组,可得E 点坐标.【解答】解:(1)当x=0时,y=3,即OC=3.由OA:OC=1:3,解得OA=1,即A点坐标为(﹣1,0).由S△ABC=AB•OC=6,解得AB=4.﹣1+4=3,即B(3,0).将A、B点的坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣x2+2x+3;(2)如图1:,根据平行线间的距离相等,可得D点的纵坐标为3或﹣3.当y=3时,﹣x2+2x+3=3,解得x=0(不符合题意,舍),x=2,即D点的坐标为(2,3);当y=﹣3时,﹣x2+2x+3=﹣3.解得x=1﹣,x=1+,即D点坐标为(1﹣,﹣3),(1+,﹣3);综上所述:抛物线上存在一点D(点C除外),使S△ABD=S△ABC,D点坐标(2,3),(1﹣,﹣3),D(1+,﹣3);(3)过点B作AC平行线,如图2,S△ACE=S△ABC,由平行线间的距离相等,得设AC的函数解析式y=kx+b,将A、C点的坐标代入函数解析式,得,解得,函数解析式为y=3x+3,由BE∥AC,设BE的解析式为y=3x+b,将B点坐标代入函数解析式,得3×3+b=0.解得b=﹣9,即BE的解析式为y=3x﹣9,联立BE与抛物线,得,解得x=﹣4,x=3(不符合题意,舍),当x=﹣4时,y=3×(﹣4)﹣9=﹣21,即E(﹣4.﹣21).【点评】本题考查了二次函数解析式,利用待定系数法求函数解析式,利用平行线间的距离相等得出D点的纵坐标是解题关键;利用平行线间的关系得出BE的解析式是解题关键.。
共2版xx学校2016年下学期九年级第一次月考数学试卷(总分:120分时量:100分钟)1.下面的函数是反比例函数的是()A.y=3x+1 B.y=x2+2x C. D.2.反比例函数是y=的图象在()A.第一、二象限 B.第一、三象限C.第二、三象限 D.第二、四象限3.方程x2﹣2x=0的根是()A.x1=x2=0 B.x1=x2=2C.x1=0,x2=2 D.x1=0,x2=﹣24.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷(第4题图)(第5题图)5.如图,已知直线y=mx与双曲线y=的一个交点坐标为(3,4),则它们的另一个交点坐标是()A.(﹣3,4) B.(﹣4,﹣3)C.(﹣3,﹣4) D.(4,3)6.当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是()A. B. C. D.7.己知反比例函数y=,当1<x<3时,y的取值范围是()A .0<y<l B.2<y<6 C.1<y<2 D.y>68.已知实数x1,x2满足x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程是()A.x2﹣7x+12=0 B.x2+7x+12=0C.x2+7x﹣12=0 D.x2﹣7x﹣12=09.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k的取值范围是()A.k> B.k≥C.k>且k≠1 D.k≥且k≠110.用配方法解下列方程时,配方有错误的是()A.x2﹣2x﹣99=0化为(x﹣1)2=100B.x2+8x+9=0化为(x+4)2=25C.2t2﹣7t﹣4=0化为(t﹣)2=D.3x2﹣4x﹣2=0化为(x﹣)2=二.填空题(本体共8小题,每小题3分,共24分)11.已知一元二次方程02-2=+xx,则二次项系数为12.关于x的方程()011222=---k xk是一元二次方程,则k的值是______.13.已知关于x的方程x2﹣3x+m=0的一个根是1,则m=_____,另一个根为 .14.如果二次三项式92++mxx是一个完全平方式,则m=______.15.已知函数y=()1221---mmxm,当m=______时,它的图象是双曲线.16.已知一个等腰三角形底边长为9cm,腰长为方程x2﹣8x+15=0的根,则该等腰三角形的周长为______.17.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地.设正方形的宽为x m,根据提议可以列出方程为 .(第17题图)(第18题图)18.如图,点A是反比例函数y=的图象上﹣点,过点A作AB⊥x轴,垂足为点B,线段AB交反比例函数y=的图象于点C,则△OAC的面积为______.三、解答题(66分)19、用适当的方法解方程(每小题6分,共12分)(1)4942=x(2)01032=--xx共2版20、(8分)一司机驾驶汽车从甲地去乙地,以80千米/小时的平均速度用6小时到达目的地.(1)当他按原路匀速返回时,求汽车速度v (千米/小时)与时间t (小时)之间的函数关系式;(2)如果该司机匀速返回时,用了4.8小时,求返回时的速度.21、(8分)某商品经过连续两次降价后,销售单价由原来的125降到了80元,求平均每次降价的百分率.22、(8分)已知关于x 的一元二次方程x 2+mx+m ﹣1=0有两个相等的实数根,求m 的值.23、(8分)先化简,再求值aa a a a a 32446222+-⋅+-+ 已知实数a 满足方程0652=+-a a .24、(10分)已知:如图,在△ABC 中,︒=∠90B ,AB=5cm ,BC=7cm.点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动。
九年级(下)第一次月考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.下列各数中,最小的实数是()A.0 B.π C.﹣D.﹣12.如图,是由相同小正方形组成的立方体图形,它的左视图为()A.B.C.D.3.下列多项式能用平方差公式分解因式的是()A.﹣x2+y2B.﹣x2﹣y2C.x2﹣2xy+y2D.x2+y24.如图,矩形纸片ABCD沿EF折叠后,∠FEC=25°,则∠DFD1的度数为()A.25° B.50° C.75° D.不能确定5.无理数的大小在以下两个整数之间()A.1与2 B.2与3 C.3与4 D.4与56.一个骰子,六个面上的数字分别为1、2、3、4、5、6,连续投掷两次,两次向上的面出现数字之和为偶数的概率是()A.B.C.D.7.如图,直线y=﹣x+b与反比例函数y=的图象的一个交点为A(﹣1,2),则另一个交点B的坐标为()A.(﹣2,1)B.(2,1)C.(1,﹣2)D.(2,﹣1)8.如图,AB是⊙O的直径,且AB=2,AD是弦,∠DAB=22.5°,延长AB到点C,使得∠ACD=45°,则BC的长是()A.2﹣2 B.C.1 D.2﹣9.将2016加上它本身的的相反数,再将这个结果加上其的相反数,再将上述结果加上其的相反数,…,如此继续.操作2015次后所得的结果是()A.0 B.1 C.D.201510.如图,正方形ABCD边长为4个单位,两动点P、Q分别从点A、B处,以1单位/s、2单位/s 的速度逆时针沿边移动.记移动的时间为x(s),△PBQ面积为y(平方单位),当点Q移动一周又回到点B终止,则y与x的函数关系图象为()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)11.光年是天文学中的距离单位,1光年大约是9 500 000 000 000km,这个数字用科学记数法可表示为.12.已知a2﹣a﹣3=0,那么代数式的值是.13.如图,⊙O是△ABC的外接圆,⊙O的半径是R=2,sinA=0.8,则弦BC的长为.14.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线交于P.下面结论:①,②∠A=∠BHE,③AB=BH,④△BHD∽△BDP.请你把你认为正确的结论的番号都填上(填错一个该题得0分)三、解答题(共9小题,满分90分)15.计算:﹣(π﹣4)0﹣sin30°.16.解不等式组,并把它的解集在数轴上表示出来.17.2014年底,某市机动车保有量已达120万辆,至2015年年底,该市机动车保有量达到138万辆.(1)按这样的增长速度,2016年底将达到万辆;(2)如果该市在2017年底机动车保有量控制在166.98万辆,那么,2016年、2017年这两年的平均增长率最多是多少?18.已知△ABC在坐标系中的位置如图:(1)在图中画出下列对应图形:将△ABC向右平移3个单位得△A1B1C1;再作△A1B1C1关于原点O的对称图形△A2B2C2;(2)设P(x,y)为△ABC边上任一点,请写出按(1)中两次变换后点P对应点的坐标.19.某县为调查九年级15000名学生“一模”考试的数学成绩的分布情况,抽取了400名学生的数学成绩(成绩得分皆为整数,满分150分)进行统计:频率分布表请你根据不完整的频率分布表,解答下列问题:(1)补全频率分布表;(2)补全频数分布直方图;(3)若将得分转化为等级,规定得分“89分及以下”分评为“D”,“89.5﹣110.5分”评为“C”,“110.5﹣130.5扥”评为“B”,“130.5﹣150.5分”评为“A”,这次15000名学生中约有多少人评为“D”?如果随机抽取一名学生的成绩等级,则这名学生的成绩评为“A”、“B”、“C”、“D”哪一个等级的可能性大?请说明理由.20.如图1,是H市人工天鹅湖畔的一尊雕塑A,雕塑A及另三个雕塑B、C、D的在湖岸边的平面分布如图2,某班综合实践小组分别在雕塑A、B两处设置观测点.在A处测得:雕塑B在西北方向,雕塑C在正北,雕塑D在北60°东;在B处测得:雕塑C在东北方向,雕塑D在正东.(1)求证:AB=CB,AD=CD;(2)已知AB=800米,求B、D之间的距离.(结果精确到1米)(参考数据:≈1.73,≈1.41,≈2.45)21.某汽车出租公司有120辆车出租,通过市场调查获得下列信息(如表):(1)从市场调查获得的信息知,每日能出租汽车数y(辆)与每辆车的日租金数x(元)满足函数关系(填“一次、二次、反比例”):函数关系式为;(2)请在表格最下一行,填写该公司出租汽车后所获得相应的日收入;(3)按照上述规律,根据你所学的函数知识帮该公司解答:每辆车租车的日租金定为多少时,才能使公司的日收入获得最多?22.如图,△ABC中,CA=CB,E、F分别在AC、AB的延长线上,且CE=CF,EG⊥AB于G,FH⊥AB 于H,连接EF.(1)求证:四边形FEGH是矩形;(2)若∠A=30°,且四边形FEGH是正方形时,求AC:CE的值.23.如图,抛物线y=(x﹣m)2+n的顶点P在直线y=2x上,该抛物线与直线的另一个交点为A,与y轴的交点为Q.(1)当m=n﹣1时,求m的值;(2)当AQ∥x轴时,试确定抛物线的解析式;(3)随着顶点P在直线y=2x上的运动,是否存在直角△PAQ?若存在,请直接写出点P的坐标;若不存在,说明理由.2015-2016学年安徽省阜阳市九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.下列各数中,最小的实数是()A.0 B.π C.﹣D.﹣1【考点】实数大小比较.【专题】推理填空题;实数.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣<﹣1<0<π,各数中,最小的实数是﹣.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.如图,是由相同小正方形组成的立方体图形,它的左视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】直接利用左视图的定义得出左视图有两列,分别为3个,2个进而得出答案.【解答】解:如图所示:它的左视图为:.故选:C.【点评】此题主要考查了简单几何体的三视图,正确掌握观察角度是解题关键.3.下列多项式能用平方差公式分解因式的是()A.﹣x2+y2B.﹣x2﹣y2C.x2﹣2xy+y2D.x2+y2【考点】因式分解-运用公式法.【分析】能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.【解答】解:根据平方差公式的特点可得到只有A可以运用平方差公式分解,故选:A.【点评】此题主要考查了平方差公式分解因式,关键是正确把握平方差公式的特点.4.如图,矩形纸片ABCD沿EF折叠后,∠FEC=25°,则∠DFD1的度数为()A.25° B.50° C.75° D.不能确定【考点】平行线的性质.【分析】先根据平行线的性质求出∠EFG与∠EFD的度数,再由翻折变换的性质求出∠GFD1的度数,进而可得出结论.【解答】解:∵AD∥BC,∠FEC=25°,∴∠EFG=∠FEC=25°,∵∠EFG+∠EFD=180°,∴∠EFD=180°﹣25°=155°.由翻折变换的性质可知∠EFD1=∠EFD=155°,∴∠GFD1=∠EFD1﹣∠EFG=155°﹣25°=130°.∵∠DFD1+∠GFD1=180°,∴∠DFD1=180°﹣130°=50°.故选B.【点评】本题考查了平行线的性质以及角的计算,解题的关键是根据角平行线的性质找到相等的角.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找到相等(或互补)的角是关键.5.无理数的大小在以下两个整数之间()A.1与2 B.2与3 C.3与4 D.4与5【考点】估算无理数的大小.【分析】先化简,然后再依据被开方数越大对应的算术平方根越大求解即可.【解答】解:=2=.∵1<3<4,∴1<<2.故选A.【点评】本题主要考查的是估算无理数的大小和二次根式化简与合并,依据夹逼法求得的大致范围是解题的关键.6.一个骰子,六个面上的数字分别为1、2、3、4、5、6,连续投掷两次,两次向上的面出现数字之和为偶数的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两次向上的面出现数字之和为偶数的情况,再利用概率公式即可求得答案.【解答】解:列表得:∵共有36种等可能的结果,两次向上的面出现数字之和为偶数的有18种情况,∴连续投掷两次,两次向上的面出现数字之和为偶数的概率是:=.故选B.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.7.如图,直线y=﹣x+b与反比例函数y=的图象的一个交点为A(﹣1,2),则另一个交点B的坐标为()A.(﹣2,1)B.(2,1)C.(1,﹣2)D.(2,﹣1)【考点】反比例函数与一次函数的交点问题.【分析】根据反比例函数和一次函数图象上点的坐标特征,将A点坐标代入求得k、b的值,再联立两函数方程求得另一交点坐标.【解答】解:将A点坐标代入y=﹣x+b和y=可求得k=﹣2,b=1,所以,直线为y=﹣x+1,反比例函数为y=﹣,解得或,所以另一点(2,﹣1);故另一个交点B的坐标为(2,﹣1).故选D.【点评】本题考查了反比例函数和一次函数的解得问题,解答本题的关键是要理解两函数交点和方程组的解的对应关系.同时同学们要掌握解方程组的方法.8.如图,AB是⊙O的直径,且AB=2,AD是弦,∠DAB=22.5°,延长AB到点C,使得∠ACD=45°,则BC的长是()A.2﹣2 B.C.1 D.2﹣【考点】圆周角定理.【分析】连接DO,由三角形的外角与内角的关系易得∠DOC=∠C=45°,故有∠ODC=90°,CD=OD= AB,在直角△COD中,利用勾股定理即可求解.【解答】解:连接DO,∵AO=DO,∴∠DAO=∠ADO=22.5°.∴∠DOC=45°.又∵∠ACD=2∠DAB,AB=2,∴∠ACD=∠DOC=45°.∴∠ODC=90°,CD=OD=AB=,∴△OCD是等腰直角三角形,∴OC===2,∴BC=OC﹣OB=2﹣.故选D.【点评】本题考查的是圆周角定理,根据题意作出辅助线,判断出△OCD的形状是解答此题的关键.9.将2016加上它本身的的相反数,再将这个结果加上其的相反数,再将上述结果加上其的相反数,…,如此继续.操作2015次后所得的结果是()A.0 B.1 C.D.2015【考点】规律型:数字的变化类.【分析】根据题意依次计算出第1、2、3次运算后的结果,观察到结果中分母是序数加1、分子始终为1、另一个因数均为2016,以此规律可得操作2015次后所得的结果.【解答】解:根据题意,第1次运算的结果为:2016﹣×2016=×2016;第2次运算的结果为:×2016﹣×2016×=×2016×=×2016;第3次运算的结果为:×2016﹣×2016×═×2016×=×2016;…故第2015次运算的结果为:×2016=1,故选:B.【点评】本题主要考查从变化的数字中总结规律并加以应用的能力,从已知数的变化中观察变化的部分是如何变化及弄清不变的部分是总结规律的关键,一般将变化的部分与序数相联系.10.如图,正方形ABCD边长为4个单位,两动点P、Q分别从点A、B处,以1单位/s、2单位/s 的速度逆时针沿边移动.记移动的时间为x(s),△PBQ面积为y(平方单位),当点Q移动一周又回到点B终止,则y与x的函数关系图象为()A.B.C.D.【考点】动点问题的函数图象.【专题】函数及其图象.【分析】根据题意可以分别求得各段对应的函数解析式,从而可以得到各段对应的函数图象,从而可以得到哪个选项是正确的.【解答】解:由题意可得,当点Q从点B到点C的过程中,y=(0≤x≤2);当点Q从点C到点D的过程中,y=(2≤x≤4);当点Q从点D到点A的过程中,y=(4≤x≤6);当点Q从点A到点B的过程中,y=;故选D.【点评】本题考查动点问题的函数图象,解题的关键是明确题意,写出各段对应的函数解析,明确各段对应的函数图象,利用数形结合的思想解答问题.二、填空题(共4小题,每小题5分,满分20分)11.光年是天文学中的距离单位,1光年大约是9 500 000 000 000km,这个数字用科学记数法可表示为9.5×1012km.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9 500 000 000 000=9.5×1012,故答案为:9.5×1012km.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.已知a2﹣a﹣3=0,那么代数式的值是﹣.【考点】分式的化简求值.【专题】计算题;分式.【分析】原式通分并利用同分母分式的减法法则计算,将已知等式代入计算即可求出值.【解答】解:∵a2﹣a﹣3=0,即a2﹣a=3,∴原式==﹣=﹣,故答案为:﹣.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.13.如图,⊙O是△ABC的外接圆,⊙O的半径是R=2,sinA=0.8,则弦BC的长为 3.2.【考点】三角形的外接圆与外心.【分析】根据题意连接CO并延长到⊙O上一点A′,连接BA′,进而得出sinA=sinA′==0.8,求出答案即可.【解答】解:连接CO并延长到⊙O上一点A′,连接BA′,由题意可得:A′C是⊙O的直径,则∠A′BC=90°,故sinA=sinA′==0.8,则=0.8,解得:BC=3.2.故答案为:3.2.【点评】此题主要考查了三角形的外接圆与外心,正确作出辅助线是解题关键.14.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线交于P.下面结论:①,②∠A=∠BHE,③AB=BH,④△BHD∽△BDP.请你把你认为正确的结论的番号都填上①②③(填错一个该题得0分)【考点】相似三角形的判定与性质;平行四边形的性质.【分析】通过判断△BDE为等腰直角三角形,得到BE=DE,BD=BE,则可对①进行判断;根据等角的余角相等得到∠BHE=∠C,再根据平行四边形的性质得到∠A=∠C,则∠A=∠BHE,于是可对②进行判断;根据“记分S”可证明△BEH≌△DEC,得到BH=CD,接着由平行四边形的性质得AB=CD,则AB=BH,运算可对③进行判断;利用平行线的性质可得AP∥BC,则∠ADP=∠DBC=45°,利用三角形外角性质得∠P<45°,而∠BDH=45°,加上△BHD与△BDP有一个公共角,则可判断△BHD与△BDP不相似,于是可对④进行判断;【解答】解:∵∠DBC=45°,DE⊥BC,∴△BDE为等腰直角三角形,∴BE=DE,BD=BE,所以①正确;∵BF⊥CD,∴∠C+∠CBF=90°,而∠BHE+∠CBF=90°,∴∠BHE=∠C,∵四边形ABCD为平行四边形,∴∠A=∠C,∴∠A=∠BHE,所以②正确;在△BEH和△DEC中,,∴△BEH≌△DEC,∴BH=CD∵四边形ABCD为平行四边形,∴AB=CD,∴AB=BH,所以③正确;∵AP∥BC,∴∠ADP=∠DBC=45°,∴∠BDP=135°,∴∠P<45°,而∠BDH=45°,∴∠BDGP≠∠P,∴△BHD与△BDP不相似,所以④错误;∴正确的有①②③;故答案为:①②③.【点评】本题考查了平行四边形的性质和相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.三、解答题(共9小题,满分90分)15.计算:﹣(π﹣4)0﹣sin30°.【考点】实数的运算.【专题】计算题;实数.【分析】原式利用算术平方根定义,零指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣3+1﹣=﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.解不等式组,并把它的解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【专题】计算题.【分析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上,即可.【解答】解:不等式组解不等式①,得:x≤3,解不等式②,得:x>﹣2,∴原不等式组得解集为﹣2<x≤3.用数轴表示解集如图所示:.【点评】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.17.2014年底,某市机动车保有量已达120万辆,至2015年年底,该市机动车保有量达到138万辆.(1)按这样的增长速度,2016年底将达到158.7万辆;(2)如果该市在2017年底机动车保有量控制在166.98万辆,那么,2016年、2017年这两年的平均增长率最多是多少?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设出2016年底达到A万辆,由增长速度相同,可以列出关于A的一元一次方程,解方程即可得出结论;(2)设出年平均增长率最多为x,结合题意可列出关于x的一元二次方程,解方程即可得出结论.【解答】解:(1)设2016年底将达到A万辆,根据题意,=,解得A=158.7.故答案为:158.7.(2)设2016年、2017年这两年的平均增长率最多是x,由题意可得,158.7(1+x)2=166.98,解得x=2.6%.答:2016年、2017年这两年的平均增长率最多是2.6%.【点评】本题考查了一元二次方程应用中的解一元二次方程以及解一元一次方程,解题的关键:(1)以及相同增长速度得出一元一次方程;(2)设出最大增长率,结合题意得出一元二次方程,本题难度中等,难点在于①数据偏大,不易得出正确结论;②对增长率不够了解,列错方程.18.已知△ABC在坐标系中的位置如图:(1)在图中画出下列对应图形:将△ABC向右平移3个单位得△A1B1C1;再作△A1B1C1关于原点O的对称图形△A2B2C2;(2)设P(x,y)为△ABC边上任一点,请写出按(1)中两次变换后点P对应点的坐标.【考点】作图-平移变换.【分析】(1)首先确定A、B、C三点向右平移3个单位后对应点的位置,再连接即可得到△A1B1C1;再根据A1、B1、C1三点的坐标确定关于原点O的对称点的位置,再连接即可得到△A2B2C2;(2)根据平移可得第一次变换后P对应点横坐标+3,纵坐标不变,经过第二次变换可得第一次变换后的P对应点横纵坐标均变成相反数.【解答】解:(1)如图所示:;(2)两次变换后点P对应点的坐标为(﹣x﹣3,﹣y).【点评】此题主要考查了作图﹣﹣轴对称变换,以及平移变换,关键是几何图形都可看做是有点组成,我们在画一个图形的轴对称图形或平移图形时,也就是确定一些特殊点的对称点和平移后的对应点.19.某县为调查九年级15000名学生“一模”考试的数学成绩的分布情况,抽取了400名学生的数学成绩(成绩得分皆为整数,满分150分)进行统计:频率分布表请你根据不完整的频率分布表,解答下列问题:(1)补全频率分布表;(2)补全频数分布直方图;(3)若将得分转化为等级,规定得分“89分及以下”分评为“D”,“89.5﹣110.5分”评为“C”,“110.5﹣130.5扥”评为“B”,“130.5﹣150.5分”评为“A”,这次15000名学生中约有多少人评为“D”?如果随机抽取一名学生的成绩等级,则这名学生的成绩评为“A”、“B”、“C”、“D”哪一个等级的可能性大?请说明理由.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;可能性的大小.【分析】(1)根据频率=频数÷总数分别计算出89.5﹣110.5的频率、120.5﹣130.5的频数、130.5﹣140.5的频率,根据频数之和等于总数求出89分及以下的频数及频率即可;(2)由(1)中频率分布表,可知89分及以下、120.5﹣130.5的人数即可补全直方图;(3)总数乘以样本中D等级的频率,易求总数中D的学生数;求出每一等级内的频率,再比较大小即可.【解答】解:(1)89.5﹣110.5的频率==0.27,120.5﹣130.5的频数=400×0.2=80,130.5﹣140.5的频率=,89分及以下的频数=400﹣(108+64+80+48+20)=80,其频率==0.2,补全频率分布表如下:(2)由(1)可知,89分及以下有80人,120.5﹣130.5的有80人,补全频数分布直方图如下:(3)15000×0.2=3000(名),∵A、B、C、D等级的频率分别为:0.17,0.36,0.27,0.20,∴抽取一名学生是B等级的可能性大,答:这次15000名学生中约有3000人评为“D”,如果随机抽取一名学生的成绩等级,则这名学生的成绩评为B等级的可能性大.【点评】本题主要考查了频数分布表及直方图的有关知识,熟知频率=是解题的根本,在解题时要注意把频数分布表和直方图相结合是本题的关键.20.如图1,是H市人工天鹅湖畔的一尊雕塑A,雕塑A及另三个雕塑B、C、D的在湖岸边的平面分布如图2,某班综合实践小组分别在雕塑A、B两处设置观测点.在A处测得:雕塑B在西北方向,雕塑C在正北,雕塑D在北60°东;在B处测得:雕塑C在东北方向,雕塑D在正东.(1)求证:AB=CB,AD=CD;(2)已知AB=800米,求B、D之间的距离.(结果精确到1米)(参考数据:≈1.73,≈1.41,≈2.45)【考点】解直角三角形的应用-方向角问题.【分析】(1)由方向角的定义可知BD⊥AC,∠BAC=∠BCA=45°,∠CAD=60°,根据等角对等边可证明AB=BC,然后依据等腰三角形三线合一的性质可证BD是AC的垂直平分线,从而得到CD=AD;(2)在△AOB中依据特殊锐角三角函数值可求得OB和OA的长,然后在△OAD中依据特殊锐角三角函数值可得到OD的长,从而可求得BD的长.【解答】解:(1)设BD、AC交于点O.∵由题意可知BD⊥AC,∠BAC=∠BCA=45°,∠CAD=60°.∴AB=BC.∵AB=BC,BD⊥AC,∴AO=OC.∴BD是AC的垂直平分线.∴DC=DA.(2)在Rt△AOB中,AB=800,∠BAO=45°,∴BO=AO=800×=400.在Rt△AOD中,AO=400,∠DAO=60°,∴DO=400.∴DB=BO+DO=400+400≈1544(米).∴BD之间的距离为1544米.【点评】本题主要考查的是解直角三角形的应用,解答本题主要应用了等腰三角形的性质和判定、特殊锐角三角函数值的应用、线段垂直平分线的性质,依据方向角的定义找出图中相关角的度数是解题的关键.21.某汽车出租公司有120辆车出租,通过市场调查获得下列信息(如表):(1)从市场调查获得的信息知,每日能出租汽车数y(辆)与每辆车的日租金数x(元)满足一函数关系(填“一次、二次、反比例”):函数关系式为y=﹣0.2x+140;(2)请在表格最下一行,填写该公司出租汽车后所获得相应的日收入;(3)按照上述规律,根据你所学的函数知识帮该公司解答:每辆车租车的日租金定为多少时,才能使公司的日收入获得最多?【考点】二次函数的应用.【分析】(1)根据表中数据y随x的变化情况可知y与x满足一次函数关系,用待定系数法可求得解析式;(2)将每辆车的日租金乘以日租出汽车数,填表即可;(3)设租车日收入为W元,根据日收入=每辆车的日租金×日出租汽车数,列函数关系式配方可得最值情况.【解答】解:(1)根据表中数据可知,y与x满足一次函数关系,设y=kx+b,将x=200,y=100;x=220,y=96代入,得:,解得:,故y=﹣0.2x+140;(2)填表如下:(3)设租车日收入为W元,由题意,得:W=x(﹣0.2x+140)=﹣0.2x2+140x=﹣0.2(x﹣350)2+24500,当x=350时,W有最大值,最大值为24500,答:每辆车的日租金定为350元时,才能使公司日收入获得最多.故答案为:(1)一、y=﹣0.2x+140.【点评】本题考查了二次函数的应用,准确找到相等关系列出函数关系式,利用配方法求二次函数的最值是关键.22.如图,△ABC中,CA=CB,E、F分别在AC、AB的延长线上,且CE=CF,EG⊥AB于G,FH⊥AB 于H,连接EF.(1)求证:四边形FEGH是矩形;(2)若∠A=30°,且四边形FEGH是正方形时,求AC:CE的值.【考点】矩形的判定;正方形的性质.【分析】(1根据矩形的判定证明即可;(2)利用含30°的直角三角形的性质解答即可.【解答】证明:(1)∵CA=CB,CE=CF,∴∠A=∠B,∠AEF=∠BFE,∵∠ACF=∠ECB,∴∠A=∠AEF,∴EF∥AB,∵EG⊥AB于G,FH⊥AB于H,∴EG∥FH,∴四边形FEGH是平行四边形,∵EG⊥AB,∴四边形FEGH是矩形;(2)设正方形FEGH的边长为1,EG与BF交点为K,∵∠A=30°,∴∠B=∠AEF=∠BFE=∠A=30°,∴AG=GE=,EK=EF=,GK=1﹣,GB=GK=,∴AB=AG+GB=﹣1,∵EF∥AB,∴AC:CE=AB:EF=﹣1.【点评】此题考查了矩形的性质与判定,关键是利用含30°的直角三角形的性质解决问题.23.如图,抛物线y=(x﹣m)2+n的顶点P在直线y=2x上,该抛物线与直线的另一个交点为A,与y轴的交点为Q.(1)当m=n﹣1时,求m的值;(2)当AQ∥x轴时,试确定抛物线的解析式;(3)随着顶点P在直线y=2x上的运动,是否存在直角△PAQ?若存在,请直接写出点P的坐标;若不存在,说明理由.【考点】二次函数综合题.【分析】(1)由抛物线的顶点在y=2x上可知n=2m,然后由m=n﹣1可求得m的值;(2)先求得点Q、点A的坐标(用含m的式子表示),然后根据平行与x轴的直线上所有点的纵坐标相等列出关于m的方程,从而可求得m的值;(3)先求得直线AQ、PQ的一次项系数“k”的值(用含m的式子表示),然后依据相互垂直的两条直线的一次项系数的乘积是﹣1,分别列出关m的方程求解即可.【解答】解:(1)∵抛物线的解析式为y=(x﹣m)2+n,∴P(m,n).∵顶点P在直线y=2x上,∴n=2m.又∵m=n﹣1,∴m=2m﹣1.解得:m=1.(2)∵n=2m,∴抛物线的解析式为y=(x﹣m)2+2m.∵当x=0时,y=m2+2m,∴点Q的坐标为(0,m2+2m).由y=(x﹣m)2+2m与y=2x得:2x=(x﹣m)2+2m,解得:x1=m,x2=m+2.当x=m时,y=2m,即点P的坐标为(m,2m),当x=m+2时,y=2m+4,即点A的坐标为(m+2,2m+4).∵AQ∥x轴,∴m2+2m=2m+4,解得:m=2或m=﹣2.∵当m=﹣2时,点A与点Q与原点重合,与AQ∥x轴不符,∴m=﹣2不合题意.∴m=2.∴抛物线的解析式为y=(x﹣2)2+4.(3)∵Q(0,m2+2m),P(m,2m),A(m+2,2m+4),∴直线AQ的一次项系数==﹣m+2,直线PQ的一次项系数==﹣m.①当∠AQP=90°时,﹣m(﹣m+2)=﹣1,解得m1=m2=1,则P(1,2);②当∠APQ=90°时,﹣m×2=﹣1,解得m=,则P(,1);③当∠PAQ=90°时,(﹣m+2)×2=﹣1,解得m=,则P(,5).综上所述,点P的坐标为(1,2)或(,1)或P(,5).【点评】本题主要考查的是二次函数的综合应用,依据平行与x轴的直线上所有点的纵坐标相等、相互垂直的两条直线的一次项系数的乘积是﹣1列出关于m的方程是解题的关键.。
江苏省宜兴市洋溪中学2015-2016学年九年级数学下学期第一次月
考
一、选择题(每题3分) 1.︒30cos 的值( )A .2
1 B .
22C .23D .3
3 2.在△ABC 中,∠C =90°,BC =4,3
2
sin =A ,则边AC 的长是( )
A ..6C .83
D .3.如图,在△ABC 中,D
E ∥BC ,如果DE =2,BC =5,那么DB
AD
的值是( )A.2
3
B.3
2C.5
2D.5
3
4.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器厚度,则球的半径为( ) A .5cm B .6cm C .
7cm
D .8cm
5.如图,在平面直角坐标系中,过格点A 、B 、C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是( )A .点(0,3) B .点(2,3) C .点(5,1) D .点(6,1)
6.抛物线y =x 2+4x +5是由抛物线y =x 2+1经过某种平移得到,则这个平移可以表示为( )
A .向左平移1个单位
B .向左平移2个单位
C .向右平移1个单位
D .向右平移2个单位
7.点P (x ,y)为二次函数322++-=x x y 图像上一点,且-2≤x ≤2,y 的取值范围为( )
A .-5<y <3
B .-5≤y ≤3
C .-5≤y ≤4
D .-5<y <4
8.如图,Rt △OAB 的顶点O 与坐标原点重合,∠AOB =90°,AO =2BO ,当A 点在反比例函数()01>=x x
y 的图象上移动时,B 点坐标满足的反比例函数解析式为( ) A .
)0(81
<-
=x x
y B .
)0(41
<-
=x x
y C .
)0(21
<-
=x x
y
D .()01<-=x x
y
9.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =12,AD =4,BC =9,点P 是AB 上一动点,若△P AD 与△PBC 是相似三角形,则满足条件的点P 的个数有 ( )
A .1个
B .2个
C .3个
D .4个
10.如图,已知正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1).规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2015次变换后,正方形ABCD 的对角线交点M 的坐标变为( )A .(—2013,2)B .(一2013,一2) C .(—2014,—2)
第14题图
D .(—2014,2)
二、填空题(每题2分) 11.已知α为锐角,且2
3
)10sin(=
︒-α,则=α . 12.如图4,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是
1,如果正方形ABCD 的四个顶点分别在四条直线上,则
=αtan
.
13.如图,P A 、于A 、B ,∠APB =50º,则∠AOP = º
14.如图,在⊙O 中,弦BC=1,点A 是圆上一点,且∠BAC=30°,则⊙O 的半径是 _.
15.如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为 .
16.抛物线m x x y ++=422与x 轴的一个交点坐标为(-3,0),则与x 轴的另一个交点坐标为 .
17.如图,正方形ABCD 的边长为6,点E ,F 分别在边AB ,BC 上,AE =BF =2,
第15题图
F
E
D
C
B
A
第13题图
第17题图
小球P 从点E 出发沿直线向点F 运动,每当碰到正方形的边时反弹,反弹时
反射角等于入射角.当小球P 第一次碰到点E 时, 小球P 所经过的路程长为 .
18.如图,矩形ABCD 中,AD =5,AB =7,点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D ′落在∠ABC 的角平分线上时,DE 的长为 . 三、解答题
19.(8分)计算:(1)(-5)0-(3)2+|-3|(2)解不等式:x +23-1<2x
20.(8分)(1)解方程x 2-3x -4=0 (2)已知x 2-4x -1=0,
求代数式(2x -3)2-(x +y )(x -y )-y 2的值.
O E P
D C B A
21.(8分)如图,在□ABCD 中,E 、F 为对角线BD 上的两点.(1)若AE ⊥BD ,CF ⊥BD ,
证明BE =DF .(2)若AE =CF ,能否说明BE =DF ?若能,请说明理由;若不能,请画出反例.
22.(6分)如图,⊙O 的直径AB =10,CD 是⊙O 的弦,AC 与BD
相交于点P .(1)判断△APB 与△DPC 是否相似?并说明理由;(2)若CE ⊥BD 于E,且PE:EC=3:4,求弦CD 的长.
23.(6分)已知,△ABC在直角坐标平面内,三个顶点的坐标
分别为A(-2,2)、B(-1,0)、C(0,1)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC关于y轴的轴对称图形△A1B1C1;
(2)以点O为位似中心,在网格内画出所有符合条件的△A2B2C2,使△A2B2C2与△A1B1C1位似,且位似比为2∶1;
(3)求△A1B1C1与△A2B2C2的面积比.
24.(8分)如图,在一笔直的海岸线l上有AB两个观测站,A在B 的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)
25.(10分)如图,在平面直角坐标系中,点A、C的坐标分别为(0,8)、(6,0),以AC为直径作⊙O,交坐标轴于点B,点D是⊙O上AD,过点D作DE⊥BC,垂足为E.
一点,且⌒BD=⌒
ACE;(2)判断直线ED与⊙O的位置关系,Array
CE的长.
C B
F
G
A D E A
D C F B
E ((
26.(10分)已知:直角三角形的铁片ABC 的两条直角边BC 、AC 的长分别为6和8,如图所示,分别采用(1)(2)两种方法,剪出一块正方形铁片,为使剪去正方形铁片后剩下的边角料较少,试比较
哪种剪法较为合理,并说明理由。