新课标高考总复习专项演练:第四章 三角函数、解三角形 4-4 Word版
- 格式:doc
- 大小:179.00 KB
- 文档页数:9
2018年高考数学复习演练第四章三角函数解三角形(含2014-2017年真题)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考数学复习演练第四章三角函数解三角形(含2014-2017年真题))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考数学复习演练第四章三角函数解三角形(含2014-2017年真题)的全部内容。
专题四三角函数、解三角形考点1 三角函数的概念、同角三角函数基本关系式及诱导公式1.(2016·全国Ⅲ,5)若tan α=错误!,则cos2α+2sin 2α=( )A。
错误! B.错误! C.1 D.错误!1。
A tan α=错误!,则cos2α+2sin 2α=错误!=错误!=错误!。
2.(2015·重庆,9)若tan α=2tan 错误!,则错误!=()A.1B.2 C。
3 D.42。
C [错误!=错误!=错误!=错误!=错误!=错误!=3.]3。
(2014·大纲全国,3)设a=sin 33°,b=cos 55°,c=tan 35°,则()A。
a〉b〉c B.b>c〉a C.c>b>a D。
c>a>b3.C [∵b=cos 55°=sin 35°〉sin 33°=a,∴b〉a。
又c=tan 35°=错误!〉sin 35°=cos 55°=b,∴c>b.∴c>b>a。
故选C。
]4.(2017•北京,12)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα= ,则cos(α﹣β)=________.4。
4-4A 组 专项基础训练 (时间:45分钟)1.(2015·陕西西安八校联考)若函数y =cos⎝⎛⎭⎫ωx +π6(ω∈N *)图象的一个对称中心是⎝⎛⎭⎫π6,0,则ω的最小值为( )A .1B .2C .4D .8【解析】由题意知πω6+π6=k π+π2(k ∈Z )⇒ω=6k +2(k ∈Z ),又ω∈N *,∴ωmin =2,故选B. 【答案】B2.(2015·云南统考)已知函数①y =sin x +cos x ,②y =22·sin x cos x ,则下列结论正确的是( ) A .两个函数的图象均关于点⎝⎛⎭⎫-π4,0中心对称 B .两个函数的图象均关于直线x =-π4轴对称C .两个函数在区间⎝⎛⎭⎫-π4,π4上都是单调递增函数 D .两个函数的最小正周期相同【解析】设f (x )=sin x +cos x =2sin ⎝⎛⎭⎫x +π4, g (x )=22sin x cos x =2sin 2x .对于A 、B ,f ⎝⎛⎭⎫-π4=0,g ⎝⎛⎭⎫-π4=-2≠0, 易知A 、B 都不正确.对于C ,由-π2+2k π≤x +π4≤π2+2k π(k ∈Z ),得f (x )的单调递增区间为⎣⎡⎦⎤-3π4+2kπ,π4+2kπ(k ∈Z ), 由-π2+2k π≤2x ≤π2+2k π(k ∈Z ),得g (x )的单调递增区间为⎣⎡⎦⎤-π4+kπ,π4+kπ(k ∈Z ),易知C 正确.对于D ,f (x )的最小正周期为2π,g (x )的最小正周期为π,D 不正确.故选C. 【答案】C3.已知函数f (x )=2sin(ωx +φ)⎝⎛⎭⎫ω>0,且|φ|<π2的部分图象如图所示,则函数f (x )的一个单调递增区间是( )A.⎣⎡⎦⎤-7π12,5π12B.⎣⎡⎦⎤-7π12,-π12 C.⎣⎡⎦⎤-π12,7π12 D.⎣⎡⎦⎤-π12,5π12 【解析】由函数的图象可得14T =23π-512π,∴T =π,则ω=2.又图象过点⎝⎛⎭⎫512π,2,∴2sin ⎝⎛⎭⎫2×512π+φ=2, ∴φ=-π3+2k π,k ∈Z ,∵|φ|<π2.∴取k =0,即得f (x )=2sin ⎝⎛⎭⎫2x -π3, 其单调递增区间为⎣⎡⎦⎤kπ-π12,kπ+5π12,k ∈Z , 取k =0,即得选项D. 【答案】D4.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)⎝⎛⎭⎫A>0,ω>0,0<φ<π2的图象如图所示,则当t =1100秒时,电流强度是( )A .-5安B .5安C .53安D .10安【解析】由图象知A =10,T 2=4300-1300=1100,∴ω=2πT=100π.∴I =10sin(100πt +φ).⎝⎛⎭⎫1300,10为五点中的第二个点, ∴100π×1300+φ=π2.∴φ=π6.∴I =10sin ⎝⎛⎭⎫100πt +π6,当t =1100秒时,I =-5安.【答案】A5.已知函数f (x )=2sin ωx 在区间⎣⎡⎦⎤-π3,π4上的最小值为-2,则ω的取值范围是( ) A.⎝⎛⎦⎤-∞,-92∪6,+∞) B.⎝⎛⎦⎤-∞,-92∪⎣⎡⎭⎫32,+∞ C .(-∞,-2]∪6,+∞) D .(-∞,-2]∪⎣⎡⎭⎫32,+∞ 【解析】当ω>0时,-π3ω≤ωx ≤π4ω,由题意知-π3ω≤-π2,即ω≥32;当ω<0时,π4ω≤ωx ≤-π3ω,由题意知π4ω≤-π2,∴ω≤-2.综上可知,ω的取值范围是(-∞,-2]∪⎣⎡⎭⎫32,+∞. 【答案】D6.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f ⎝⎛⎭⎫16的值为________.【解析】取K ,L 中点N ,则MN =12,因此A =12.由T =2得ω=π.∵函数为偶函数,0<φ<π,∴φ=π2,∴f (x )=12cos πx ,∴f ⎝⎛⎭⎫16=12cos π6=34. 【答案】347.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos⎣⎡⎦⎤π6(x -6)(x =1,2,3,…,12,A >0)来表示,已知6月份的月平均气温最高,为28 ℃,12月份的月平均气温最低,为18 ℃,则10月份的平均气温值为________℃.【解析】由题意得⎩⎪⎨⎪⎧a +A =28,a -A =18,∴⎩⎪⎨⎪⎧a =23,A =5,∴y =23+5cos ⎣⎡⎦⎤π6(x -6), 当x =10时,y =23+5×⎝⎛⎭⎫-12=20.5. 【答案】20.58.已知函数f (x )=cos x sin x (x ∈R ),给出下列四个命题: ①若f (x 1)=-f (x 2),则x 1=-x 2; ②f (x )的最小正周期是2π; ③f (x )在区间⎣⎡⎦⎤-π4,π4上是增函数; ④f (x )的图象关于直线x =3π4对称.其中真命题是________.【解析】f (x )=12sin 2x ,当x 1=0,x 2=π2时,f (x 1)=-f (x 2),但x 1≠-x 2,故①是假命题; f (x )的最小正周期为π,故②是假命题;当x ∈⎣⎡⎦⎤-π4,π4时,2x ∈⎣⎡⎦⎤-π2,π2,故③是真命题; 因为f ⎝⎛⎭⎫3π4=12sin 32π=-12, 故f (x )的图象关于直线x =34π对称,故④是真命题.【答案】③④9.已知函数f (x )=cos x ·cos ⎝⎛⎭⎫x -π3. (1)求f ⎝⎛⎭⎫2π3的值;(2)求使f (x )<14成立的x 的取值集合.【解析】(1)f ⎝⎛⎭⎫2π3=cos 2π3·cos π3=-cos π3·cos π3 =-⎝⎛⎭⎫122=-14. (2)f (x )=cos x cos ⎝⎛⎭⎫x -π3=cos x ·⎝⎛⎭⎫12cos x +32sin x =12cos 2x +32sin x cos x =14(1+cos 2x )+34sin 2x =12cos ⎝⎛⎭⎫2x -π3+14.f (x )<14等价于12cos ⎝⎛⎭⎫2x -π3+14<14, 即cos ⎝⎛⎭⎫2x -π3<0, 于是2k π+π2<2x -π3<2k π+3π2,k ∈Z .解得k π+5π12<x <k π+11π12,k ∈Z .故使f (x )<14成立的x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪kπ+5π12<x<kπ+11π12,k ∈Z . 10.(2015·湖北)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值.【解析】(1)根据表中已知数据,解得A =5,ω=2,φ=-π6,数据补全如下表:且函数解析式为f (x )=5sin ⎝⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 则g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 因为函数y =sin x 图象的对称中心为(k π,0),k ∈Z , 令2x +2θ-π6=k π,解得x =kπ2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0成中心对称,所以令kπ2+π12-θ=5π12,解得θ=kπ2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.B 组 专项能力提升 (时间:20分钟)11.将函数y =sin(x +φ)的图象F 向左平移π6个单位长度后得到图象F ′,若F ′的一个对称中心为⎝⎛⎭⎫π4,0,则φ的一个可能取值是( )A.π12B.π6 C.5π6 D.7π12【解析】图象F ′对应的函数y =sin ⎝⎛⎭⎫x +π6+φ, 则π4+π6+φ=k π,k ∈Z ,即φ=k π-5π12,k ∈Z , 当k =1时,φ=7π12,故选D.【答案】D12.(2016·黄冈市高三年级质量检测)已知A ,B ,C ,D 是函数y =sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2一个周期内的图象上的四个点,如图所示,A ⎝⎛⎭⎫-π6,0,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的投影为π12,则ω,φ的值为( )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=12,φ=π3D .ω=12,φ=π6【解析】因为CD →在x 轴上的投影为π12,又点A ⎝⎛⎭⎫-π6,0, 所以函数的四分之一个最小正周期为π6+π12=π4.即函数的最小正周期为π,故ω=2ππ=2.又点A ⎝⎛⎭⎫-π6,0是处于递增区间上的零点,所以2×⎝⎛⎭⎫-π6+φ=2k π(k ∈Z ), 则φ=2k π+π3(k ∈Z ).又因为0<φ<π2,所以φ=π3.故选A.【答案】A13.(2015·安徽)已知函数f (x )=A sin(ωx +φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( )A .f (2)<f (-2)<f (0)B .f (0)<f (2)<f (-2)C .f (-2)<f (0)<f (2)D .f (2)<f (0)<f (-2)【解析】根据三角函数的性质确定ω,φ的值,结合图象进行判断. 方法一:由题意,得T =2πω=π,∴ω=2,∴f (x )=A sin(2x +φ),而当x =2π3时,2×2π3+φ=2k π+3π2(k ∈Z ),∴φ=2k π+π6(k ∈Z ),∴f (x )=A sin ⎝⎛⎭⎫2x +π6. 当2x +π6=2k π+π2(k ∈Z ),即x =π6+k π(k ∈Z )时,f (x )取得最大值.下面只需判断2,-2,0与最近的最大值处的对称轴距离大小,距离越大,函数值越小. 当k =0时,x =π6,⎪⎪⎪⎪0-π6≈0.52,⎪⎪⎪⎪2-π6≈1.48, 当k =-1时,x =-5π6,⎪⎪⎪⎪-2-⎝⎛⎭⎫-5π6≈0.6, ∴f (2)<f (-2)<f (0).方法二:将要比较的函数值化归到函数的同一单调区间上. ∵f (x )的最小正周期为π,∴f (-2)=f (π-2). 又当x =2π3时,f (x )取得最小值,故当x =π6时,f (x )取得最大值,⎣⎡⎦⎤π6,2π3是函数f (x )的一个递减区间. 又∵π6<π-2<2<2π3,∴f (π-2)>f (2),即f (-2)>f (2).再比较0,π-2与对称轴x =π6距离的大小.∵⎪⎪⎪⎪π-2-π6-⎪⎪⎪⎪0-π6=5π6-2-π6=2π3-2>0, ∴f (0)>f (π-2),即f (0)>f (-2).综上,f (0)>f (-2)>f (2).故选A. 【答案】A14.(2015·福建)已知函数f (x )=103sin x 2cos x 2+10cos 2x2.(1)求函数f (x )的最小正周期; (2)将函数f (x )的图象向右平移π6个单位长度,再向下平移a (a >0)个单位长度后得到函数g (x )的图象,且函数g (x )的最大值为2.求函数g (x )的解析式.【解析】(1)因为f (x )=103sin x 2cos x 2+10cos 2x2=53sin x +5cos x +5=10sin ⎝⎛⎭⎫x +π6+5, 所以函数f (x )的最小正周期T =2π.(2)将f (x )的图象向右平移π6个单位长度后得到y =10sin x +5 的图象,再向下平移a (a >0)个单位长度后得到g (x )=10sin x +5-a 的图象.又已知函数g (x )的最大值为2,所以10+5-a =2,解得a =13. 所以g (x )=10sin x -8.15.已知函数f (x )=3sin ωx ·cos ωx +cos 2ωx -12(ω>0),其最小正周期为π2.(1)求f (x )的表达式; (2)将函数f (x )的图象向右平移π8个单位长度,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间⎣⎡⎦⎤0,π2上有且只有一个实数解,求实数k 的取值范围. 【解析】(1)f (x )=3sin ωx ·cos ωx +cos 2ωx -12=32sin 2ωx +cos 2ωx +12-12=sin ⎝⎛⎭⎫2ωx +π6, 由题意知f (x )的最小正周期T =π2,T =2π2ω=πω=π2,所以ω=2,所以f (x )=sin ⎝⎛⎭⎫4x +π6. (2)将f (x )的图象向右平移π8个单位长度后,得到y =sin ⎝⎛⎭⎫4x -π3的图象; 再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin ⎝⎛⎭⎫2x -π3的图象, 所以g (x )=sin ⎝⎛⎭⎫2x -π3,因为0≤x ≤π2,所以-π3≤2x -π3≤2π3,所以g (x )∈⎣⎡⎦⎤-32,1 又g (x )+k =0在区间⎣⎡⎦⎤0,π2上有且只有一个实数解, 即函数y =g (x )与y =-k 在区间⎣⎡⎦⎤0,π2上有且只有一个交点,由正弦函数的图象可知 -32≤-k <32或-k =1, 解得-32<k ≤32或k =-1, 所以实数k 的取值范围是⎝⎛⎦⎤-32,32∪{-1}.。
4-7A 组 专项基础训练 (时间:45分钟)1.在△ABC 中,若A =60°,B =45°,BC =32,则AC 等于( ) A .43 B .2 3 C. 3 D.32【解析】 由正弦定理得AC sin B =BCsin A ,所以AC =BC sin B sin A =32sin 45°sin 60°=2 3.【答案】 B2.(·安庆模拟)在△ABC 中,A ∶B =1∶2,sin C =1,则a ∶b ∶c 等于( ) A .1∶2∶3 B .3∶2∶1 C .1∶3∶2 D .2∶3∶1 【解析】 由sin C =1,∴C =π2,由A ∶B =1∶2,故A +B =3A =π2,得A =π6,B =π3,由正弦定理得,a ∶b ∶c =sin A ∶sin B ∶sin C =12∶32∶22=1∶3∶2. 【答案】 C3.(·广东)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b =( )A .3B .2 2C .2 D. 3 【解析】 利用余弦定理求解.由a 2=b 2+c 2-2bc cos A ,得4=b 2+12-6b , 解得b =2或4.又b <c ,∴b =2. 【答案】 C4.△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( ) A.32 B.332C.3+62 D.3+394【解析】 设AB =a ,则由AC 2=AB 2+BC 2-2AB ·BC ·cos B 知 7=a 2+4-2a ,即a 2-2a -3=0,∴a =3(负值舍去). ∴BC 边上的高为AB ·sin B =3×32=332. 【答案】 B5.(·安徽)在△ABC 中,AB =6,∠A =75°,∠B =45°,则AC =________. 【解析】 由三角形的内角和求得∠C 的大小,再由正弦定理求解即可. ∠C =180°-75°-45°=60°,由正弦定理得AB sin C =AC sin B ,即6sin 60°=ACsin 45°,解得AC =2.【答案】 26.在△ABC 中,若b =5,B =π4,sin A =13,则a =________.【解析】 根据正弦定理应有a sin A =b sin B, ∴a =b sin Asin B =5×1322=523.【答案】5237.在△ABC 中,若AB =5,AC =5,且cos C =910,则BC =________.【解析】 设BC =x ,则由余弦定理AB 2=AC 2+BC 2-2AC ·BC cos C 得5=25+x 2-2·5·x ·910,即x 2-9x +20=0,解得x =4或x =5. 【答案】 4或58.(·重庆)在△ABC 中,B =120°,AB =2,A 的角平分线AD =3,则AC =________. 【解析】 根据题意由正弦定理求出角A 的度数,再求AC 的长. 如图,在△ABD 中,由正弦定理,得AD sin B =AB sin ∠ADB,∴sin ∠ADB =22. ∴∠ADB =45°,∴∠BAD =180°-45°-120°=15°. ∴∠BAC =30°,∠C =30°,∴BC =AB = 2. 在△ABC 中,由正弦定理,得AC sin B =BCsin A,∴AC = 6. 【答案】 69.(·安徽)在△ABC 中,∠A =3π4,AB =6,AC =32,点D 在BC 边上,AD =BD ,求AD 的长.【解析】 设△ABC 的内角∠BAC , B ,C 所对边的长分别是a ,b ,c , 由余弦定理得a 2=b 2+c 2-2bc cos ∠BAC =(32)2+62-2×32×6×cos 3π4=18+36-(-36)=90, 所以a =310.又由正弦定理得sin B =b sin ∠BAC a =3310=1010,由题设知0<B <π4,所以cos B =1-sin 2B =1-110=31010. 在△ABD 中,因为AD =BD , 所以∠ABD =∠BAD , 所以∠ADB =π-2B , 故由正弦定理得AD =AB ·sin B sin (π-2B )=6sin B 2sin B cos B =3cos B=10.10.(·浙江)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知A =π4,b 2-a 2=12c 2.(1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值. 【解析】 (1)由b 2-a 2=12c 2及正弦定理得sin 2B -12=12sin 2C ,所以-cos 2B =sin 2C .又由A =π4,即B +C =34π,得-cos 2B =sin 2C =2sin C cos C , 解得tan C =2.(2)由tan C =2,C ∈(0,π),得 sin C =255,cos C =55.因为sin B =sin(A +C )=sin ⎝⎛⎭⎫π4+C ,所以sin B =31010.由正弦定理得c =22b3,又因为A =π4,12bc sin A =3,所以bc =62,故b =3.B 组 专项能力提升 (时间:20分钟)11.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则ba 等于( )A .2 3B .2 2 C. 3 D. 2【解析】 ∵a sin A sin B +b cos 2A =2a , ∴sin A sin A sin B +sin B cos 2A =2sin A , ∴sin B =2sin A ,∴b a =sin Bsin A = 2.【答案】 D12.(·全国卷Ⅰ)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________.【解析】 画出四边形ABCD ,延长CD ,BA ,探求出AB 的取值范围.如图所示,延长BA 与CD 相交于点E ,过点C 作CF ∥AD 交AB 于点F ,则BF <AB <BE .在等腰三角形CFB 中,∠FCB =30°, CF =BC =2,∴BF =22+22-2×2×2cos 30°=6- 2.在等腰三角形ECB 中,∠CEB =30°,∠ECB =75°,BE =CE ,BC =2,BE sin 75°=2sin 30°,∴BE =212×6+24=6+ 2.∴6-2<AB <6+ 2. 【答案】 (6-2,6+2)13.(·福建)若△ABC 中,AC =3,A =45°,C =75°,则BC =________. 【解析】 由三角形的内角和求得∠B 的大小,再由正弦定理求解即可. ∠B =180°-75°-45°=60°, 由正弦定理,得BC sin A =AC sin B ,即BC sin 45°=3sin 60°,解得BC = 2.【答案】 214.(·四川)如图,A ,B ,C ,D 为平面四边形ABCD 的四个内角.(1)证明:tan A 2=1-cos A sin A;(2)若A +C =180°,AB =6,BC =3,CD =4,AD =5,求tan A 2+tan B 2+tan C 2+tan D2的值.【解析】 (1)证明:tan A2=sinA 2cos A 2=2sin 2A22sin A 2cosA 2=1-cos A sin A.(2)由A +C =180°,得C =180°-A ,D =180°-B . 由(1),有tan A 2+tan B 2+tan C 2+tan D2=1-cos A sin A +1-cos B sin B +1-cos (180°-A )sin (180°-A )+1-cos (180°-B )sin (180°-B ) =2sin A +2sin B. 连接BD (图略).在△ABD 中,有BD 2=AB 2+AD 2-2AB ·AD cos A , 在△BCD 中,有BD 2=BC 2+CD 2-2BC ·CD cos C ,所以AB 2+AD 2-2AB ·AD cos A =BC 2+CD 2+2BC ·CD cos A ,则cos A =AB 2+AD 2-BC 2-CD 22(AB ·AD +BC ·CD )=62+52-32-422(6×5+3×4)=37. 于是sin A =1-cos 2A = 1-⎝⎛⎭⎫372=2107.连接AC ,同理可得cos B =AB 2+BC 2-AD 2-CD 22(AB ·BC +AD ·CD )=62+32-52-422(6×3+5×4)=119,于是sin B =1-cos 2B =1-⎝⎛⎭⎫1192=61019. 所以tan A 2+tan B 2+tan C 2+tan D2=2sin A +2sin B =2×7210+2×19610=4103. 15.(·浙江)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan ⎝⎛⎭⎫π4+A =2.(1)求sin 2Asin 2A +cos 2A的值;(2)若B =π4,a =3,求△ABC 的面积.【解析】 (1)由tan ⎝⎛⎭⎫π4+A =2,得tan A =13,所以sin 2A sin 2A +cos 2A =2tan A 2tan A +1=25.(2)由tan A =13,A ∈(0,π),得sin A =1010,cos A =31010. 由a =3,B =π4及正弦定理a sin A =bsin B ,得b =3 5.由sin C =sin(A +B )=sin ⎝⎛⎭⎫A +π4,得sin C =255.设△ABC 的面积为S ,则S =12ab sin C =9.。
章末总结二、根置教材,考在变中 一、选择题1.(必修4 P 146A 组T 6(3)改编)已知sin 2θ=23,则sin 4θ+cos 4θ的值为( )A .49B.59 C .23D.79解析:选D.因为sin 2θ=23,所以sin 4θ+cos 4θ=(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=1-12sin 22θ=1-12×49=79.故选D.2.(必修4 P 147A 组T 12改编)已知函数f (x )=sin ⎝⎛⎭⎫x +π6+sin ⎝⎛⎭⎫x -π6+cos x +a 的最大值为1,则a 的值为( )A .-1B .0C .1D .2解析:选A.f (x )=sin x cos π6+cos x sin π6+sin x cos π6-cos x sin π6+cos x +a =3sin x +cos x+a =2sin(x +π6)+a ,所以f (x )max =2+a =1.所以a =-1.选A.3.(必修4 P 69A 组T 8改编)已知tan α=3,则sin ⎝⎛⎭⎫2α+π4的值为( ) A .210B .-210C .7210D .-7210解析:选B.因为tan α=3,所以sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α=2×31+32=35,cos 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α=1-321+32=-45,所以sin ⎝⎛⎭⎫2α+π4=22(sin 2α+cos 2α)=22⎝⎛⎭⎫35-45=-210.选B. 4.(必修4 P 58A 组T 2(3)改编)如图是y =A sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<π2的部分图象,则其解析式为( )A .y =2sin ⎝⎛⎭⎫x +π6 B .y =2sin ⎝⎛⎭⎫2x -π6 C .y =2sin ⎝⎛⎭⎫x +π3 D .y =2sin ⎝⎛⎭⎫2x +π6 解析:选D.由题图知T 4=π6-⎝⎛⎭⎫-π12=π4.所以T =π,所以ω=2πT =2.当x =-π12时,y =0,当x =0时,y =1.所以⎩⎪⎨⎪⎧A sin ⎝⎛⎭⎫-π6+φ=0A sin φ=1,所以φ=π6,A =2.所以y =2sin ⎝⎛⎭⎫2x +π6.故选D. 5.(必修5 P 18练习T 1(1)改编)在锐角△ABC 中,a =2,b =3,S △ABC =22,则c =( )A .2B .3C .4 D.17解析:选B.由已知得12×2×3×sin C =22,所以sin C =223.由于C <90°,所以cos C=1-sin 2C =13.由余弦定理得c 2=a 2+b 2-2ab cos C =22+32-2×2×3×13=9,所以c =3,故选B.6.(必修5 P 18练习T 3改编)已知△ABC 三内角A 、B 、C 的对边分别为a ,b ,c ,3a cos A =b cos C +c cos B ,b =2,则a sin B =( )A .43B.23 2 C .423D .6 2解析:选C.因为3a cos A =b cos C +c cos B , 即3a cos A =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =a ,所以cos A =13,又0<A <π.所以sin A =223.又b =2,所以a sin B =b sin A =2×223=423.故选C.二、填空题7.(必修4 P 146A 组T 5(1)改编)3sin 80°-1cos 80°=______.解析:3sin 80°-1cos 80°=3cos 80°-sin 80°sin 80°cos 80°=2⎝⎛⎭⎫32cos 80°-12sin 80°12sin 160°=4sin (60°-80°)sin 160°=-4sin 20°sin 20°=-4.答案:-4 8.(必修5 P 20A 组T 11(3)改编)△ABC 的三内角A ,B ,C 的对边分别为a ,b ,c .A =120°,a =7,S △ABC =1543,则b +c =________. 解析:由题意得⎩⎪⎨⎪⎧12bc sin 120°=1543b 2+c 2-2bc cos 120°=72,即⎩⎪⎨⎪⎧bc =15b 2+c 2+bc =49,所以b 2+c 2+2bc =64.所以b +c =8. 答案:89.(必修4 P 56练习T 3改编)关于函数f (x )=23sin(12x -π4)的下列结论:①f (x )的一个周期是-8π;②f (x )的图象关于x =π2对称;③f (x )的图象关于点⎝⎛⎭⎫π2,0对称; ④f (x )在⎝⎛⎭⎫-π2,π2上单调递增; ⑤f (x )的图象可由g (x )=23cos 12x 向右平移π8个单位得到.其中正确的结论有____________(填上全部正确结论的序号).解析:f (x )的最小正周期T =2π12=4π.所以f (x )的一个周期为-8π.①正确.f ⎝⎛⎭⎫π2=0,故②错误.③正确. 由2k π-π2<12x -π4<2k π+π2,k ∈Z ,得4k π-π2<x <4k π+32π.令k =0得,-π2<x <32π.⎝⎛⎭⎫-π2,π2⊆⎝⎛⎭⎫-π2,3π2.故④正确. g (x )=23cos 12x =23sin ⎝⎛⎭⎫12x +π2 =23sin ⎣⎡⎦⎤12()x +π, f (x )=23sin ⎝⎛⎭⎫12x -π4=23sin ⎣⎡⎦⎤12⎝⎛⎭⎫x -π2, 所以g (x )的图象向右平移π2-(-π)=32π即可得到f (x )的图象.故⑤错误,即①③④正确.答案:①③④三、解答题10.(必修4 P 147A 组T 10改编)已知函数f (x )=4sin(ωx -π4)·cos ωx 在x =π4处取得最值,其中ω∈(0,2).(1)求函数f (x )的最小正周期;(2)将函数f (x )的图象向左平移π36个单位,再将所得图象上各点的横坐标伸长为原来的3倍,纵坐标不变,得到函数y =g (x )的图象,若α为锐角,g (α)=43-2,求cos α.解:(1)f (x )=4sin ⎝⎛⎭⎫ωx -π4·cos ωx =22sin ωx ·cos ωx -22cos 2ωx =2(sin 2ωx -cos 2ωx )-2=2sin ⎝⎛⎭⎫2ωx -π4-2, 由于f (x )在x =π4处取得最值,因此2ω·π4-π4=k π+π2,k ∈Z ,所以ω=2k +32,因为ω∈(0,2),所以ω=32,因此,f (x )=2sin ⎝⎛⎭⎫3x -π4-2,所以T =2π3. (2)将函数f (x )的图象向左平移π36个单位,得到h (x )=2sin ⎣⎡⎦⎤3⎝⎛⎭⎫x +π36-π4-2=2sin ⎝⎛⎭⎫3x -π6-2的图象, 再将h (x )图象上各点的横坐标伸长为原来的3倍,纵坐标不变,得到g (x )=2sin ⎝⎛⎭⎫x -π6-2的图象,故g (α)=2sin ⎝⎛⎭⎫α-π6-2=43-2, 可得sin ⎝⎛⎭⎫α-π6=23, 因为α为锐角,所以-π6<α-π6<π3,因此cos ⎝⎛⎫α-π6=1-⎝⎛⎭⎫232=53,故cos α=cos ⎝⎛⎭⎫α-π6+π6=cos ⎝⎛⎭⎫α-π6cos π6-sin ⎝⎛⎭⎫α-π6sin π6=53×32-23×12=15-26. 11.(必修5 P 20A 组T 13改编)D 为△ABC 的边BC 的中点.AB =2AC =2AD =2.(1)求BC 的长;(2)若∠ACB 的平分线交AB 于E ,求S △ACE . 解:(1)由题意知AB =2,AC =AD =1. 设BD =DC =m .在△ADB 与△ADC 中, 由余弦定理得AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC . 即1+m 2-2m cos ∠ADB =4,① 1+m 2+2m cos ∠ADB =1.② ①+②得m 2=32,所以m =62,即BC = 6. (2)在△ACE 与△BCE 中,由正弦定理得 AE sin ∠ACE =EC sin ∠EAC ,BE sin ∠BCE =ECsin ∠CBE ,由于∠ACE =∠BCE , 且BC sin ∠BAC =AC sin ∠CBA,所以AE BE =AC BC =66.所以BE =6AE ,所以AE =25(6-1).又cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =22+12-(6)22×2×1=-14,所以sin ∠BAC =154,所以S △ACE =12AC ·AE ·sin ∠BAC=12×1×25(6-1)×154=310-1520.。
1.y =A sin(ωx +φ)的有关概念2.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个特征点 如下表所示:3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ) (A >0,ω>0)的图象的步骤如下:【知识拓展】1.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.2.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2,k ∈Z 确定;对称中心由ωx +φ=k π,k ∈Z确定其横坐标.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)y =sin ⎝⎛⎭⎫x -π4的图象是由y =sin ⎝⎛⎭⎫x +π4的图象向右平移π2个单位得到的.( √ ) (2)将函数y =sin ωx 的图象向右平移φ(φ>0)个单位长度,得到函数y =sin(ωx -φ)的图象.( × )(3)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( × )(4)函数y =A sin(ωx +φ)的最小正周期为T =2πω.( × )(5)把y =sin x 的图象上各点纵坐标不变,横坐标缩短为原来的12,所得图象对应的函数解析式为y =sin 12x .( × )(6)若函数y =A cos(ωx +φ)的最小正周期为T ,则函数图象的两个相邻对称中心之间的距离为T2.( √ )1.(教材改编)y =2sin(12x -π3)的振幅,频率和初相分别为( )A .2,4π,π3B .2,14π,π3C .2,14π,-π3D .2,4π,-π3答案 C解析 由题意知A =2,f =1T =ω2π=14π,初相为-π3.2.(2015·山东)要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象( ) A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位答案 B解析 ∵y =sin ⎝⎛⎭⎫4x -π3=sin ⎣⎡⎦⎤4⎝⎛⎭⎫x -π12, ∴要得到y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象向右平移π12个单位. 3.(2016·青岛模拟)将函数y =sin x 的图象上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( ) A .y =sin(2x -π10)B .y =sin(2x -π5)C .y =sin(12x -π10)D .y =sin(12x -π20)答案 C解析 y =sin x π10−−−−−→右移个单位 y =sin(x -π10)―――――→横坐标伸长到原来的2倍y =sin(12x -π10).4.(2016·临沂模拟)已知函数f (x )=A cos(ωx +θ)的图象如图所示,f (π2)=-23,则f (-π6)=________.答案 -23解析 由题图知,函数f (x )的周期 T =2(11π12-7π12)=2π3,所以f (-π6)=f (-π6+2π3)=f (π2)=-23.5.若将函数f (x )=sin(2x +π4)的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是________. 答案3π8解析 ∵函数f (x )=sin(2x +π4)的图象向右平移φ个单位得到g (x )=sin[2(x -φ)+π4]=sin(2x+π4-2φ), 又∵g (x )是偶函数,∴π4-2φ=k π+π2(k ∈Z ),∴φ=-k π2-π8(k ∈Z ).当k =-1时,φ取得最小正值3π8.题型一 函数y =A sin(ωx +φ)的图象及变换例1 (2015·湖北)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值.解 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 因为函数y =sin x 图象的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0成中心对称,所以令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.引申探究在本例(2)中,将f (x )图象上所有点向左平移π6个单位长度,得到g (x )的图象,求g (x )的解析式,并写出g (x )图象的对称中心. 解 由(1)知f (x )=5sin(2x -π6),因此g (x )=5sin[2(x +π6)-π6]=5sin(2x +π6).因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +π6=k π,k ∈Z ,解得x =k π2-π12,k ∈Z .即y =g (x )图象的对称中心为(k π2-π12,0),k ∈Z .思维升华 (1)五点法作简图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.把函数y =sin x 的图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,再把所得函数图象向左平移π4个单位,得到的函数图象的解析式是( )A .y =cos 2xB .y =-sin 2xC .y =sin(2x -π4)D .y =sin(2x +π4)答案 A解析 由y =sin x 图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,所得图象的解析式为y =sin 2x ,再向左平移π4个单位得y =sin2(x +π4),即y =cos 2x .题型二 由图象确定y =A sin(ωx +φ)的解析式例2 已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示.(1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.解 (1)观察图象可知A =2且点(0,1)在图象上, ∴1=2sin(ω·0+φ),即sin φ=12.∵|φ|<π2,∴φ=π6,又∵1112π是函数的一个零点且是图象递增穿过x 轴形成的零点,∴11π12ω+π6=2π,∴ω=2. ∴f (x )=2sin(2x +π6).(2)设2x +π6=B ,则函数y =2sin B 的对称轴方程为B =π2+k π,k ∈Z ,即2x +π6=π2+k π(k ∈Z ),解得x =k π2+π6(k ∈Z ),∴f (x )=2sin(2x +π6)的对称轴方程为x =k π2+π6(k ∈Z ).思维升华 求y =A sin(ωx +φ)+B (A >0,ω>0)解析式的步骤 (1)求A ,B ,确定函数的最大值M 和最小值m ,则A =M -m 2,B =M +m2. (2)求ω,确定函数的周期T ,则ω=2πT .(3)求φ,常用方法如下:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.②五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.具体如下:“第一点”(即图象上升时与x 轴的交点)为ωx +φ=0;“第二点”(即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.(2016·太原模拟)已知函数f (x )=sin(ωx +φ) (ω>0,|φ|<π2)的部分图象如图所示,则y =f (x +π6)取得最小值时x 的集合为( )A .{x |x =k π-π6,k ∈Z }B .{x |x =k π-π3,k ∈Z }C .{x |x =2k π-π6,k ∈Z }D .{x |x =2k π-π3,k ∈Z }答案 B解析 根据所给图象,周期T =4×(7π12-π3)=π,故π=2πω,∴ω=2,因此f (x )=sin(2x +φ),另外图象经过点(7π12,0),代入有2×7π12+φ=k π(k ∈Z ),再由|φ|<π2,得φ=-π6,∴f (x +π6)=sin(2x +π6),当2x +π6=-π2+2k π (k ∈Z ),即x =-π3+k π(k ∈Z )时,y =f (x +π6)取得最小值.题型三 三角函数图象性质的应用 命题点1 三角函数模型的应用例3 (2015·陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10答案 C解析 由题干图易得y min =k -3=2,则k =5. ∴y max =k +3=8.命题点2 函数零点(方程根)问题例4 已知关于x 的方程2sin 2x -3sin 2x +m -1=0在⎝⎛⎭⎫π2,π上有两个不同的实数根,则m 的取值范围是________. 答案 (-2,-1)解析 方程2sin 2x -3sin 2x +m -1=0可转化为 m =1-2sin 2x +3sin 2x =cos 2x +3sin 2x =2sin ⎝⎛⎭⎫2x +π6,x ∈⎝⎛⎭⎫π2,π. 设2x +π6=t ,则t ∈⎝⎛⎭⎫76π,136π, ∴题目条件可转化为m2=sin t ,t ∈⎝⎛⎭⎫76π,136π有两个不同的实数根. ∴y =m2和y =sin t ,t ∈⎝⎛⎭⎫76π,136π的图象有两个不同交点,如图:由图象观察知,m 2的范围为(-1,-12),故m 的取值范围是(-2,-1). 引申探究例4中,若将“有两个不同的实数根”改成“有实根”,则m 的取值范围是__________. 答案 [-2,1)解析 由例4知,m2的范围是⎣⎡⎭⎫-1,12, ∴-2≤m <1,∴m 的取值范围是[-2,1). 命题点3 图象与性质的综合应用例5 已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π. (1)求ω和φ的值;(2)当x ∈[0,π2]时,求函数y =f (x )的最大值和最小值.解 (1)因为f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又因为f (x )的图象关于直线x =π3对称,所以2·π3+φ=k π+π2,k ∈Z ,由-π2≤φ<π2,得k =0,所以φ=π2-2π3=-π6.综上,ω=2,φ=-π6.(2)由(1)知f (x )=3sin(2x -π6),当x ∈[0,π2]时,-π6≤2x -π6≤5π6,∴当2x -π6=π2,即x =π3时,f (x )最大值=3;当2x -π6=-π6,即x =0时,f (x )最小值=-32.思维升华 (1)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,建立数学模型,再利用三角函数的有关知识解决问题. (2)方程根的个数可转化为两个函数图象的交点个数.(3)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.已知函数f (x )=cos(3x +π3),其中x ∈[π6,m ],若f (x )的值域是[-1,-32],则m 的取值范围是__________. 答案 [2π9,5π18]解析 画出函数的图象.由x ∈[π6,m ],可知5π6≤3x +π3≤3m +π3,因为f (π6)=cos 5π6=-32且f (2π9)=cos π=-1,要使f (x )的值域是[-1,-32],只要2π9≤m ≤5π18,即m ∈[2π9,5π18].4.三角函数图象与性质的综合问题典例 (12分)已知函数f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π).(1)求f (x )的最小正周期;(2)若将f (x )的图象向右平移π6个单位长度,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.思维点拨 (1)先将f (x )化成y =A sin(ωx +φ)的形式再求周期;(2)将f (x )解析式中的x 换成x -π6,得g (x ),然后利用整体思想求最值.规范解答解 (1)f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π)=3cos x +sin x [3分]=2sin(x +π3),[5分]于是T =2π1=2π.[6分](2)由已知得g (x )=f (x -π6)=2sin(x +π6),[8分]∵x ∈[0,π],∴x +π6∈[π6,7π6],∴sin(x +π6)∈[-12,1],[10分]∴g (x )=2sin(x +π6)∈[-1,2].[11分]故函数g (x )在区间[0,π]上的最大值为2,最小值为-1.[12分]解决三角函数图象与性质的综合问题的一般步骤: 第一步:(化简)将f (x )化为a sin x +b cos x 的形式; 第二步:(用辅助角公式)构造f (x )=a 2+b 2·(sin x ·a a 2+b 2+cos x ·ba 2+b 2); 第三步:(求性质)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质; 第四步:(反思)反思回顾,查看关键点、易错点和答题规范.1.为了得到函数y =cos(2x +π3)的图象,可将函数y =sin 2x 的图象( )A .向左平移5π6个单位长度B .向右平移5π6个单位长度C .向左平移5π12个单位长度D .向右平移5π12个单位长度答案 C解析 由题意,得y =cos(2x +π3)=sin(2x +π3+π2)=sin 2(x +5π12),则它是由y =sin 2x 向左平移5π12个单位得到的,故选C. 2.若f (x )=sin(2x +φ)+b ,对任意实数x 都有f ⎝⎛⎭⎫x +π3=f (-x ),f ⎝⎛⎭⎫2π3=-1,则实数b 的值为( ) A .-2或0 B .0或1 C .±1 D .±2答案 A解析 由f ⎝⎛⎭⎫x +π3=f (-x )可得f (x )的图象关于直线x =π6对称,∴2×π6+φ=π2+k π,k ∈Z .当直线x =π6经过最高点时,φ=π6;当直线x =π6经过最低点时,φ=-56π.若f (x )=sin ⎝⎛⎭⎫2x +π6+b ,由f ⎝⎛⎭⎫23π=-1,得b =0;若f (x )=sin ⎝⎛⎭⎫2x -56π+b ,由f ⎝⎛⎭⎫23π=-1,得b =-2.所以b =-2或b =0.3.已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )A.π2B.2π3 C .π D .2π 答案 C解析 f (x )=3sin ωx +cos ωx =2sin(ωx +π6)(ω>0).由2sin(ωx +π6)=1,得sin(ωx +π6)=12,∴ωx +π6=2k π+π6或ωx +π6=2k π+56π(k ∈Z ).令k =0,得ωx 1+π6=π6,ωx 2+π6=56π,∴x 1=0,x 2=2π3ω.由|x 1-x 2|=π3,得2π3ω=π3,∴ω=2.故f (x )的最小正周期T =2π2=π.4.函数f (x )=sin(ωx +φ) (x ∈R ,ω>0,|φ|<π2)的部分图象如图所示,如果x 1,x 2∈(-π6,π3)且f (x 1)=f (x 2),则f (x 1+x 2)等于( )A.12 B.32C.22D .1答案 B解析 观察图象可知,A =1,T =π, ∴ω=2,f (x )=sin(2x +φ).将(-π6,0)代入上式得sin(-π3+φ)=0,由|φ|<π2,得φ=π3,则f (x )=sin(2x +π3).函数图象的对称轴为x =-π6+π32=π12.又x 1,x 2∈(-π6,π3),且f (x 1)=f (x 2),∴x 1+x 22=π12,∴x 1+x 2=π6,∴f (x 1+x 2)=sin(2×π6+π3)=32.故选B.5.函数f (x )=sin(2x +φ)⎝⎛⎭⎫|φ|<π2的图象向左平移π6个单位后所得函数图象的解析式是奇函数,则函数f (x )在⎣⎡⎦⎤0,π2上的最小值为( ) A .-32B .-12C.12 D.32答案 A解析 由函数f (x )的图象向左平移π6个单位得g (x )=sin ⎝⎛⎭⎫2x +φ+π3的图象, 因为是奇函数,所以φ+π3=k π,k ∈Z ,又因为|φ|<π2,所以φ=-π3,所以f (x )=sin ⎝⎛⎭⎫2x -π3. 又x ∈⎣⎡⎦⎤0,π2,所以2x -π3∈⎣⎡⎦⎤-π3,2π3, 所以当x =0时,f (x )取得最小值为-32. 6.(2016·太原模拟)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期是π,若将f (x )的图象向右平移π3个单位后得到的图象关于原点对称,则函数f (x )的图象( )A .关于直线x =π12对称B .关于直线x =5π12对称C .关于点⎝⎛⎭⎫π12,0对称 D .关于点⎝⎛⎭⎫5π12,0对称答案 B解析 由题意知2πω=π,∴ω=2;又由f (x )的图象向右平移π3个单位后得到y =sin[2⎝⎛⎭⎫x -π3+φ]=sin ⎝⎛⎭⎫2x +φ-23π,此时关于原点对称,∴-2π3+φ=k π,k ∈Z ,∴φ=2π3+k π,k ∈Z ,又|φ|<π2,∴φ=-π3,∴f (x )=sin ⎝⎛⎭⎫2x -π3. 当x =π12时,2x -π3=-π6,∴A 、C 错误; 当x =5π12时,2x -π3=π2,∴B 正确,D 错误.7.(2016·全国丙卷)函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移________个单位长度得到. 答案2π3解析 y =sin x -3cos x =2sin ⎝⎛⎭⎫x -π3,y =sin x +3cos x =2sin ⎝⎛⎭⎫x +π3,因此至少向右平移2π3个单位长度得到.8.(2017·长春质检)设偶函数f (x )=A sin(ωx +φ) (A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为________.答案34解析 由题意知,点M 到x 轴的距离是12,根据题意可设f (x )=12cos ωx ,又由题图知12·2πω=1,所以ω=π,所以f (x )=12cos πx ,故f (16)=12cos π6=34.9.(2015·天津)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.答案π2解析 f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π4, 因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z .又ω-(-ω)≤2πω2,即ω2≤π2,即ω2=π4,所以ω=π2.10.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如图所示,则当t =1100秒时,电流强度是________安.答案 -5解析 由图象知A =10,T 2=4300-1300=1100,∴ω=2πT =100π,∴I =10sin(100πt +φ).∵图象过点⎝⎛⎭⎫1300,10, ∴10sin(100π×1300+φ)=10,∴sin(π3+φ)=1,π3+φ=2k π+π2,k ∈Z ,∴φ=2k π+π6,k ∈Z ,又∵0<φ<π2,∴φ=π6.∴I =10sin ⎝⎛⎭⎫100πt +π6, 当t =1100秒时,I =-5安.11.已知函数y =A sin(ωx +φ) (A >0,ω>0)的图象过点P (π12,0),图象上与点P 最近的一个最高点是Q (π3,5).(1)求函数的解析式;(2)求函数f (x )的递增区间.解 (1)依题意得A =5,周期T =4(π3-π12)=π,∴ω=2ππ=2.故y =5sin(2x +φ),又图象过点P (π12,0),∴5sin(π6+φ)=0,由已知可得π6+φ=0,∴φ=-π6,∴y =5sin(2x -π6).(2)由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,得-π6+k π≤x ≤π3+k π,k ∈Z ,故函数f (x )的递增区间为[k π-π6,k π+π3] (k ∈Z ).12.已知函数f (x )=3cos 2x +sin x ·cos x -32. (1)求函数f (x )的最小正周期T 和函数f (x )的单调递增区间; (2)若函数f (x )的对称中心为(x,0),求x ∈[0,2π)的所有x 的和. 解 (1)由题意得f (x )=sin(2x +π3),∴T =2π2=π,令-π2+2k π≤2x +π3≤π2+2k π,k ∈Z .可得函数f (x )的单调递增区间为[-5π12+k π,π12+k π],k ∈Z .(2)令2x +π3=k π,k ∈Z ,可得x =-π6+k π2,k ∈Z .∵x ∈[0,2π),∴k 可取1,2,3,4. ∴所有满足条件的x 的和为2π6+5π6+8π6+11π6=13π3. *13.(2016·潍坊模拟)函数f (x )=A sin(ωx +φ) (A >0,ω>0,0<φ<π2)的部分图象如图所示.(1)求f (x )的解析式;(2)设g (x )=[f (x -π12)]2,求函数g (x )在x ∈[-π6,π3]上的最大值,并确定此时x 的值.解 (1)由题图知A =2,T 4=π3,则2πω=4×π3,∴ω=32. 又f (-π6)=2sin[32×(-π6)+φ]=2sin(-π4+φ)=0,∴sin(φ-π4)=0,∵0<φ<π2,∴-π4<φ-π4<π4,∴φ-π4=0,即φ=π4,∴f (x )的解析式为f (x )=2sin(32x +π4).(2)由(1)可得f (x -π12)=2sin[32(x -π12)+π4]=2sin(32x +π8),∴g (x )=[f (x -π12)]2=4×1-cos (3x +π4)2=2-2cos(3x +π4),∵x ∈[-π6,π3],∴-π4≤3x +π4≤5π4,∴当3x +π4=π,即x =π4时,g (x )max =4.。
2024年高考数学总复习第四章《三角函数、解三角形》复习试卷及答案解析一、选择题1.sin215°-cos215°等于()A.-12B.12C.-32D.32答案C解析sin215°-cos215°=-(cos215°-sin215°)=-cos30°=-32.故选C.2.若sinα=45,则-22cosα等于()A.225B.-225C.425D.-425答案A解析-22 cosα=sinαcos π4+cosαsinπ4-22cosα=45×22=225.3.已知sinα=-45α是第四象限角,则sin()A.52 10B.325C.7210D.425答案C解析由同角三角函数基本关系可得cosα=1-sin2α==35,结合两角差的正弦公式可得sin π4cosα-cosπ4sinα=7210.故选C. 4.函数f(x)=sin x的最大值为()A.3B.2C.23D.4答案A解析函数f(x)=sin x=12sin x +32cos x +sin x =32sin x +32cos xx +12cos=3sin ≤3.故f (x )的最大值为3.故选A.5.已知函数f (x )=2cos(ωx +φ)->0,|φ|y =1相邻两个交点的距离为4π3,若f (x )>0对x -π8,φ的取值范围是()A.-π12,0-π8,-π24C.-π12,D.0,π12答案B解析由已知得函数f (x )的最小正周期为4π3,则ω=32,当x -π8,时,32x +φ-3π16+φ,3π8+因为f (x )>0,即+>12,φ≥-π3+2k π,≤π3+2k π(k ∈Z ),解得-7π48+2k π≤φ≤-π24+2k π(k ∈Z ),又|φ|<π8,所以-π8<φ≤-π24,故选B.6.(2019·山师大附中模拟)设函数f (x )=sin(2x +φ)(0<φ<π)在x =π6时取得最大值,则函数g (x )=cos(2x +φ)的图象()AB C .关于直线x =π6对称D .关于直线x =π3对称答案A解析因为当x =π6时,f (x )=sin(2x +φ)(0<φ<π)取得最大值,所以φ=π6,即g (x )=x+π6,k ∈Z ,对称轴x =k π2-π12,k ∈Z ,故选A.7.(2019·沈阳东北育才学校模拟)如图平面直角坐标系中,角α-π2<β边分别交单位圆于A ,B 两点,若B 点的纵坐标为-513,且满足S △AOB =34,则sinα2·α2-sin +12的值为()A .-513 B.1213C .-1213D.513答案B解析由图易知∠xOA =α,∠xOB =-β.由题可知,sin β=-513.由S △AOB =34知∠AOB =π3,即α-β=π3,即α=π3+β.则sinα2-sin +12=3sin α2cos α2-sin 2α2+12=32sin α-12(1-cos α)+12=32sin α+12cos α=β=cos β=1-sin 2β=1213.故选B.8.(2019·重庆铜梁一中月考)已知函数f (x )=2sin(ωx +φ)(ω>0),x ∈-π12,2π3的图象如图,若f (x 1)=f (x 2),且x 1≠x 2,则f (x 1+x 2)的值为()A.3B.2C .1D .0答案C解析由图象得3T 4=2π3--π12∴T =π,ω=2πT=2,由2sin π6×2+φ=2sin π3+φ=2,得π3+φ=π2+2k π(k ∈Z ),∴φ=π6+2k π(k ∈Z ),由x 1+x 2=π6×2=π3,得f (x 1+x 2)=f π3=2sin 2×π3+π6+2k π1,故选C.9.(2019·重庆巴蜀中学期中)已知f (x )=sin(ωx +θ)其中ω>0,θ∈0,π2f ′(x 1)=f ′(x 2)=0,|x 1-x 2|的最小值为π2,f (x )=f π3-x 将f (x )的图象向左平移π6个单位长度得g (x ),则g (x )的单调递减区间是()A.k π,k π+π2(k ∈Z )B.k π+π6,k π+2π3(k ∈Z )C.k π+π3,k π+5π6(k ∈Z )D.k π+π12,k π+7π12(k ∈Z )答案A解析∵f (x )=sin(ωx +θ)其中ω>0,θ∈0,π2,由f ′(x 1)=f ′(x 2)=0可得x 1,x 2是函数的极值点,∵|x 1-x 2|的最小值为π2,∴12T =πω=π2,∴ω=2,∴f (x )=sin(2x +θ),又f (x )=f π3-x ∴f (x )的图象的对称轴为x =π6,∴2×π6+θ=k π+π2,k ∈Z ,又θ∈0,π2∴θ=π6,∴f (x )=x 将f (x )的图象向左平移π6个单位长度得g (x )=sin 2+π6=cos 2x 的图象,令2k π≤2x ≤2k π+π,k ∈Z ,∴k π≤x ≤k π+π2,k ∈Z ,则g (x )=cos 2x 的单调递减区间是k π,k π+π2(k ∈Z ),故选A.10.(2019·成都七中诊断)已知函数f (x )=sin(ωx +φ)(其中ω>0)的最小正周期为π,函数g (x )=+3f (x ),若对∀x ∈R ,都有g (x )≤|,则φ的最小正值为()A.π3B.2π3C.4π3D.5π3答案B解析由函数f (x )的最小正周期为π,可求得ω=2,∴f (x )=sin(2x +φ),g (x )=+3f (x )=sin 2φ+3sin(2x +φ)=cos(2x +φ)+3sin(2x +φ)=x +φ∴g (x )=x +φ又g (x )≤|,∴x =π3是g (x )的一条对称轴,代入2x +φ+π6中,有2×π3+φ+π6=π2+k π(k ∈Z ),解得φ=-π3+k π(k ∈Z ),当k =1时,φ=2π3,故选B.11.在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,若S △ABC =23,a +b =6,a cos B +b cos Ac =2cos C ,则c 等于()A .27B .4C .23D .33答案C 解析∵a cos B +b cos Ac=2cos C ,由正弦定理,得sin A cos B +cos A sin B =2sin C cos C ,∴sin(A +B )=sin C =2sin C cos C ,由于0<C <π,sin C ≠0,∴cos C =12,∴C =π3,∵S △ABC =23=12ab sin C =34ab ,∴ab =8,又a +b =6=2,=4=4,=2,c 2=a 2+b 2-2ab cos C =4+16-8=12,∴c =23,故选C.12.(2019·河北衡水中学调研)若函数f (x )=(ω>0)在区间(π,2π)内没有最值,则ω的取值范围是(),112∪14,23,16∪13,23C.14,23 D.13,23答案B解析易知函数y =sin x 的单调区间为k π+π2,k π+3π2,k ∈Z .由k π+π2≤ωx +π6≤k π+3π2,k ∈Z ,得k π+π3ω≤x ≤k π+4π3ω,k ∈Z .因为函数f(x )=ω>0)在区间(π,2π)内没有最值,所以f (x )在区间(π,2π)内单调,所以(π,2π)⊆k π+π3ω,k π+4π3ω,k ∈Z ,所以π,2π,k ∈Z ,解得k +13ω≤k 2+23,k ∈Z .由k +13≤k 2+23,k ∈Z ,得k ≤23,k ∈Z .当k =0时,得13≤ω≤23;当k =-1时,得-23≤ω≤16.又ω>0,所以0<ω≤16.综上,得ω,16∪13,23.故选B.二、填空题13.(2019·陕西四校联考)已知sin α=2cos α,则cos 2α=________.答案-35解析由已知得tan α=2,cos 2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1=1-44+1=-35.14.(2019·山师大附中模拟)已知=14,则x ________.答案78解析根据三角函数诱导公式,得=14,x x 2cos 1=78.15.(2019·武汉示范高中联考)函数y =sin x +cos x +2sin x cos x 的最大值为________.答案2+1解析令t =sin x +cos x ,则t =sin x +cos x=2sin t ∈[-2,2],则t 2=1+2sinx cos x ,所以sin x cos x =t 2-12,所以y =t 2+t -1-54,对称轴为t =-12,因为t ∈[-2,2],所以当t =2时取得最大值,为2+1.16.(2019·银川一中月考)已知函数f (x )=cos x sin x (x ∈R ),则下列四个命题中正确的是________.(写出所有正确命题的序号)①若f (x 1)=-f (x 2),则x 1=-x 2;②f (x )的最小正周期是2π;③f (x )在区间-π4,π4上是增函数;④f (x )的图象关于直线x =3π4对称.答案③④解析f (x 1)=-f (x 2),即12sin 2x 1=-12sin 2x 2,由f (x )图象(图略)可知,①错误;由周期公式可得T =2π2=π,②错误;由f (x )的图象可知,③正确;=12sin 3π2=-12④正确.故填③④.三、解答题17.(2019·抚州七校联考)已知函数f (x )=cos(ωx +φ>0,|φ的距离为π2,且f (x )的图象与y =sin x 的图象有一个横坐标为π4的交点.(1)求f (x )的解析式;(2)当x ∈0,7π8时,求f (x )的最小值,并求使f (x )取得最小值的x 的值.解(1)由题可知,T =π=2πω,ω=2,又×π4+sin π4,|φ|<π2,得φ=-π4.所以f (x )=x (2)因为x ∈0,7π8,所以2x -π4∈-π4,3π2,当2x -π4=π,即x =5π8时,f (x )取得最小值.f (x )min = 1.18.(2019·福建闽侯五校期中联考)已知向量a =(3sin x ,cos x ),b =(cos x ,-cos x ),f (x )=a ·b .(1)求f (x )的最小正周期和单调递增区间;(2)若x a ·b =-54,求cos 2x 的值.解(1)f (x )=a ·b =3sin x cos x -cos 2x=32sin 2x -cos 2x +12=x -12,∴f (x )的最小正周期是π.令2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),∴k π-π6≤x ≤k π+π3(k ∈Z ),∴f (x )的单调递增区间为k π-π6,k π+π3(k ∈Z ).(2)∵a ·b =x -12=-54,∴x =-34.∵x∴2x -π6∈,∴x =-74,∴cos 2x =x +π6=x cos π6-x sinπ6=-74×32-×12=3-218.。
4-5A 组 专项基础训练(时间:45分钟)1.已知tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4等于( )A.1318B.1322C.322D.16【解析】 因为α+π4+β-π4=α+β,所以α+π4=(α+β)-⎝⎛⎭⎫β-π4,所以tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4=tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)tan ⎝⎛⎭⎫β-π4=322. 【答案】 C2.(·山师附中模拟)若θ∈⎣⎡⎦⎤π4,π2,sin 2θ=378,则sin θ等于()A.35 B.45C.74 D.34【解析】 由sin 2θ=387和sin 2θ+cos 2θ=1得(sin θ+cos θ)2=378+1=⎝ ⎛⎭⎪⎫3+742,又θ∈⎣⎡⎦⎤π4,π2,∴sin θ+cos θ=3+74.同理,sin θ-cos θ=3-74,∴sin θ=34.【答案】 D3.(·开封模拟)已知tan α=4,则1+cos 2α+8sin 2αsin 2α的值为( )A .4 3 B.654C .4 D.233【解析】 1+cos 2α+8sin 2αsin 2α=2cos 2α+8sin 2α2sin αcos α,∵tan α=4, ∴cos α≠0,分子、分母都除以cos 2α得2+8tan 2α2tan α=654. 【答案】 B4.(·重庆)若tan α=2tan π5,则cos ⎝⎛⎭⎫α-3π10sin ⎝⎛⎭⎫α-π5=( ) A .1 B .2C .3D .4【解析】 根据三角函数的诱导公式和两角和、差的正弦公式求解.∵cos ⎝⎛⎭⎫α-3π10=cos ⎝⎛⎭⎫α+π5-π2=sin ⎝⎛⎭⎫α+π5, ∴原式=sin ⎝⎛⎭⎫α+π5sin ⎝⎛⎭⎫α-π5=sin αcos π5+cos αsin π5sin αcos π5-cos αsin π5 =tan α+tan π5tan α-tan π5. 又∵tan α=2tan π5,∴原式=2tan π5+tan π52tan π5-tan π5=3. 【答案】 C5.已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3的值是( ) A .-233 B .±233C .-1D .±1【解析】 cos x +cos ⎝⎛⎭⎫x -π3=cos x +12cos x +32sin x =32cos x +32sin x =3⎝⎛⎭⎫32cos x +12sin x =3cos ⎝⎛⎭⎫x -π6=-1. 【答案】 C6.(·兰州模拟)sin 250°1+sin 10°=________.【解析】 sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos (90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12. 【答案】 127.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α=________.【解析】 根据已知条件:cos αcos β-sin αsin β=sin αcos β-cos αsin β,cos β(cos α-sin α)+sin β(cos α-sin α)=0,即(cos β+sin β)(cos α-sin α)=0.又α、β为锐角,则sin β+cos β>0,∴cos α-sin α=0,∴tan α=1.【答案】 1 8.3tan 12°-3(4cos 212°-2)sin 12°=________. 【解析】 原式=3sin 12°cos 12°-32(2cos 212°-1)sin 12° = 23⎝⎛⎭⎫12sin 12°-32cos 12°cos 12° 2cos 24°sin 12°=23sin (-48°)2cos 24°sin 12°cos 12°=-23sin 48°sin 24°cos 24° =-23sin 48°12sin 48°=-4 3. 【答案】 -4 39.(·北京)已知函数f (x )=2sin x 2cos x 2-2sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间-π,0]上的最小值.【解析】 (1)由题意得f (x )=22sin x -22(1-cos x ) =sin ⎝⎛⎭⎫x +π4-22,所以f (x )的最小正周期为2π. (2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4. 当x +π4=-π2,即x =-3π4时,f (x )取得最小值.所以f (x )在区间-π,0]上的最小值为f ⎝⎛⎭⎫-3π4=-1-22.10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值.【解析】 (1)因为sin α2+cos α2=62,两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-32.(2)因为π2<α<π,π2<β<π,所以-π<-β<-π2,故-π2<α-β<π2.又sin(α-β)=-35,得cos(α-β)=45.cos β=cos α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35=-43+310.B 组 专项能力提升(时间:25分钟)11.已知tan ⎝⎛⎭⎫α+π4=12,且-π2<α<0,则2sin 2α+sin 2αcos ⎝⎛⎭⎫α-π4等于() A .-255 B .-3510C .-31010 D.255【解析】 由tan ⎝⎛⎭⎫α+π4=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-1010.故2sin 2α+sin 2αcos ⎝⎛⎭⎫α-π4=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.【答案】 A12.若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于( ) A.22 B.33 C. 2 D. 3【解析】 ∵α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14, ∴sin 2α+cos 2α-sin 2α=14,∴cos 2α=14, ∴cos α=12或-12(舍去),∴α=π3,∴tan α= 3. 【答案】 D13.(·湖北省七市高三联考)若tan θ=12,θ∈⎝⎛⎭⎫0,π4,则sin ⎝⎛⎭⎫2θ+π4=________. 【解析】 因为sin 2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=45, 又由θ∈⎝⎛⎭⎫0,π4,得2θ∈⎝⎛⎭⎫0,π2, 所以cos 2θ=1-sin 22θ=35, 所以sin ⎝⎛⎭⎫2θ+π4=sin 2θcos π4+cos 2θsin π4 =45×22+35×22=7210. 【答案】 721014.(·湖南)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A ,且B 为钝角.(1)证明:B -A =π2; (2)求sin A +sin C 的取值范围.【解析】 (1)证明:由a =b tan A 及正弦定理,得sin A cos A =a b =sin A sin B,在△ABC 中,sin A ≠0, 所以sin B =cos A ,即sin B =sin ⎝⎛⎭⎫π2+A . 又B 为钝角,因此π2+A ∈⎝⎛⎭⎫π2,π, 故B =π2+A ,即B -A =π2. (2)由(1)知,C =π-(A +B )=π-⎝⎛⎭⎫2A +π2=π2-2A >0,所以A ∈⎝⎛⎭⎫0,π4. 于是sin A +sin C =sin A +sin ⎝⎛⎭⎫π2-2A =sin A +cos 2A =-2sin 2A +sin A +1=-2⎝⎛⎭⎫sin A -142+98. 因为0<A <π4,所以0<sin A <22, 因此22<-2⎝⎛⎭⎫sin A -142+98≤98. 由此可知sin A +sin C 的取值范围是⎝⎛⎦⎤22,98. 15.(·重庆)已知函数f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值;(2)讨论f (x )在⎣⎡⎦⎤π6,2π3上的单调性. 【解析】 (1)f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32, 因此f (x )的最小正周期为π,最大值为2-32. (2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,从而 当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增, 当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增; 在⎣⎡⎦⎤5π12,2π3上单调递减.。
决胜3.在中,角,,所对的边分别为,,,且,.ABC A B C a b c 23a c b +=3A C π-=(1)求;cos B (2)若,求的面积.5b =ABC 4.设()()()()πsin 2πcos 2cos sin πf ααααα⎛⎫++ ⎪⎝⎭=---(1)将化为最简形式;()f α(2)已知,求的值.()3f θ=-()sin 1sin2sin cos θθθθ++5.已知函数.()π1sin 232f x x ⎛⎫=-- ⎪⎝⎭(1)求函数的单调递增区间,并解不等式;()f x ()0f x ≥(2)关于的方程在上有两个不相等的实数解,求实数的取x 11022m f x +⎛⎫+= ⎪⎝⎭[]0,πx ∈12,x x m 值范围及的值.()12f x x +6.已知角为第四象限角,且角的终边与单位圆交于点.αα1,3P y ⎛⎫ ⎪⎝⎭(1)求的值;sin α(2)求的值.()πtan sin 2sin cos παααα⎛⎫+ ⎪⎝⎭+7.在平面直角坐标系中,角以为始边,它的终边与单位圆交于第二象限内的点xOy αOx .(),P x y (1)若,求及的值;255y =tan α7sin 2cos sin 4cos αααα+-(2)若,求点P 的坐标.sin 11cos 2αα=-(1)若,求;3BC =ADCD (2)若,求线段的长11cos 14A =AD(1)求函数在区间上的最大值和最小值;()f x ππ[,]64-(2)若函数在区间上恰有2个零点,求的值.5()()4g x f x =-π(0,)212,x x 12cos()x x -11.在中,,点D 在AB 边上,且为锐角,,的面积为ABC 25BC =BCD ∠2CD =BCD △4.(1)求的值;cos BCD ∠(2)若,求边AC 的长.30A =︒12.记三个内角的对边分别为,已知为锐角,ABC ,,A B C ,,a b c B .sin sin sin 2sin sin a A b B c C a A B +-=(1)求;()sin A C -(2)求的最小值.sin sin A B 13.已知函数且的最小正周期为.()πsin 23f x x ω⎛⎫=+ ⎪⎝⎭()f x π(1)求函数的单调递减区间;()f x (2)若,求x 的取值范围.()22f x ≤14.已知函数在上单调递增.()sin (0)f x x ωω=>ππ,34⎡⎤-⎢⎥⎣⎦(1)求的取值范围:ω(2)当取最大值时,将的图象向左平移个单位,再将图象上所有点的横坐标变为原来ω()f x π9的3倍,得到的图象,求在内的值域.()g x ()g x ππ,32⎡⎤-⎢⎥⎣⎦15.在中,角所对的边分别为,已知.ABC ,,A B C ,,a b c sin cos cos cos cos sin sin A B C B C A B +=--(1)求;C (2)若外接圆的半径为,求的面积最大值.ABC 233ABC 16.已知函数.()()πe e sin ,32x xf x xg x --==(1)若,求;321π3f α⎛⎫+= ⎪⎝⎭32πf α⎛⎫- ⎪⎝⎭(2)设函数,证明:在上有且仅有一个零点,且()()ln h x x f x =+()h x ()0,∞+0x .()()034g f x >-17.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终xOy αO x 边与单位圆交于第三象限点.525,55P ⎛⎫-- ⎪⎝⎭(1)求的值;sin cos αα-(2)若角的终边绕原点按逆时针方向旋转,与单位圆交于点,求点的坐标.αO π2Q Q 18.设函数,且.2()2cos 23sin cos (0)f x x x x m ωωωω=++>(0)1f =(1)求的值;m (2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数存在,求()f x 的值及的零点.ω()f x 条件①:是奇函数;()f x 条件②:图象的两条相邻对称轴之间的距离是;()f x π条件③:在区间上单调递增,在区间上单调递减.()f x π0,6⎡⎤⎢⎥⎣⎦ππ,63⎡⎤⎢⎥⎣⎦注:如果选择的条件不符合要求,第(2)问得分;如果选择多个符合要求的条件分别解答,0按第一个解答计分.答案:1.(1)1-(2)12-【分析】(1)根据点坐标求得.P tan α(2)根据点坐标求得,利用诱导公式求得正确答案.P sin ,cos αα【详解】(1)即,3π,cos π3sin 44P ⎛⎫ ⎪⎝⎭22,22P ⎛⎫- ⎪ ⎪⎝⎭所以.22tan 122α-==-(2)由(1)得,所以,22,22P ⎛⎫- ⎪ ⎪⎝⎭22222sin 22222α-==-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭,22222cos 22222α==⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭()1617πsin πsin πsin sin 808π22αααα⎛⎫⎛⎫-+=++ ⎪ ⎪⎝⎭⎝⎭πsin sin sin cos 2αααα⎛⎫=+= ⎪⎝⎭.221222⎛⎫=-⨯=- ⎪ ⎪⎝⎭2.(1),1tan 7α=1tan 3β=(2)π4【分析】(1)先根据同角三角函数平方关系求出,再根据商数关系和两角和正切公式cos α化简得结果;(2)根据二倍角公式得,,再根据两角和余弦公式得,最后根据sin 2,cos 2ββ()cos 2αβ+范围求结果.【详解】(1)因为为锐角,,所以,,αβ2sin 10α=272cos 1sin 10αα=-=所以,2sin 110tan cos 77210ααα===又因为,所以,tan tan 1tan()1tan tan 2αβαβαβ++==-1tan 3β=(2)因为为锐角,,所以,解得,,αβ1tan 3β=22sin 1cos 3sin cos 1ββββ⎧=⎪⎨⎪+=⎩10sin 10310cos 10ββ⎧=⎪⎪⎨⎪=⎪⎩所以,sin 22sin cos 103103101052βββ==⨯=⨯,24cos 212sin 5ββ=-=所以,()724232cos 2cos cos 2sin sin 21051052αβαβαβ+=-=⨯-⨯=又因为为锐角,所以,,αβ3π022αβ<+<所以.π24αβ+=3.(1)78(2)111512【分析】(1)根据已知条件,利用正弦定理化为,结合23a c b +=sin sin 23sin A C B +=已知条件,有,,代入解三角形即可.3A C π-=32B C π=-232B A π=-sin sin 23sin A C B +=(2)根据(1)终结论,利用余弦定理,结合,,解得,利用面5b =23a c b +=443ac =积公式即可求得面积为.11115sin 212ABC S ac B ==△【详解】(1)因为,所以由正弦定理得,23a c b +=sin sin 23sin A C B +=因为,且,所以,,3A C π-=A B C π++=32B C π=-232B A π=-所以2sin sin 23sin 3232B B B ππ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭即,22sin cos cos sin sin cos cos sin 23sin 32323232B B B B B ππππ-+-=所以,所以,3cos 23sin 2B B =cos 4sin cos 222B B B =因为,所以,所以;022B π<<1sin 24B =27cos 12sin 28B B =-=(2)由余弦定理可得,2222cos b a c ac B =+-即,得,得,()27524a c ac ac =+--()2155234b ac =-443ac =因为,所以,所以7cos 8B =15sin 8B =11115sin 212ABC S ac B ==△4.(1)tan α-(2)65【分析】(1)根据三角函数的诱导公式,结合同角三角函数的商式关系,可得答案;(2)利用正弦函数的二倍角公式以及同角三角函数的平方式,整理齐次式,可得答案.【详解】(1).()()()()πsin 2πcos sin sin 2tan cos sin πcos sin f αααααααααα⎛⎫++ ⎪-⎝⎭===----(2)由,则,()tan 3f θθ=-=-tan 3θ=,()()()()()22222sin 1sin2sin (sin cos )tan (tan 1)sin cos sin cos sin cos tan 1tan 1θθθθθθθθθθθθθθθ+++==+++++.()()2223(31)34641053131⨯+⨯===⨯+⨯+5.(1)答案见解析(2)(()1212,3,2f x x ⎤--+=-⎦【分析】(1)由题意分别令,πππ2π22π,Z 232k x k k -+≤-≤+∈,解不等式即可得解.ππ5π2π22π,Z 366k x k k +≤-≤+∈(2)由题意得在上有两个不相等的实数解,结合三角()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 函数单调性、最值即可求出的取值范围,结合对称性代入求值即可得的值.m ()12f x x +【详解】(1)由题意令,解得,πππ2π22π,Z 232k x k k -+≤-≤+∈π5πππ,Z 1212k x k k -+≤≤+∈即函数的单调递增区间为,()f x ()π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦令,所以,()π1sin 2032f x x ⎛⎫=--≥ ⎪⎝⎭π1sin 232x ⎛⎫-≥ ⎪⎝⎭所以,解得,ππ5π2π22π,Z 366k x k k +≤-≤+∈π7πZ 412ππ,k x k k +≤≤+∈所以不等式的解集为.()0f x ≥()π7ππ,π,Z 412k k k ⎡⎤++∈⎢⎥⎣⎦(2)由题意即,11022m f x +⎛⎫+= ⎪⎝⎭πsin 032m x ⎛⎫-+= ⎪⎝⎭即在上有两个不相等的实数解,()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 当时,,而在上单调递减,在上单[]0,πx ∈ππ2π,333t x ⎡⎤=-∈-⎢⎥⎣⎦2sin y t =-ππ,32⎡⎤-⎢⎥⎣⎦π2π,23⎡⎤⎢⎥⎣⎦调递增,所以当即时,,ππ32t x =-=5π6x =()min 2g x =-当即时,,ππ33t x =-=-0x =()max 3g x =又即时,,π2π33t x =-=πx =()3g x =-所以若在上有两个不相等的实数解,()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 则实数的取值范围为,m (2,3⎤--⎦因为,所以是的对称轴,()min 5π26g x g ⎛⎫==- ⎪⎝⎭5π6x =()g x所以.()125π5ππ112sin 263322f x x f ⎛⎫⎛⎫+=⨯=⨯--=- ⎪ ⎪⎝⎭⎝⎭6.(1)223-(2)3-【分析】(1)将点代入单位圆后结合任意角三角函数定义求解即可.(2)利用诱导公式化简求值即可.【详解】(1)在单位圆中,解得,22113y ⎛⎫+= ⎪⎝⎭223y =±因为第四象限角,所以α223y =-22sin 3α∴=-(2)第四象限角22sin ,3αα=-1cos 3α∴=.()πtan sin 123sin cos πcos ααααα⎛⎫+ ⎪⎝⎭∴=-=-+7.(1),;2-2(2).34(,)55-【分析】(1)根据给定条件,求出点的坐标及,再利用齐次式法计算即得.P tan α(2)利用同角公式,结合三角函数定义求解即得.【详解】(1)角以Ox 为始边,它的终边与单位圆交于第二象限内的点,α(),P x y 当时,,则,255y =22551()55x =--=-tan 2y x α==-所以.7tan 27(2)227ta 4sin 2cos sin 42c 4os n αααααα+⨯-++==---=-(2)依题意,,sin 0,cos 0αα><由,得,代入,sin 11cos 2αα=-cos 12sin αα=-22sin cos 1αα+=于是,解得,22sin (12sin )1αα+-=2sin ,cos 1sin 5543ααα==--=-即,所以点P 的坐标为.34,55x y =-=34(,)55-8.(1);π3A =(2).2AD =【分析】(1)由正弦定理化边为角,然后由三角恒等变换求解;(2)设,利用由余弦定理求得,从而由正弦定理求得AD x =πADB ADC ∠+∠=cos ADB ∠(用表示),再代入余弦定理的结论中求得值.AC x x 【详解】(1)由正弦定理及已知得2cos cos cos 2c a A B b A =-,sin 2sin cos cos sin cos 2sin 2cos sin cos 2sin(2)C A A B B A A B B A A B =-=-=-或,C 2A B =-2πC A B +-=又,所以,A B ≤22πC A B C B B C B +-≤+-=+<所以,从而,所以;C 2A B =-2πB C A A +==-π3A =(2)由余弦定理得,,2222cos AB BD AD AD BD ADB =+-⋅∠,2222cos AC CD AD AD CD ADC =+-⋅∠又是角平分线,所以,又,则,记,因为AD 2AC CD AB BD ==3a =2,1CD BD ==AD x =,πADB ADC ∠+∠=所以,所以,2244cos 412cos x x ADC x x ADC +-∠=++∠cos 4x ADC ∠=-,则,0πADC <∠<2sin 116x ADC ∠=-由正弦定理得,sin sin AC CD ADC CAD =∠∠所以,222116π16sin 6x AC x =⋅-=-所以,解得,即.221644()4x x x x -=+-⋅-2x =2AD =9.(1)263(2)677【分析】(1)利用正弦定理及其余弦定理求解;(2)利用三角形的面积公式求解.【详解】(1)因为平分,,故,AD BAC ∠3AB BC ==2C BAC θ∠=∠=在中,由正弦定理知:,ADC △sin sin 22cos sin sin AD ACD CD DAC θθθ∠===∠由余弦定理有,2222223231cos 2cos 22323CA CB BA C CA CB θ+-+-====⋅⨯⨯又因为,所以,21cos 22cos 13θθ==-6cos 3θ=即;262cos 3AD CDθ==(2)由,得,则,11cos 14A =11cos 214θ=cos 2157cos 214θθ+==又由,()11sin 2sin 22ABC ABD ACD S AB AC S S AB AC AD θθ=⋅=+=+△△△得.()sin 21267cos sin 57AB AC AD AB AC θθθ⋅===+10.(1)最大值和最小值分别为;2,1-(2).58【分析】(1)求出函数的解析式,再利用余弦函数的性质求解即得.()f x (2)利用余弦函数图象的对称性,结合诱导公式计算.12cos()x x -【详解】(1)由函数的最小正周期为,得,解得,()f x π2ππω=π2,()2cos(2)3x f x ω==-当时,,则当,即时,,ππ[,]64x ∈-π2ππ2[,]336x -∈-π2π233x -=-π6x =-min ()1f x =-当,即时,,π203x -=π6x =max ()2f x =所以函数在区间上的最大值和最小值分别为.()f x ππ[,]64-2,1-(2)()2222252cos 25222525BD BC CD BC CD BCD =+-⨯∠=+-⨯⨯⨯,故,204816=+-=4BD =有,故,22216420BD CD BC +=+==CD AB ⊥则,即.21sin sin 302CD A AC AC ==︒==4AC =12.(1);()sin 1A C -=(2)无最小值;【分析】(1)利用正弦定理和余弦定理可得,结合为锐角可得,所sin cos A C =B π2A C =+以;()sin 1A C -=(2)利用诱导公式可得,再由导数判断出在3sin sin 2sin sin A B A A =-()32f t t t =-上单调递增,可得无最小值;2,12t ⎛⎫∈ ⎪ ⎪⎝⎭sin sin A B 【详解】(1)因为,sin sin sin 2sin sin a A b B c C a A B +-=由正弦定理得,2222sin a b c ab A +-=由余弦定理可得,2222cos a b c ab C +-=所以可得,解得或;sin cos A C =π2A C =-π2A C =+又为锐角,所以(舍),即,B π2A C =-π2A C =+因此;()πsin sin12A C -==(2)结合(1)中,又可得:π2A C =+πA B C ++=;33πsin sin sin sin 2sin cos 22sin sin 2A B A A A A A A ⎛⎫=-=-=- ⎪⎝⎭令,则,sin t A =()3sin sin 2A B f t t t ==-又为锐角,,所以,B 3ππ20,22A ⎛⎫-∈ ⎪⎝⎭π3π24A <<可得,212t <<所以,当时,恒成立,()261f t t '=-212t <<()2610f t t '=->即可得为单调递增,()32f t t t =-所以时,,所以无最值;2,12t ⎛⎫∈ ⎪ ⎪⎝⎭()()0,1f t ∈()f t 因此无最小值;sin sin A B 13.(1)答案见解析(2)答案见解析【分析】(1)根据最小正周期为求得,求出单调递减区间;π=1ω±(2)根据写出x 的取值范围.()22f x ≤【详解】(1)因为的周期为,()πsin 23f x x ω⎛⎫=+ ⎪⎝⎭π故,所以.2ππ2ω==1ω±当时,,=1ω()πsin 23f x x ⎛⎫=+ ⎪⎝⎭由,得到,ππ3π2π22π232k x k +≤+≤+π7πππ1212k x k +≤≤+故的递减区间为.()f x π7ππ,π,Z 1212k k k ⎡⎤++∈⎢⎥⎣⎦当时,,1ω=-()ππsin 2sin 233f x x x ⎛⎫⎛⎫=-+=-- ⎪ ⎪⎝⎭⎝⎭由,得到πππ2π22π232k x k -+≤-≤+π5πππ1212k x k -+≤≤+故的递减区间为.()f x π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦(2)当时,,=1ω()π2sin 232f x x ⎛⎫=+≤ ⎪⎝⎭所以,5πππ2π22π434k x k -+≤+≤+解得.19ππππ,Z 2424k x k k -+≤≤-+∈当时,,1ω=-()ππ2sin 2sin 2332f x x x ⎛⎫⎛⎫=-+=--≤ ⎪ ⎪⎝⎭⎝⎭即,π2sin 232x ⎛⎫-≥- ⎪⎝⎭所以,ππ5π2π22π434k x k -+≤-≤+解得.π19πππ2424k x k +≤≤+综上:当时,;=1ω19ππππ2424k x k -+≤≤-+当时,.1ω=-π19πππ,Z 2424k x k k +≤≤+∈14.(1)302ω<≤(2)260,4⎡⎤+⎢⎥⎣⎦【分析】(1)由题设条件,列出不等式,求解即可.,32πππ4π2ωω-≥-≤(2)根据函数图像平移变换,写出函数,再结合区间和三角函数性质求1π()sin 26g x x ⎛⎫=+ ⎪⎝⎭出值域.【详解】(1)由,得 ,ππ,34x ⎡⎤∈-⎢⎥⎣⎦ππ,34x ωωω⎡⎤∈-⎢⎥⎣⎦又函数在上单调递增,()sin (0)f x x ωω=>ππ,34⎡⎤-⎢⎥⎣⎦所以,解得,32πππ4π2ωω-≥-≤32ω≤因为,所以.0ω>302ω<≤(2)由(1)知的最大值为,此时,ω323()sin 2f x x =根据题意,,31π1π()sin sin 23926g x x x ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦当时,.ππ,32x ⎡⎤∈-⎢⎥⎣⎦1πππ02664x ≤+≤+所以,故值域为.ππ260()sin 644g x +⎛⎫≤≤+= ⎪⎝⎭260,4⎡⎤+⎢⎥⎣⎦15.(1)π3C =(2)3【分析】(1)利用正弦定理、三角恒等变换计算即可.(2)利用正余弦定理、三角形面积公式及基本不等式计算即可.【详解】(1)由已知可得:,222sin sin sin cos cos A A B B C -=-∴,()222sin sin sin 1sin 1sin A A B B C -=---∴,222sin sin sin sin sin A B C A B +-=根据正弦定理可知:,222a b c ab +-=∴.2221cos 22a b c C ab +-==又.π(0,π),3C C ∈∴=(2)∵外接圆的半径为,ABC 233r =∴,解得.432sin 3c r C==2c =又由(1)得,222a b c ab +-=故,∴,当且仅当时等号成立22424a b ab ab +-=≥-4ab ≤2a b ==∴,13sin 324ABC S ab C ab ==≤△∴的面积最大值为.ABC 316.(1)23(2)证明见解析【分析】(1)化简已知条件求得,利用诱导公式求得.πsin 3α⎛⎫+ ⎪⎝⎭32πf α⎛⎫- ⎪⎝⎭(2)先求得的表达式,然后对进行分类讨论,结合零点存在性定理证得在()h x x ()h x 上有且仅有一个零点,求得的表达式,然后利用函数的单调性证得不等()0,∞+0x()()0g f x 式成立.()()034g f x >-【详解】(1)由,则,321π3f α⎛⎫+= ⎪⎝⎭π2sin 33α⎛⎫+= ⎪⎝⎭所以32π2sin π3f αα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.ππ2sin πsin 333αα⎡⎤⎛⎫⎛⎫=-+=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)证明:由题意得.()πln sin 3h x x x =+①当时,,所以单调递增.30,2x ⎛⎤∈ ⎥⎝⎦ππ0,32x ⎛⎤∈ ⎥⎝⎦()h x 又,由于,而,1πsin ln226h ⎛⎫=- ⎪⎝⎭π1sin 62=1ln2ln e 2>=所以.又,102h ⎛⎫< ⎪⎝⎭()3102h =>所以由零点存在定理得在内有唯一零点,使得.()h x 30,2⎛⎤ ⎥⎝⎦0x ()00h x =当时,,所以,则在上无零点;3,32x ⎛⎤∈ ⎥⎝⎦πln 0,sin 03x x >≥()0h x >()h x 3,32⎛⎤ ⎥⎝⎦当时,,所以,则在上无零点.()3,x ∈+∞πln 1,1sin 13x x >-≤≤()0h x >()h x ()3,+∞综上,在上有且仅有一个零点.()h x ()0,∞+0x ②由①得,且,0112x <<()00ln 0x f x +=则.()()()()00000011ln ,ln 2f x x g f x g x x x ⎛⎫=-=-=- ⎪⎝⎭由函数的单调性得函数在上单调递增,()000112x x x ϕ⎛⎫=-⎪⎝⎭1,12⎛⎫ ⎪⎝⎭则,()01324x ϕϕ⎛⎫>=- ⎪⎝⎭故.()()034g f x >-求解已知三角函数值求三角函数值的问题,可以考虑利用诱导公式等三角恒等变换的公式来进行求解.判断函数零点的个数,除了零点存在性定理外,还需要结合函数的单调性来进行判断.17.(1)55-(2)255,55⎛⎫- ⎪ ⎪⎝⎭【分析】(1)直接根据三角函数的定义求解;(2)利用诱导公式求出旋转后的角的三角函数值即可.【详解】(1)由三角函数的定义可得,5sin c 5o 255s αα-=-=,所以;5s 5in 5c 2os 555αα⎛⎫--=- ⎪ ⎪⎝⎭-=-(2)角的终边绕原点O 按逆时针方向旋转,得到角,απ2π2α+则,,π5sin cos 25αα⎛⎫+==- ⎪⎝⎭π25cos sin 25αα⎛⎫+=-= ⎪⎝⎭所以点Q 的坐标为.255,55⎛⎫- ⎪ ⎪⎝⎭18.(1)1m =-(2)选择①,不存在;选择②,,;选择③,,12ω=ππ,Z 6k k -+∈1ω=ππ,Z 122k k -+∈【分析】(1)利用二倍角公式以及辅助角公式化简函数,根据,即可求解;(0)1f =(2)根据奇函数性质、三角函数图象的性质以及三角函数的单调性,即可逐个条件进行判断和求解.【详解】(1)2()2cos 23sin cos f x x x x m ωωω=++,πcos 23sin212sin 216x x m x m ωωω⎛⎫=+++=+++ ⎪⎝⎭又,所以.1(0)2112f m =⨯++=1m =-(2)由(1)知,,()π2sin 26f x x ω⎛⎫=+ ⎪⎝⎭选择①:因为是奇函数,()f x 所以与已知矛盾,所以不存在.()00f =()f x 选择②:因为图象的两条相邻对称轴之间的距离是,()f x π所以,,,π2T =2πT =2π21T ω==12ω=则,()π2sin 6f x x ⎛⎫=+ ⎪⎝⎭令,()π2sin 06f x x ⎛⎫=+= ⎪⎝⎭解得.ππ,Z 6k x k -+∈=即零点为.()f x ππ,Z 6k k -+∈选择③:对于,,()π2sin 26f x x ω⎛⎫=+ ⎪⎝⎭0ω>令,,πππ2π22π,Z 262k x k k ω-+≤+≤+∈ππ3π2π22π,Z 262k x k k ω+≤+≤+∈解得,,ππππ,Z 36k k x k ωωωω-+≤≤+∈ππ2ππ,Z 63k k x k ωωωω+≤≤+∈即增区间为,()f x ππππ,,Z 36k k k ωωωω⎡⎤-++∈⎢⎥⎣⎦减区间为,()f x ππ2ππ,,Z 63k k k ωωωω⎡⎤++∈⎢⎥⎣⎦因为在区间上单调递增,在区间上单调递减,()f x π0,6⎡⎤⎢⎥⎣⎦ππ,63⎡⎤⎢⎥⎣⎦所以时符合,0k =即在上单调递增,在上单调递减,()f x ππ,36ωω⎡⎤-⎢⎥⎣⎦π2π,63ωω⎡⎤⎢⎥⎣⎦所以且,π03ππ66ωω⎧-≤⎪⎪⎨⎪≥⎪⎩2ππ33ππ66ωω⎧≥⎪⎪⎨⎪≤⎪⎩解得,则,1ω=()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭所以令,()π2sin 206f x x ⎛⎫=+= ⎪⎝⎭解得,ππ,Z 122k x k =-+∈即零点为.()f x ππ,Z 122k k -+∈。
4-3A 组 专项基础训练 (时间:45分钟)1.函数f (x )=lg|sin x |是( ) A .最小正周期为π的奇函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为2π的偶函数【解析】 f (x +π)=lg|sin(x +π)|=lg|sin x |,所以周期为π,对f (-x )=lg|sin(-x )|=lg|-sin x |=lg|sin x |,所以为偶函数,故选C. 【答案】 C2.(·全国卷Ⅰ)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z 【解析】 由已知图象可求得ω与φ的值,然后利用余弦函数的单调区间求解. 由图象知,周期T =2⎝⎛⎭⎫54-14=2, ∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎫πx +π4.由2k π<πx +π4<2k π+π,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z .故选D. 【答案】 D3.将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点⎝⎛⎭⎫3π4,0,则ω的最小值是( )A.13B .1 C.53D .2 【解析】 根据题意平移后函数的解析式为 y =sin ω⎝⎛⎭⎫x -π4,将⎝⎛⎭⎫3π4,0代入得sin ωπ2=0,则ω=2k ,k ∈Z ,且ω>0, 故ω的最小值为2. 【答案】 D4.(·陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k .据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10【解析】 分析三角函数图象,根据最小值求k ,再求最大值. 根据图象得函数的最小值为2,有-3+k =2,k =5,最大值为3+k =8. 【答案】 C5.函数y =cos 2x +sin 2x ,x ∈R 的值域是( ) A .0,1] B.⎣⎡⎦⎤12,1 C .-1,2] D .0,2]【解析】 y =cos 2x +sin 2x =cos 2x +1-cos 2x 2=1+cos 2x 2.∵cos 2x ∈-1,1],∴y ∈0,1]. 【答案】 A6.函数y =cos ⎝⎛⎭⎫π4-2x 的单调减区间为________.【解析】 由y =cos ⎝⎛⎭⎫π4-2x =cos ⎝⎛⎭⎫2x -π4得2k π≤2x -π4≤2k π+π(k ∈Z ),故k π+π8≤x ≤k π+5π8(k ∈Z ).所以函数的单调减区间为⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z ).【答案】 ⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z )7.设函数f (x )=3sin ⎝⎛⎭⎫π2x +π4,若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为________.【解析】 f (x )=3sin ⎝⎛⎭⎫π2x +π4的周期T =2π×2π=4,f (x 1),f (x 2)应分别为函数f (x )的最小值和最大值, 故|x 1-x 2|的最小值为T2=2.【答案】 28.已知函数f (x )=A tan(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2,y =f (x )的部分图象如图,则f ⎝⎛⎭⎫π24=________.【解析】 由题中图象可知,此正切函数的半周期等于3π8-π8=π4, 即最小正周期为π2,所以ω=2.由题意可知,图象过定点⎝⎛⎭⎫3π8,0,所以0=A tan ⎝⎛⎭⎫2×3π8+φ,即3π4+φ=k π(k ∈Z ),所以φ=k π-3π4(k ∈Z ), 又|φ|<π2,所以φ=π4. 又图象过定点(0,1),所以A =1.综上可知,f (x )=tan ⎝⎛⎭⎫2x +π4,故有f ⎝⎛⎭⎫π24=tan ⎝⎛⎭⎫2×π24+π4=tan π3= 3.【答案】 39.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ;(2)求函数y =f (x )的单调增区间.【解析】 (1)令2×π8+φ=k π+π2,k ∈Z ,∴φ=k π+π4,k ∈Z ,又-π<φ<0,则φ=-3π4.(2)由(1)得:f (x )=sin ⎝⎛⎭⎫2x -3π4,令-π2+2k π≤2x -3π4≤π2+2k π,k ∈Z ,可解得π8+k π≤x ≤5π8+k π,k ∈Z ,因此y =f (x )的单调增区间为⎣⎡⎦⎤π8+k π,5π8+k π,k ∈Z .10.设函数f (x )=sin ⎝⎛⎭⎫πx 4-π6-2cos 2πx 8+1. (1)求f (x )的最小正周期;(2)若函数y =g (x )与y =f (x )的图象关于直线x =1对称,求当x ∈⎣⎡⎦⎤0,43时,y =g (x )的最大值. 【解析】 (1)f (x )=sin πx 4cos π6-cos πx 4sin π6-cos πx4=32sin πx 4-32cos πx 4=3sin ⎝⎛⎭⎫πx 4-π3, 故f (x )的最小正周期为T =2ππ4=8.(2)方法一:在y =g (x )的图象上任取一点(x ,g (x )), 它关于x =1的对称点(2-x ,g (x )).由题设条件,知点(2-x ,g (x ))在y =f (x )的图象上, 从而g (x )=f (2-x )=3sin ⎣⎡⎦⎤π4(2-x )-π3=3sin ⎣⎡⎦⎤π2-πx 4-π3=3cos ⎝⎛⎭⎫πx 4+π3.当0≤x ≤43时,π3≤πx 4+π3≤2π3,因此y =g (x )在区间⎣⎡⎦⎤0,43上的最大值为 g (x )max =3cosπ3=32. 方法二:区间⎣⎡⎦⎤0,43关于x =1的对称区间为⎣⎡⎦⎤23,2, 且y =g (x )与y =f (x )的图象关于直线x =1对称, 故y =g (x )在⎣⎡⎦⎤0,43上的最大值为 y =f (x )在⎣⎡⎦⎤23,2上的最大值. 由(1)知f (x )=3sin ⎝⎛⎭⎫πx 4-π3,当23≤x ≤2时,-π6≤πx 4-π3≤π6. 因此y =g (x )在⎣⎡⎦⎤0,43上的最大值为 g (x )max =3sinπ6=32. B 组 专项能力提升 (时间:20分钟)11.函数y =sin(ωx +φ)⎝⎛⎭⎫ω>0且|φ|<π2在区间⎣⎡⎦⎤π6,2π3上单调递减,且函数值从1减小到-1,那么此函数图象与y 轴交点的纵坐标为( )A.12B.22 C.32 D.6+24【解析】 函数y =sin(ωx +φ)的最大值为1,最小值为-1,由该函数在区间⎣⎡⎦⎤π6,2π3上单调递减,且函数值从1减小到-1,可知2π3-π6=π2为半周期,则周期为π,ω=2πT =2ππ=2,此时原函数式为y=sin(2x +φ),又由函数y =sin(ωx +φ)的图象过点⎝⎛⎭⎫π6,1,且|φ|<π2. 代入可得φ=π6,因此函数为y =sin ⎝⎛⎭⎫2x +π6,令x =0,可得y =12.【答案】 A12.(·池州月考)已知函数f (x )=2m sin x -n cos x ,直线x =π3是函数f (x )图象的一条对称轴,则nm 等于( )A.332 B. 3C .-233 D.33【解析】 由x =π3是函数f (x )图象的对称轴易得f (0)=f ⎝⎛⎭⎫2π3,∴-n =2m sin2π3-n cos 2π3, ∴-n =3m +n 2,∴3m =-32n ,∴n m =-233.【答案】 C13.函数y =tan ⎝⎛⎭⎫2x +π4的图象与x 轴交点的坐标是______.【解析】 由2x +π4=k π(k ∈Z )得,x =k π2-π8(k ∈Z ).∴函数y =tan ⎝⎛⎭⎫2x +π4的图象与x 轴交点的坐标是⎝⎛⎭⎫k π2-π8,0(k ∈Z ).【答案】 ⎝⎛⎭⎫k π2-π8,0(k ∈Z )14.给出下列命题:①函数f (x )=4cos ⎝⎛⎭⎫2x +π3的一个对称中心为⎝⎛⎭⎫-5π12,0;②已知函数f (x )=min{sin x ,cos x },则f (x )的值域为⎣⎡⎦⎤-1,22; ③若α、β均为第一象限角,且α>β,则sin α>sin β. 其中所有真命题的序号是________. 【解析】 对于①,令x =-512π, 则2x +π3=-56π+π3=-π2,有f ⎝⎛⎭⎫-512π=0, 因此⎝⎛⎭⎫-512π,0为f (x )的一个对称中心,①为真命题; 对于②,结合图象知f (x )的值域为⎣⎡⎦⎤-1,22,②为真命题; 对于③,令α=390°,β=60°,有390°>60°,但sin 390°=12<sin 60°=32,故③为假命题,所以真命题为①②.【答案】 ①②15.已知a >0,函数f (x )=-2a sin ⎝⎛⎭⎫2x +π6+2a +b ,当x ∈⎣⎡⎦⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎫x +π2且lg g (x )>0,求g (x )的单调区间.【解析】 (1)∵x ∈⎣⎡⎦⎤0,π2,∴2x +π6∈⎣⎡⎦⎤π6,7π6.∴sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, ∴-2a sin ⎝⎛⎭⎫2x +π6∈-2a ,a ].∴f (x )∈b ,3a +b ],又∵-5≤f (x )≤1, ∴b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得,f (x )=-4sin ⎝⎛⎭⎫2x +π6-1,g (x )=f ⎝⎛⎭⎫x +π2=-4sin ⎝⎛⎭⎫2x +7π6-1=4sin ⎝⎛⎭⎫2x +π6-1,又由lg g (x )>0,得g (x )>1,∴4sin ⎝⎛⎭⎫2x +π6-1>1,∴sin ⎝⎛⎭⎫2x +π6>12,∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝⎛⎦⎤k π,k π+π6,k ∈Z .又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为⎝⎛⎭⎫k π+π6,k π+π3,k ∈Z .。
2024年高考数学总复习第四章《三角函数、解三角形》§4.1任意角、弧度制及任意角的三角函数最新考纲1.了解任意角的概念和弧度制,能进行弧度与角度的互化.2.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }.(3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:180°=πrad,1°=π180rad ,1rad(3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,则sin α=y ,cos α=x ,tan α=yx (x ≠0).三个三角函数的性质如下表:三角函数定义域第一象限符号第二象限符号第三象限符号第四象限符号sin αR++--cos αR+--+tan α{α|α≠k π+π2,k ∈Z }+-+-4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .三角函数线有向线段MP 为正弦线;有向线段OM 为余弦线;有向线段AT 为正切线概念方法微思考1.总结一下三角函数值在各象限的符号规律.提示一全正、二正弦、三正切、四余弦.2.三角函数坐标法定义中,若取点P (x ,y )是角α终边上异于顶点的任一点,怎样定义角α的三角函数?提示设点P 到原点O 的距离为r ,则sin α=y r ,cos α=x r ,tan α=yx(x ≠0).题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)锐角是第一象限的角,第一象限的角也都是锐角.(×)(2)角α的三角函数值与其终边上点P 的位置无关.(√)(3)不相等的角终边一定不相同.(×)(4)若α为第一象限角,则sin α+cos α>1.(√)题组二教材改编2.角-225°=弧度,这个角在第象限.答案-5π4二3.若角α的终边经过点-22,sin α=,cos α=.答案22-224.一条弦的长等于半径,这条弦所对的圆心角大小为弧度.答案π3题组三易错自纠5|k π+π4≤α≤k π+π2,k ∈Z(阴影部分)是()答案C解析当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样,故选C.6.已知点Pθ的终边上,且θ∈[0,2π),则θ的值为()A.5π6B.2π3C.11π6D.5π3答案C解析因为点P所以根据三角函数的定义可知tan θ=-1232=-33,又θθ=11π6.7.在0到2π范围内,与角-4π3终边相同的角是.答案2π3解析与角-4π3终边相同的角是2k πk ∈Z ),令k =1,可得与角-4π3终边相同的角是2π3.8.(2018·济宁模拟)函数y =2cos x -1的定义域为.答案2k π-π3,2k π+π3(k ∈Z )解析∵2cos x -1≥0,∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴x ∈2k π-π3,2k π+π3(k ∈Z ).题型一角及其表示1.下列与角9π4的终边相同的角的表达式中正确的是()A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案C解析与角9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,所以只有答案C 正确.2.设集合M |x =k2·180°+45°,k ∈ZN |x =k4·180°+45°,k ∈Z()A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅答案B解析由于M 中,x =k2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N ,故选B.3.(2018·宁夏质检)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为.答案-53π,-23π,π3,43π解析如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为-53,-23π,π3,43π4.若角α是第二象限角,则α2是第象限角.答案一或三解析∵α是第二象限角,∴π2+2k π<α<π+2k π,k ∈Z ,∴π4+k π<α2<π2+k π,k ∈Z .当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.综上,α2是第一或第三象限角.思维升华(1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k (k ∈Z )赋值来求得所需的角.(2)确定kα,αkk ∈N *)的终边位置的方法先写出kα或αk 的范围,然后根据k 的可能取值确定kα或αk的终边所在位置.题型二弧度制及其应用例1已知一扇形的圆心角为α,半径为R ,弧长为l .若α=π3,R =10cm ,求扇形的面积.解由已知得α=π3,R =10cm ,∴S 扇形=12α·R 2=12·π3·102=50π3(cm 2).引申探究1.若例题条件不变,求扇形的弧长及该弧所在弓形的面积.解l =α·R =π3×10=10π3(cm),S 弓形=S 扇形-S 三角形=12·l ·R -12·R 2·sin π3=12·10π3·10-12·102·32=50π-7533(cm 2).2.若例题条件改为:“若扇形周长为20cm ”,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?解由已知得,l +2R =20,则l =20-2R (0<R <10).所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5cm 时,S 取得最大值25cm 2,此时l =10cm ,α=2rad.思维升华应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.跟踪训练1(1)(2018·湖北七校联考)若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为()A.π6B.π3C .3D.3答案D解析如图,等边三角形ABC 是半径为r 的圆O 的内接三角形,则线段AB 所对的圆心角∠AOB =2π3,作OM ⊥AB ,垂足为M ,在Rt △AOM 中,AO =r ,∠AOM =π3,∴AM =32r ,AB =3r ,∴l =3r ,由弧长公式得α=l r =3rr= 3.(2)一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为.答案518解析设圆的半径为r ,则扇形的半径为2r3,记扇形的圆心角为α,由扇形面积等于圆面积的527,可得12α2r 3πr 2=527,解得α=5π6.所以扇形的弧长与圆周长之比为l C =5π6·2r 32πr =518.题型三三角函数的概念命题点1三角函数定义的应用例2(1)(2018·青岛模拟)已知角α的终边与单位圆的交点为-12,sin α·tan α等于()A .-33B .±33C .-32D .±32答案C解析由OP 2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3,此时,sin α·tan α=-32.当y =-32时,sin α=-32,tan α=3,此时,sin α·tan α=-32.所以sin α·tan α=-32.(2)设θ是第三象限角,且|cosθ2|=-cos θ2,则θ2是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角答案B解析由θ是第三象限角知,θ2为第二或第四象限角,∵|cos θ2|=-cos θ2,∴cos θ2<0,综上可知,θ2为第二象限角.命题点2三角函数线例3(1)满足cos α≤-12的角的集合是.答案|2k π+23π≤α≤2k π+43π,k ∈Z 解析作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为|2k π+23π≤α≤2k π+43π,k ∈Z(2)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小关系是.答案sin α<cos α<tan α解析如图,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可知sin α<cos α<tan α.思维升华(1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围.跟踪训练2(1)(2018·济南模拟)已知角α的终边经过点(m ,-2m ),其中m ≠0,则sin α+cosα等于()A .-55B .±55C .-35D .±35答案B解析∵角α的终边经过点(m ,-2m ),其中m ≠0,∴m >0时,sin α=-2m 5m =-25cos α=m 5m =15,∴sin α+cos α=-55;m <0时,sin α=-2m -5m =25,cos α=m -5m =-15,∴sin α+cos α=55;∴sin α+cos α=±55,故选B.(2)在(0,2π)内,使得sin x >cos x 成立的x 的取值范围是()答案C解析当x ∈π2,sin x >0,cos x ≤0,显然sin x >cos x 成立;当x ,π4时,如图,OA 为x 的终边,此时sin x =|MA |,cos x =|OM |,sin x ≤cos x ;当xOB 为x 的终边,此时sin x =|NB |,cos x =|ON |,sin x >cos x .同理当x ∈πsin x >cosx ;当x ∈5π4,sin x ≤cos x ,故选C.1.下列说法中正确的是()A .第一象限角一定不是负角B .不相等的角,它们的终边必不相同C .钝角一定是第二象限角D .终边与始边均相同的两个角一定相等答案C解析因为-330°=-360°+30°,所以-330°角是第一象限角,且是负角,所以A 错误;同理-330°角和30°角不相等,但它们终边相同,所以B 错误;因为钝角的取值范围为(90°,180°),所以C 正确;0°角和360°角的终边与始边均相同,但它们不相等,所以D 错误.2.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是()A .1B .4C .1或4D .2或4答案C解析设扇形的半径为r ,弧长为l ,+l =6,=2,=1,4=2,2.从而α=l r =41=4或α=l r =22=1.3.(2018·石家庄调研)已知角θ的终边经过点P (4,m ),且sin θ=35,则m 等于()A .-3B .3C.163D .±3答案B 解析sin θ=m16+m 2=35,且m >0,解得m =3.4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为()-12,-32,--12,--32,答案A解析点P 旋转的弧度数也为2π3,由三角函数定义可知Q 点的坐标(x ,y )满足x =cos 2π3=-12,y =sin 2π3=32.5.若sin θ·cos θ>0,sin θ+cos θ<0,则θ在()A .第一象限B .第二象限C .第三象限D .第四象限答案C解析∵sin θ·cos θ>0,∴sin θ>0,cos θ>0或sin θ<0,cos θ<0.当sin θ>0,cos θ>0时,θ为第一象限角,当sin θ<0,cos θ<0时,θ为第三象限角.∵sin θ+cos θ<0,∴θ为第三象限角.故选C.6.sin 2·cos 3·tan 4的值()A .小于0B .大于0C .等于0D .不存在答案A解析∵sin 2>0,cos 3<0,tan 4>0,∴sin 2·cos 3·tan 4<0.7.已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为()A .-12B .-32C.12D.32答案C解析由题意得点P (-8m ,-3),r =64m 2+9,所以cos α=-8m64m 2+9=-45,解得m =±12,又cos α=-45<0,所以-8m <0,即m >0,所以m =12.8.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确命题的个数是()A .1B .2C .3D .4答案A解析举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sinπ6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时,其既不是第二象限角,也不是第三象限角,故⑤错.综上可知,只有③正确.9.若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是.答案2解析设圆半径为r ,则圆内接正方形的对角线长为2r ,∴正方形边长为2r ,∴圆心角的弧度数是2rr= 2.10.若角α的终边与直线y =3x 重合,且sin α<0,又P (m ,n )是角α终边上一点,且|OP |=10,则m -n =.答案2解析由已知tan α=3,∴n =3m ,又m 2+n 2=10,∴m 2=1.又sin α<0,∴m =-1,n =-3.故m -n =2.11.已知角α的终边上一点P 2π3,cos α的最小正值为.答案11π6解析由题意知,点r =1,所以点P 在第四象限,根据三角函数的定义得cos α=sin2π3=32,故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6.12.函数y =sin x -32的定义域为.答案2k π+π3,2k π+23π,k ∈Z 解析利用三角函数线(如图),由sin x ≥32,可知2k π+π3≤x ≤2k π+23π,k ∈Z .13.已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α用集合可表示为.答案α|2k π+π4<α<2k π+56π,k ∈Z 解析∵在[0,2π)内,终边落在阴影部分角的集合为π4,56π∴α|2k π+π4<α<2k π+56π,k ∈Z14.若角α的终边落在直线y =3x 上,角β的终边与单位圆交于点12,m,且sin α·cos β<0,则cos α·sin β=.答案±34解析由角β12,m cos β=12sin α·cos β<0知,sin α<0,因为角α的终边落在直线y =3x 上,所以角α只能是第三象限角.记P 为角α的终边与单位圆的交点,设P (x ,y )(x <0,y <0),则|OP |=1(O 为坐标原点),即x 2+y 2=1,又由y =3x 得x =-12,y =-32,所以cos α=x =-12,因为点12,m 12+m 2=1,解得m =±32,所以sin β=±32,所以cos α·sin β=±34.15.《九章算术》是我国古代数学成就的杰出代表作,其中“方田”章给出了计算弧田面积时所用的经验公式,即弧田面积=12×(弦×矢+矢2).弧田(如图1)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为2π3,半径为3米的弧田,如图2所示.按照上述经验公式计算所得弧田面积大约是平方米.(结果保留整数,3≈1.73)答案5解析如题图2,由题意可得∠AOB =2π3,OA =3,所以在Rt △AOD 中,∠AOD =π3,∠DAO =π6,OD =12AO =12×3=32,可得CD =3-32=32,由AD =AO ·sin π3=3×32=332,可得AB =2AD =2×332=3 3.所以弧田面积S =12(弦×矢+矢2)=12×33×32+=943+98≈5(平方米).16.如图,A ,B 是单位圆上的两个质点,点B 的坐标为(1,0),∠BOA =60°.质点A 以1rad /s 的角速度按逆时针方向在单位圆上运动,质点B 以2rad/s 的角速度按顺时针方向在单位圆上运动.(1)求经过1s 后,∠BOA 的弧度;(2)求质点A ,B 在单位圆上第一次相遇所用的时间.解(1)经过1s 后,质点A 运动1rad ,质点B 运动2rad ,此时∠BOA 的弧度为π3+3.(2)设经过t s 后质点A ,B 在单位圆上第一次相遇,则t (1+2)+π3=2π,解得t =5π9,即经过5π9s后质点A ,B 在单位圆上第一次相遇.。
4-4A 组 专项基础训练 (时间:45分钟)1.(2015·陕西西安八校联考)若函数y =cos ⎝⎛⎭⎫ωx +π6(ω∈N *)图象的一个对称中心是⎝⎛⎭⎫π6,0,则ω的最小值为( )A .1B .2C .4D .8【解析】 由题意知πω6+π6=k π+π2(k ∈Z )⇒ω=6k +2(k ∈Z ),又ω∈N *,∴ωmin =2,故选B. 【答案】 B2.(2015·云南统考)已知函数①y =sin x +cos x ,②y =22·sin x cos x ,则下列结论正确的是( ) A .两个函数的图象均关于点⎝⎛⎭⎫-π4,0中心对称B .两个函数的图象均关于直线x =-π4轴对称C .两个函数在区间⎝⎛⎭⎫-π4,π4上都是单调递增函数D .两个函数的最小正周期相同【解析】 设f (x )=sin x +cos x =2sin ⎝⎛⎭⎫x +π4,g (x )=22sin x cos x =2sin 2x .对于A 、B ,f ⎝⎛⎭⎫-π4=0,g ⎝⎛⎭⎫-π4=-2≠0,易知A 、B 都不正确.对于C ,由-π2+2k π≤x +π4≤π2+2k π(k ∈Z ),得f (x )的单调递增区间为⎣⎡⎦⎤-3π4+2k π,π4+2k π(k ∈Z ),由-π2+2k π≤2x ≤π2+2k π(k ∈Z ),得g (x )的单调递增区间为⎣⎡⎦⎤-π4+k π,π4+k π(k ∈Z ),易知C 正确.对于D ,f (x )的最小正周期为2π,g (x )的最小正周期为π,D 不正确.故选C. 【答案】 C3.已知函数f (x )=2sin(ωx +φ)⎝⎛⎭⎫ω>0,且|φ|<π2的部分图象如图所示,则函数f (x )的一个单调递增区间是( )A.⎣⎡⎦⎤-7π12,5π12B.⎣⎡⎦⎤-7π12,-π12C.⎣⎡⎦⎤-π12,7π12D.⎣⎡⎦⎤-π12,5π12 【解析】 由函数的图象可得14T =23π-512π,∴T =π,则ω=2.又图象过点⎝⎛⎭⎫512π,2,∴2sin ⎝⎛⎭⎫2×512π+φ=2, ∴φ=-π3+2k π,k ∈Z ,∵|φ|<π2.∴取k =0,即得f (x )=2sin ⎝⎛⎭⎫2x -π3,其单调递增区间为⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z ,取k =0,即得选项D. 【答案】 D4.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)⎝⎛⎭⎫A >0,ω>0,0<φ<π2的图象如图所示,则当t =1100秒时,电流强度是( )A .-5安B .5安C .53安D .10安【解析】 由图象知A =10,T 2=4300-1300=1100,∴ω=2πT=100π.∴I =10sin(100πt +φ).⎝⎛⎭⎫1300,10为五点中的第二个点, ∴100π×1300+φ=π2.∴φ=π6.∴I =10sin ⎝⎛⎭⎫100πt +π6,当t =1100秒时,I =-5安.【答案】 A5.已知函数f (x )=2sin ωx 在区间⎣⎡⎦⎤-π3,π4上的最小值为-2,则ω的取值范围是( )A.⎝⎛⎦⎤-∞,-92∪6,+∞) B.⎝⎛⎦⎤-∞,-92∪⎣⎡⎭⎫32,+∞ C .(-∞,-2]∪6,+∞) D .(-∞,-2]∪⎣⎡⎭⎫32,+∞ 【解析】 当ω>0时,-π3ω≤ωx ≤π4ω,由题意知-π3ω≤-π2,即ω≥32;当ω<0时,π4ω≤ωx ≤-π3ω,由题意知π4ω≤-π2,∴ω≤-2.综上可知,ω的取值范围是(-∞,-2]∪⎣⎡⎭⎫32,+∞. 【答案】 D6.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f ⎝⎛⎭⎫16的值为________.【解析】 取K ,L 中点N ,则MN =12,因此A =12.由T =2得ω=π.∵函数为偶函数,0<φ<π,∴φ=π2, ∴f (x )=12cos πx ,∴f ⎝⎛⎭⎫16=12cos π6=34. 【答案】347.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6)(x =1,2,3,…,12,A >0)来表示,已知6月份的月平均气温最高,为28 ℃,12月份的月平均气温最低,为18 ℃,则10月份的平均气温值为________℃.【解析】 由题意得⎩⎪⎨⎪⎧a +A =28,a -A =18,∴⎩⎪⎨⎪⎧a =23,A =5,∴y =23+5cos ⎣⎡⎦⎤π6(x -6),当x =10时,y =23+5×⎝⎛⎭⎫-12=20.5. 【答案】 20.58.已知函数f (x )=cos x sin x (x ∈R ),给出下列四个命题: ①若f (x 1)=-f (x 2),则x 1=-x 2; ②f (x )的最小正周期是2π;③f (x )在区间⎣⎡⎦⎤-π4,π4上是增函数;④f (x )的图象关于直线x =3π4对称.其中真命题是________.【解析】 f (x )=12sin 2x ,当x 1=0,x 2=π2时,f (x 1)=-f (x 2),但x 1≠-x 2,故①是假命题; f (x )的最小正周期为π,故②是假命题;当x ∈⎣⎡⎦⎤-π4,π4时,2x ∈⎣⎡⎦⎤-π2,π2,故③是真命题;因为f ⎝⎛⎭⎫3π4=12sin 32π=-12,故f (x )的图象关于直线x =34π对称,故④是真命题.【答案】 ③④9.已知函数f (x )=cos x ·cos ⎝⎛⎭⎫x -π3.(1)求f ⎝⎛⎭⎫2π3的值;(2)求使f (x )<14成立的x 的取值集合.【解析】 (1)f ⎝⎛⎭⎫2π3=cos 2π3·cos π3=-cos π3·cos π3=-⎝⎛⎭⎫122=-14. (2)f (x )=cos x cos ⎝⎛⎭⎫x -π3=cos x ·⎝⎛⎭⎫12cos x +32sin x=12cos 2x +32sin x cos x =14(1+cos 2x )+34sin 2x=12cos ⎝⎛⎭⎫2x -π3+14. f (x )<14等价于12cos ⎝⎛⎭⎫2x -π3+14<14,即cos ⎝⎛⎭⎫2x -π3<0,于是2k π+π2<2x -π3<2k π+3π2,k ∈Z .解得k π+5π12<x <k π+11π12,k ∈Z .故使f (x )<14成立的x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪k π+5π12<x <k π+11π12,k ∈Z. 10.(2015·湖北)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值. 【解析】 (1)根据表中已知数据, 解得A =5,ω=2,φ=-π6,数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎫2x -6.(2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6,则g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6.因为函数y =sin x 图象的对称中心为(k π,0),k ∈Z ,令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0成中心对称,所以令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.B 组 专项能力提升 (时间:20分钟)11.将函数y =sin(x +φ)的图象F 向左平移π6个单位长度后得到图象F ′,若F ′的一个对称中心为⎝⎛⎭⎫π4,0,则φ的一个可能取值是( ) A.π12 B.π6 C.5π6 D.7π12【解析】 图象F ′对应的函数y =sin ⎝⎛⎭⎫x +π6+φ,则π4+π6+φ=k π,k ∈Z ,即φ=k π-5π12,k ∈Z , 当k =1时,φ=7π12,故选D.【答案】 D12.(2016·黄冈市高三年级质量检测)已知A ,B ,C ,D 是函数y =sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2一个周期内的图象上的四个点,如图所示,A ⎝⎛⎭⎫-π6,0,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的投影为π12,则ω,φ的值为( )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=12,φ=π3D .ω=12,φ=π6【解析】 因为CD →在x 轴上的投影为π12,又点A ⎝⎛⎭⎫-π6,0,所以函数的四分之一个最小正周期为π6+π12=π4.即函数的最小正周期为π,故ω=2ππ=2.又点A ⎝⎛⎭⎫-π6,0是处于递增区间上的零点,所以2×⎝⎛⎭⎫-π6+φ=2k π(k ∈Z ),则φ=2k π+π3(k ∈Z ).又因为0<φ<π2,所以φ=π3.故选A.【答案】 A13.(2015·安徽)已知函数f (x )=A sin(ωx +φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( )A .f (2)<f (-2)<f (0)B .f (0)<f (2)<f (-2)C .f (-2)<f (0)<f (2)D .f (2)<f (0)<f (-2)【解析】 根据三角函数的性质确定ω,φ的值,结合图象进行判断. 方法一:由题意,得T =2πω=π,∴ω=2,∴f (x )=A sin(2x +φ),而当x =2π3时,2×2π3+φ=2k π+3π2(k ∈Z ),∴φ=2k π+π6(k ∈Z ),∴f (x )=A sin ⎝⎛⎭⎫2x +π6.当2x +π6=2k π+π2(k ∈Z ),即x =π6+k π(k ∈Z )时,f (x )取得最大值.下面只需判断2,-2,0与最近的最大值处的对称轴距离大小,距离越大,函数值越小. 当k =0时,x =π6,⎪⎪⎪⎪0-π6≈0.52,⎪⎪⎪⎪2-π6≈1.48,当k =-1时,x =-5π6,⎪⎪⎪⎪-2-⎝⎛⎭⎫-5π6≈0.6,∴f (2)<f (-2)<f (0).方法二:将要比较的函数值化归到函数的同一单调区间上. ∵f (x )的最小正周期为π,∴f (-2)=f (π-2). 又当x =2π3时,f (x )取得最小值,故当x =π6时,f (x )取得最大值,⎣⎡⎦⎤π6,2π3是函数f (x )的一个递减区间.又∵π6<π-2<2<2π3,∴f (π-2)>f (2),即f (-2)>f (2).再比较0,π-2与对称轴x =π6距离的大小.∵⎪⎪⎪⎪π-2-π6-⎪⎪⎪⎪0-π6=5π6-2-π6=2π3-2>0,∴f (0)>f (π-2),即f (0)>f (-2). 综上,f (0)>f (-2)>f (2).故选A. 【答案】 A14.(2015·福建)已知函数f (x )=103sin x 2cos x 2+10cos 2x2.(1)求函数f (x )的最小正周期;(2)将函数f (x )的图象向右平移π6个单位长度,再向下平移a (a >0)个单位长度后得到函数g (x )的图象,且函数g (x )的最大值为2.求函数g (x )的解析式.【解析】 (1)因为f (x )=103sin x 2cos x 2+10cos 2x2=53sin x +5cos x +5=10sin ⎝⎛⎭⎫x +π6+5,所以函数f (x )的最小正周期T =2π.(2)将f (x )的图象向右平移π6个单位长度后得到y =10sin x +5 的图象,再向下平移a (a >0)个单位长度后得到g (x )=10sin x +5-a 的图象.又已知函数g (x )的最大值为2,所以10+5-a =2,解得a =13. 所以g (x )=10sin x -8.15.已知函数f (x )=3sin ωx ·cos ωx +cos 2ωx -12(ω>0),其最小正周期为π2.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位长度,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间⎣⎡⎦⎤0,π2上有且只有一个实数解,求实数k 的取值范围.【解析】 (1)f (x )=3sin ωx ·cos ωx +cos 2ωx -12=32sin 2ωx +cos 2ωx +12-12=sin ⎝⎛⎭⎫2ωx +π6, 由题意知f (x )的最小正周期T =π2,T =2π2ω=πω=π2,所以ω=2,所以f (x )=sin ⎝⎛⎭⎫4x +π6.(2)将f (x )的图象向右平移π8个单位长度后,得到y =sin ⎝⎛⎭⎫4x -π3的图象;再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin ⎝⎛⎭⎫2x -π3的图象,所以g (x )=sin ⎝⎛⎭⎫2x -π3,因为0≤x ≤π2,所以-π3≤2x -π3≤2π3,所以g (x )∈⎣⎡⎦⎤-32,1 又g (x )+k =0在区间⎣⎡⎦⎤0,π2上有且只有一个实数解,即函数y =g (x )与y =-k 在区间⎣⎡⎦⎤0,π2上有且只有一个交点,由正弦函数的图象可知-32≤-k <32或-k =1, 解得-32<k ≤32或k =-1, 所以实数k 的取值范围是⎝⎛⎦⎤-32,32∪{-1}.。