乳化柴油实验报告
- 格式:doc
- 大小:76.50 KB
- 文档页数:17
柴油一甲醇微乳化燃料的制备及燃烧特性柴油掺醇燃料一般采用乳化的方法配置。
乳化燃料的历史较长:2O世纪40年代出现;2O世纪60年代开始对柴油一水乳化燃料进行广泛研究;20世纪90年代,国内外学者开始研究柴油一甲醇一水乳化燃料。
这两类乳化柴油燃料都使发动机热效率有所提高,同时降低了微粒排放;但也引发功率下降和缸套生锈腐蚀等问题。
为了克服上述两种柴油乳化燃料的缺点,作者对甲醇柴油混合燃料的制取及在柴油机上的应用进行了研究。
甲醇柴油微乳化燃料配制的试验研究:经过理论分析之后,选定多种表面活性剂进行试验,根据试验结果的比较,选定油酸为主要助溶剂。
油酸、甲醇和柴油的互溶三相图如图1所示。
此主题相关图片如下:如图显示,曲线左上方是不能共溶区域,右下方是可以共溶的区域,中间为临界线,属于透明混合液的区域还有三条坐标轴。
可以看出,沿临界线,在柴油体积分数从零增大到0.4时,油酸的体积分数基本保持不变;大于0.4后,随着柴油体积分数的增加,油酸的体积分数开始减小,甲醇的体积分数也在减小,并且其减小速度较油酸快。
当油酸和甲醇的体积分数比接近1:1后,两者的体积分数比不再随柴油的体积分数变化而变化。
试验中发现,当油酸与甲醇以1:1混合后,该混合液能够与柴油以任意比值互溶。
但在与异丁醇助溶对比时发现,异丁醇的助溶能够在温差变化较大的情况下能保持很好的溶解特性,其混合液均匀、透明。
而油酸、甲醇和柴油的混合液在同样的条件下持续2周左右开始分层。
上层很薄,颜色较深。
在刚混合好时,异丁醇的助溶液均匀、稳定。
而对于油酸助溶液用肉眼可以看见,有类似微小气泡的东西由混合液内部升至液体表面的现象,并且观察液体内部时,发现有透明絮状物在游移。
鉴于异丁醇有助溶作用,在油酸、甲醇和柴油的混合液中加入异丁醇,并试图减小助溶剂(油酸,异丁醇)所占的体积分数,结果发现:每减小一个体积单位的油酸,需要加入很多体积单位的异丁醇,加入异丁醇后,混合液中的絮状漂浮物减少,并且稳定期增长。
乳化柴油乳化柴油(微乳化柴油)是水(或甲醇)和柴油通过乳化剂、助乳化剂在一定乳化设备经乳化而形成的油包水(W/O)型(透明)乳液。
一、性质微乳化柴油是视觉透明的,乳化油则是不透明的;乳化油的粒径约为0.1~10微米;微乳的乳化剂用量远大于乳化的用量;微乳化油的稳定性较乳化油的好。
二、应用特点操作简单(只需机械搅拌);原料充足(乳化剂为植物油厂下脚料活炼油厂副产物等)能耗低(油燃烧释放热的减少低于水量的比重,即燃烧率提高);污染少(乳化后其燃烧排放的颗粒物(PM10)、氮氧化物(NOx)明显减少);提高燃油效率等优点(二次雾化的结果等);税收优惠(产品为节能减排项目,享受税收减免政策,政府部门大力支持)。
三、研发背景随着经济的不断发展和世界人口的急剧增加,能源危机日益凸显,并逐渐成为制约各国经济发展的主要因素,开源和节流成为人类应对能源危机的两大主要措施。
柴油作为传统能源具有高热值、难挥发等特点,在人类活动中占有重要地位。
2006年中国柴油消费量为10 962万t,缺口840万t,国内柴油供不应求。
因此,柴油燃烧节能问题日益重要。
燃油的乳化是指在乳化剂的存在下,通过机械搅拌、超声等手段形成油包水型乳液的过程。
由于乳化柴油具有乳化过程简单、乳化油燃烧效率高、燃烧过程污染物排放少等诸多优点而备受关注。
乳化柴油的应用研究已成为燃料节能减排研究领域中的热点。
乳化柴油适用于各种拖拉机、农用运输车、抽水机、发电机、燃油热风炉、烘干炉、柴油机轮船等。
此种新型燃料与柴油性能相当,并且能大大提高燃烧效率,不污染环境,这种清洁柴油经权威机构检测,环保指标还优于柴油,价格比原柴油低1000元/吨以上,是一种经济高效的新型燃料。
四、效益分析环境效益:有赖于其独特的燃烧特性,乳化柴油发挥的环境效益远超柴油。
视乎发动机的类型、机龄和条件、服务历史、维护、占空比、驱动程序行为和水含量,广泛的测试证明了乳化柴油常见的减排幅度为:· 氮氧化物 --- 10% 至 30%· 一氧化碳 --- 10% 至 60%· 二氧化碳 --- 1% 至 3%· 颗粒物 --- 高达 60%· 烟 --- 基本上消除经济效益:·具竞争力的价格--乳化柴油不单提高制造商/分销商的边际利润,更由于政府的税务优惠或奖励政策,最终用户可以享受到成本上的节约。
乳化燃料油分析报告一、什么是乳化燃料油水是极性化合物,石油产品是由非极性化合物烃类组成,水和油是不互溶的。
要使二者成为混合液,需借助外力或加入表面活性剂,使其中一相液体均匀分散在另一相液体中,成为为相对稳定的混合液,在精细化学中,这种混合液称之为乳化液,由燃料油(煤油、汽油、柴油、重油、渣油)和水组成的乳化液就被称为乳化燃料。
乳化燃料油与通常的乳化液一样,也分为油包水型(W/O)和水包油型(O/W),在油包水型乳化燃料油中,水是以分散相均匀地悬浮在油中,被称为分散相或内相,燃料油则包在水珠的外层,成为连续相或外相。
我们目前所见的大多数乳化燃料油都为油包水型乳化燃料。
水包油型乳化燃料油正好与油包水型相反,由委内瑞拉石油公司开发的奥里油就属于水包油型乳化燃料油。
二、乳化燃料节能降污原理乳化燃料燃烧是个复杂的过程,对其节能降污机理较为成熟的解释是乳化燃料燃烧中存在的“微爆”现象和水煤气反应,也就是从燃烧的物理过程和化学过程来解释。
乳化油燃烧过程的物理作用即所谓“微爆”作用(如下图所示)。
油包水型分子基团,油是连续相,水是分散相。
由于油的沸点比水高,受热后水总是先达到沸点而蒸发或沸腾。
当油滴中的压力超过油的表面张力及环境压力之和时,水蒸气将冲破油膜的阻力使油滴发生爆炸,形成更细小的油滴,这就是所说的微爆或称二次雾化。
爆炸后的细小油滴与空气更加充分混合,油液燃烧的更完全,使内燃机或油炉达到节能之效果。
化学作用即水煤气反应。
在高温条件下,部分水分子与未完全燃烧的炽热的炭粒发生水煤气反应,形成可燃性气体,反应式如下:C+H2O CO+H2C+2H2O CO2+2H2CO+H2O CO2+H22H2+O22H2O上述这些反应,减少了火焰中的炭粒,提高了油的燃烧程度,改善了燃烧状况,提高了油的燃烧效率。
在缺氧条件下,燃料中由于高温裂解产生的碳粒子,能与水蒸气反应生成CO和H2,使碳粒子能充分燃烧,提高了燃烧率,降低了排烟中的烟尘含量,另一方面由于乳化水的蒸发作用,均衡了燃烧时的温度场,从而抑制了NOx的形成。
乳化重油在高速柴油机上的试验研究的开题报告
一、选题背景
乳化重油是一种将重油和水通过乳化剂混合而成的燃料,具有较高的环保性和经济性优势。
由于其颗粒细小、燃烧效率高,使其在航运、地面交通等行业得到广泛应用。
然而,由于其传输和燃烧的特殊性质,乳化重油在高速柴油机上的应用还需要进
一步研究。
二、研究目的
本次试验旨在研究乳化重油在高速柴油机上的燃烧稳定性、排放特性以及节能性等方面的影响,为该燃料在高速柴油机上的应用提供科学依据。
三、研究内容
1. 选取某品牌高速柴油机作为试验对象,比较乳化重油和传统重油在该机型上的燃烧性能和排放特性的区别。
2. 调整乳化剂的种类、浓度、稳定性等因素对乳化重油在高速柴油机上的燃烧稳定性和排放特性的影响进行分析和实验验证。
3. 通过实验对比,分析乳化重油的节能性能。
四、研究方法
1. 实验法:选取某品牌高速柴油机作为试验对象,通过燃烧稳定性实验、排放测试和节能实验等手段进行研究。
2. 数据分析法:通过数据处理与分析得出乳化重油在高速柴油机上的燃烧稳定性、排放特性以及节能性等数据,为研究提供科学依据。
五、研究预期结果
通过该研究,预计得出乳化重油在高速柴油机上的燃烧稳定性、排放特性以及节能性等方面的影响和差异数据,掌握乳化重油在高速柴油机上的应用规律。
同时,对
于乳化剂的浓度、种类、稳定性等因素对于乳化重油在高速柴油机上的燃烧稳定性和
排放特性的调整提供参考建议。
六、结论
本次试验结果将为乳化重油在高速柴油机上的应用提供关键参考数据,同时为后续乳化重油的燃烧性能提供指导建议,推动该燃料更广泛地应用于航运、地面交通等行业,并倡导绿色环保的理念。
乳化柴油分流液的酸化性能实验研究陈霄;吴广;周泓宇;龚云蕾;吴绍伟【摘要】针对文昌油田群高含水油井笼统酸化后含水率突升的问题,通过室内实验研究确定乳化柴油的配方.考察不同油水比下乳化柴油的黏度、粒径分布、流变性,根据实验结果优选乳化柴油的油水比.通过单/并联岩芯实验,观察乳化柴油对高渗岩心的封堵性,封堵后渗透率下降83%以上.将乳化柴油作为酸化分流液并应用于现场酸化作业中,效果显著,日增油量有所提升,含水率保持不变.【期刊名称】《重庆科技学院学报(自然科学版)》【年(卷),期】2018(020)006【总页数】4页(P51-54)【关键词】非均质储层;乳化柴油;分流液;分流酸化;封堵能力【作者】陈霄;吴广;周泓宇;龚云蕾;吴绍伟【作者单位】中海石油(中国)有限公司湛江分公司,广东湛江 524057;中海油田服务股份有限公司,天津 200459;中海石油(中国)有限公司湛江分公司,广东湛江524057;中海石油(中国)有限公司湛江分公司,广东湛江 524057;中海石油(中国)有限公司湛江分公司,广东湛江 524057【正文语种】中文【中图分类】TE254南海西部文昌油田群属于海相沉积砂岩储层,边底水能量充足,储层属于中—高孔渗且非均质性强。
开发初期单井产量较高,开发中期多通过笼统酸化措施实现增产,但酸化后的含水率上升问题一直未得到有效解决。
同时,在开发过程中,高渗储层的孔道逐渐被水淹没,而低渗储层的产量却始终得不到有效释放。
笼统酸化时酸液沿大孔道或高渗带指进,很难进入并有效地改造低渗部分,易导致高渗层被过度改造或含水率进一步上升,而低渗储层的产能却并未得到有效释放[1]。
目前常用的化学分流技术包括暂堵微粒、泡沫分流、自转向酸等[2-5]。
乳化柴油具有黏度可调、稳定性高、无腐蚀性、现场易配制等特点,近年来逐渐被应用于分流酸化技术中[6]。
本次研究将重点分析乳化柴油在不同油水比、不同温度下的黏度特征,乳状液滴的粒径分布及其对天然岩心的封堵能力[7]。
DOI :10.11883/bzycj-2017-0457新型微乳化柴油抛撒和云雾爆炸实验及其抑爆性能评估*黄 勇1,2,解立峰1,张红伟2,鲁长波3,安高军3,熊春华3,陈 群4(1. 南京理工大学化工学院,江苏 南京 210094;2. 常州大学环境与安全工程学院,江苏 常州 213164;3. 中央军委后勤保障部油料研究所,北京 102300;4. 常州大学石油化工学院,江苏 常州 213164)摘要: 为掌握新型微乳化柴油的抑爆性能和机理,开展了−10#柴油、普通微乳化柴油和新型微乳化柴油抛撒和云雾爆炸实验。
采用灰色关联分析法,对柴油样品云雾爆炸火球的表面最高温度时的平均温度、高温(高于1 273.15 K )持续时间、火球最大截面积、火球辐射度等特征参数进行定量计算并评估其爆炸威力,又运用液体燃料抛撒和成像系统,研究柴油样品在激波及其高速气流作用下的抛撒雾化现象及其抑爆机理。
结果表明:新型微乳化柴油的抛撒云雾径向扩展半径和云雾爆炸火球特征参数均明显小于−10#柴油、普通微乳化柴油,如在含水质量分数为5%的乳化柴油中分别添加质量分数为0.2%和0.4%的高分子聚合物防雾剂,形成的新型微乳化柴油的火球表面最高平均温度比−10#柴油分别低 296.90 和 336.90 K ,高温持续时间比−10#柴油分别少 94 和 234 ms ;火球最大截面积也分别只有−10#柴油的60.10%、53.53%;新型微乳化柴油的爆炸威力最小,抑爆性能最好,其次是普通微乳化柴油和−10#柴油;微乳化柴油的水分质量分数在15%以下时,多增加10%的水与添加0.2%防雾剂的抑爆效果相当;新型微乳化柴油抑爆性能较好的主要原因是柴油中添加防雾剂使其液滴黏弹性增大,在高速气流剪切作用不易破碎、雾化,液滴分散效果差。
关键词: 新型微乳化柴油;抛撒;爆炸火球;抑爆性能中图分类号: O383 国标学科代码: 13035 文献标志码: A柴油被广泛用作为大型车辆、舰船和武器装备的燃料,一旦车辆发生交通事故或者装甲装备遭受炮火袭击,都可能会引爆柴油造成人员伤亡[1]。
乳化柴油实验摘要: 本文首先研究了近期国内外能源和燃油紧缺问题,其后介绍了柴油乳化的基本原理和技术。
实验主要讨论柴油掺水的乳化柴油技术,讨论的重点在于筛选乳化柴油的工艺,并进行在单一搅拌速率的工艺条件下控制W/O型乳化柴油配制中水和乳化剂用量和搅拌时间的试验。
然后对W/O型乳化柴油进行对稳定性、黏度和燃烧性能进行了研究,并采用乙醇对W/O 型乳化柴油性能进行改进并对实验结果进行了分析讨论。
关键词: 乳化剂;柴油;乳化;乳化柴油Research of Emulsion of Diesel OilAbstract This paper is about the latest problem of the energy in home and abroad and the recent shortage of diesel oil. And then the basic principles and technology of diesel emulsion was summarized.The experiment mainly discussed the diesel technology stable water , the core of discussions is the screening techniques of emulsified diesel, stirring in a single rate and under the conditions of controlling the consumption of water and emulsifier and stirring time to obtain the influences to the W/O type emulsified diesel . Then studied the stability, viscosity and combustion properties of the W/O type emulsified diesel, and then analyzed and discussed the experimental results, about W/O type emulsified diesel performance improvement after the use of alcohol in the experiment.Key words:emulsifier;diesel oil;emulsion;emulsifying diesel oil1引言1.1 乳化柴油的现状在二十一世纪初期,随着国民和国际经济的快速增长,国内和国际对能源的需求正以惊人的速度激增,尤其是柴油需求更是与日巨增,如此巨大需求对日益枯竭的石油资源带来了巨大的压力。
不同比例的生物柴油乳化试验研究作者:吴则旭姚明傲来源:《魅力中国》2016年第19期摘要:多次试验生物柴油乳化和制备乳化剂,用显微镜觀察乳化效果,测量颗粒直径大小,进行燃烧排放试验研究分析,选出较好的生物柴油乳化比例。
关键词:生物柴油乳化试验颗粒大小前言近3年以来我国雾霾天气日益加重,其重要原因就是越来越多的汽车排放有害气体。
多项科学研究表明,使用代用燃料可以有效降低汽车尾气排放[1]。
其中生物柴油可以与柴油在柴油机上混合或直接应用,是一种未来前景非常广阔的代用燃料[2]。
为了解决柴油机燃用生物柴油NOx排放增加的问题,本文中采用乳化技术,制备乳化生物柴油,实现柴油机燃用代用燃料,同时降低碳烟和NOx的目的。
1、乳化试验研究1.1 乳化剂的制备和选择试验目的:观察乳化液从稳定到析出的变化现象,并记录稳定时间,选择稳定性较好的乳化液。
稳定时间越长证明乳化液稳定性越好[3]。
吸取之前研究经验,并查阅相关论文资料,本试验共采用以下10种复配乳化剂,如表1所示。
试验仪器:200ml广口瓶若干;200ml烧杯若干;100ml量筒若干;温度计10只;玻璃棒10只;10ml滴管若干。
试验方法:10种乳化液配比共做10次试验,规定各试验生物柴油体积都是40ml;设定水浴加热温度为35℃,把装有生物柴油的烧杯静置在温水中加热15分钟;把10种配比乳化剂与生物柴油倒入200ml烧杯中,进行搅拌乳化,觀察10种乳化液开始分层的时间并记录整理。
由上表可知,6h稳定时间后,甲醇+乙醇乳化液仍没有明显分层现象,乳化效果较好。
对比分析原因:甲醇本身氧的比例高达50%,汽化潜热值是柴油3.6倍[4],燃烧时可以有效减少炭烟和NOx排放;乙醇作为优良的燃料和助乳剂,能促进油-水界面融合,大幅增加乳化液的稳定性。
由以上得知,在生物柴油里添加醇类燃料,可以提高乳化液稳定性,又从国内外的研究表明,在生物柴油-乙醇体系中添加一部分水,使生物柴油燃烧更充分。
1、实验目的1.1 学会柴油微乳体系拟三元相图的绘制与研究方法,并根据相图,选择合适的柴油微乳液进行燃烧性能测定。
1.2 通过氧弹卡计进行燃烧性能的测定,比较柴油、微乳柴油燃烧时其燃烧效率的不同,对微乳柴油的经济与环保价值进行评价。
1.3通过对乳化柴油的燃烧热的测定,掌握燃烧热的定义,学会测定物质燃烧热的方法,了解恒压燃烧热与恒容燃烧热的差别。
1.4 了解氧弹卡计的主要部件的作用,掌握氧弹卡计的量热技术;熟悉雷诺图解法校正温度改变值的方法。
2、实验原理2.1实验背景知识Schulman 在1959 年首次报道微乳液以来,微乳的理论和应用研究获得了迅速发展。
1985 年,Shah 定义微乳液为两种互不相溶的液体在表面活性剂界面膜的作用下生成的热力学稳定、各向同性的透明的分散体系[1]。
由于微乳液能形成超低界面张力,具有高稳定性、大增溶量、以及粒径小等特殊性质,已引起人们广泛关注[2]。
燃料中掺水, 能提高油料的燃烧效率, 降低燃烧废气中有害气体的含量[3]。
燃油掺水是一个既古老又新兴的课题。
早在一百多年前就有人使用掺水燃油。
由于油、水在表面活性剂作用下形成的W/O或O/W乳液在加热燃烧时水蒸气受热膨胀后能够产生微爆,使得燃油二次雾化燃烧更加充分,提高了燃烧效率,大大降低了废气中的有害气体的含量。
但是由于一般的乳状液稳定时间短,易分层,使得这一技术的应川受到了很大的限制[4]。
微乳燃料的制备比较简单,只需要把油、水、表面活性剂、助表面活性剂按合适的比例混合在一起就可以自发形成稳定的微乳燃料。
微乳燃油可长期稳定,不分层,且制备简单, 并能使燃烧更完全,燃烧效率高,节油率达5 %~15 % ,排气温度下降20 %~60 % ,烟度下降40 %~77 % ,NO x和CO 排放量降低25 %,在节能环保和经济效益上都有较为可观的效果,已成为世界各国竞相开发的热点。
随着近年来对两亲分子有序组合体研究的不断深入,微乳液理论在乳化燃油领域取得了突破性进展,开发透明、稳定、性能与原燃油差不多的微乳液燃料成为了研究热点。
1、实验目的1.1 学会柴油微乳体系拟三元相图的绘制与研究方法,并根据相图,选择合适的柴油微乳液进行燃烧性能测定。
1.2 通过氧弹卡计进行燃烧性能的测定,比较柴油、微乳柴油燃烧时其燃烧效率的不同,对微乳柴油的经济与环保价值进行评价。
1.3通过对乳化柴油的燃烧热的测定,掌握燃烧热的定义,学会测定物质燃烧热的方法,了解恒压燃烧热与恒容燃烧热的差别。
1.4 了解氧弹卡计的主要部件的作用,掌握氧弹卡计的量热技术;熟悉雷诺图解法校正温度改变值的方法。
2、实验原理2.1实验背景知识Schulman 在1959 年首次报道微乳液以来,微乳的理论和应用研究获得了迅速发展。
1985 年,Shah 定义微乳液为两种互不相溶的液体在表面活性剂界面膜的作用下生成的热力学稳定、各向同性的透明的分散体系[1]。
由于微乳液能形成超低界面张力,具有高稳定性、大增溶量、以及粒径小等特殊性质,已引起人们广泛关注[2]。
燃料中掺水, 能提高油料的燃烧效率, 降低燃烧废气中有害气体的含量[3]。
燃油掺水是一个既古老又新兴的课题。
早在一百多年前就有人使用掺水燃油。
由于油、水在表面活性剂作用下形成的W/O或O/W乳液在加热燃烧时水蒸气受热膨胀后能够产生微爆,使得燃油二次雾化燃烧更加充分,提高了燃烧效率,大大降低了废气中的有害气体的含量。
但是由于一般的乳状液稳定时间短,易分层,使得这一技术的应川受到了很大的限制[4]。
微乳燃料的制备比较简单,只需要把油、水、表面活性剂、助表面活性剂按合适的比例混合在一起就可以自发形成稳定的微乳燃料。
微乳燃油可长期稳定,不分层,且制备简单, 并能使燃烧更完全,燃烧效率高,节油率达5 %~15 % ,排气温度下降20 %~60 % ,烟度下降40 %~77 % ,NO x和CO 排放量降低25 %,在节能环保和经济效益上都有较为可观的效果,已成为世界各国竞相开发的热点。
随着近年来对两亲分子有序组合体研究的不断深入,微乳液理论在乳化燃油领域取得了突破性进展,开发透明、稳定、性能与原燃油差不多的微乳液燃料成为了研究热点。
随着经济快速发展与人口的急剧增长, 80% ~90%的空气污染来自交通工具排放的尾气,柴油不完全燃烧造成的环境污染越来越受到人们的关注,根治大气污染已成为人类面临的重要课题。
另一方面,由于中国未来石油供需缺口将越来越大,进口量呈逐步增大的趋势,而且天然石油的储备是有限的,人类面临日益严峻的能源危机。
因此,如何提高燃油燃烧效率和减少环境污染,研究新型节油防污染技术,包括最为人们青睐并具有节能效率高,减少尾气污染的燃料乳化以及微乳化技术,己成为人们十分关心的问题。
本着节能和环保两个根本宗旨,各国都在加紧对微乳燃油性能的研究。
微乳柴油的性能决定着它的应用,研究微乳柴油的性能就显得十分重要[5]。
2.2微乳柴油与燃烧减排机理乳化燃油与通常的乳状液一样,也分为油包水型(W/o)和水包油型(O/W),在油包水型乳化燃料油中,水是以分散相均匀地悬浮在油中,被称为分散相或内相,燃料油则包在水珠的外层,被称为连续相或外相。
我们目前所见的大多数乳化燃料油都为油包水型乳化燃料。
乳化燃料燃烧是个复杂的过程,对其节能降污机理较为成熟的解释是乳化燃料中存在的“微爆”现象和水煤气反应,也就是从燃料的物理过程和化学过程来解释。
一些燃烧机理介绍如下:2.2.1物理作用—“微爆现象”二十世纪六十年代初,前苏联科学家伊万诺夫等人发现了乳化燃料的“微爆”现象,从而为乳化燃料的节能、降污机理提供了理论基础。
油包水型分子基团,油是连续相,水是分散相,由于水沸点(100℃)低于燃油沸点(130℃以上)。
在气缸温度急剧升高时,水微粒先沸腾气化,体积在万分之一秒内瞬间增大了1500倍左右,其气化膨胀相当于一次极小的爆炸。
当油滴中的压力超过油的表面张力及环境压力之和时。
水蒸气产生的巨大压力将冲破油膜的束缚,无数小液珠产生的阻力使油滴发生爆炸,油雾化成更细小的油滴。
小油滴与空气接触的比表面积成倍提高,形成二次燃烧的雾化条件,爆炸后的细小油滴更易燃烧,其燃烧表面比纯燃油增加了104倍左右。
因此,减少了物理上的不完全燃烧和排烟损失,提高了燃烧效率,使内燃机达到节能的效果。
微爆产生的为数甚多的爆炸波,冲破了包围火焰面的CO2,N2惰性气体抑制层,促使空气形成强烈的紊流,紊流使空气、燃油蒸气在燃烧室内做更均匀的分布,同时使温度场也变得更加均匀,从而加快了燃烧速度,减少了后燃现象,避免了燃烧区间局部高温而产生的热解和裂化,使燃烧完全。
2.2.2化学作用—“水煤气反应”在缺氧条件下,油燃烧产生热裂解,形成难以燃烧的碳,使排烟冒黑烟,而在水煤气存在时,水微粒高速汽化中所含的氧与碳粒子充分结合,并被完全燃烧而形成二氧化碳,从而大大提高喷燃雾化效果,使发动机燃烧效率提高,达到增强发动机动力,节省燃料的效果。
C + H2O = C0 + H2C + 2 H2O = CO2+2H2。
CO+ H2O = CO2+ H2H 2 + 02= H2O上述反应过程中,提高了乳化燃料的燃烧率,降低了排烟中的烟尘含量。
同时由于乳化水的蒸发作用,均衡了燃烧时的温度场,从而抑制了NOx的形成,达到节能环保的目的。
2.2.3掺混效应微爆产生的爆炸波冲破了包围在火焰周围的CO2、N2惰性气体层,促使空气形成强烈的紊流,紊流使空气和柴油蒸汽在燃烧室内做更均匀的分布,同时温度场也变得更加均匀,从而加快了燃烧速度,减少了后燃现象,避免了在燃烧区间的局部高温而产生的热解和裂化,使燃烧完全。
2.2.4抑制NO的生成NO的生成主要有三个重要途径:(1)由空气中的NO2在高温区反应生成的热反应NOx;(2)火焰面上生成的活性NOx;③燃料中氮元素生成的燃料NOx。
因此,生成的NO可分为温度型NOx和燃料型NOx,其中以温度型NOx为主。
NOx是柴油机的主要有害排放物。
它是空气在气缸内燃烧的高温条件下氧和氮反应而产生的。
其中以NO为主。
单缸发动机燃用乳化柴油的NOx排放比纯柴油低。
这是由于乳化柴油中的水蒸汽稀释燃气与降低燃烧的最高温度, 从而抑制NOx的生成。
柴油掺水乳化燃烧能有效地降低柴油机的排放浓度,这是极其有意义的[6]。
影响NO生成的因素有:可燃混合物的组成,燃料在反应区停留时间,燃料温度和工作压力等。
根据,NOx的生成速度为:d[NOx]/dt = A·exp[-Ea /RT]·[N2]·[02]1/2可见无论在内燃机或是其它燃烧装置上,NOx的生成量与反应温度呈指数关系增加。
如果空燃比高,燃烧强度大,反应温度高,停留时间长,NOx则急剧增加。
燃烧乳化油时,由于水滴汽化、产生微爆均需吸热,由此可降低气缸工作温度,防止燃烧火焰局部高温,缩短燃烧时间,而且油掺水燃烧改善了空气和燃料混合比例,可以用较小的过量空气系数,即[N2]、[02]浓度大幅度降低,从而显著降低温度型和燃料型NOx的生成,抑制NOx对环境的污染。
2.3柴油微乳液的研究对微乳柴油的研究通常包括为微乳燃油配方选择合适的表面活性剂和助表面活性剂,并考察各组分对可增溶水量的影响,确定最佳的微乳燃油配方比例。
然后针对微乳柴油体系,通过相图、电导、NMR、FT-IR、分子光谱、荧光光谱、黏度法、电子显微镜等方式研究微乳液的结构。
并进行燃烧性能与尾气排放量测定。
2.3.1拟三元相图的研究方法研究平衡共存的相数及其组成和相区边界最方便、最有效的工具就是相图,在等温等压下三组分体系的相行为可以采用平面三角形来表示,称为三元相图[7]。
对四组分体系,需要采用立体正四面体。
而四组分以上的体系就无法全面的表示。
通常对四组分或四组分以上体系,采用变量合并法,比如固定某两个组分的配比,使实际独立变量不超过三个,从而仍可用三角相图来表示,这样的相图称为拟三元相图。
柴油微乳液研究可采用拟三元相图的方法研究, 相图绘制简单,根据相图可以初步推测体系的结构状态,能够比较直观地反映微乳体系相的变化,当体系有液晶相、凝胶相出现时,也能对微乳液及其相边界进行直观表示。
在表面活性剂和助剂含量一定情况下,将水往油中滴加,水量很少时为油包水型的球形微乳液,继续滴加水,水与油的比例将会变动,体系发生这样的变化:对称性水的球体一不对称性柱体一层状结构一水为外相的各种结构,最终为对称性油的球体,这是体系内部引力变动而引起各种结构迭变的结果,而研究此方面最方便有效的工具就是相图,因此,表面活性剂相图的研究一直受到人们的关注。
也可以在水量一定的情况下,将复合表面活性剂往油中滴加,通过观察体系相的状态的变化以及体系中物质的重量比,通过拟三元相图的绘制,研究体系中物质的相溶性以及形成微乳液的条件。
2.4 量热法与氧弹量热装置及结果表示方法量热法是热化学研究的基本实验方法,氧弹量热计的基本原理为能量守恒定律。
样品完全燃烧放出的热量促使卡计及周围的介质(本实验用水)温度升高,测量介质燃烧前后体系温度的变化值,可求算该样品的恒容燃烧热。
柴油为石油分馏产品,其中各烃分子所含碳原子数不同,通常以测定柴油燃烧过程中Qv的变化来衡量柴油燃烧效率的大小。
在氧弹量热计与环境没有热交换情况下,其关系式为:m样QV = W(卡计+水)•ΔT – m(点火丝)•Q(点火丝)(1)m样为柴油的质量(克); Qv为柴油的恒容燃烧热(焦/克);W(卡计+水)为氧弹卡计和周围介质的热当量(焦/度),其表示卡计和水温度每升高一度所需要吸收的热量,W(卡计+水)一般通过经恒重的标准物如苯甲酸标定.苯甲酸的恒容燃烧热为26459.6焦/克。
△T为柴油燃烧前后温度的变化值。
m(点火丝)为点火丝的质量,Q(点火丝)为点火丝(铁丝)的恒容燃烧热,其值为6694.4焦/克。
在实验过程中无法完全避免“热漏”现象的存在,因此,实验中必须经过雷诺作图法或计算法校正柴油燃烧前后温度的变化值。
通过(1)式,计算柴油燃烧的恒容热效应Qv(焦/克)。
为了避免平行测定中称量的差异对实验的影响,可通过△T/m(K/g)(单位质量柴油燃烧引起温度的变化值)或Qv/g(J/g)(单位质量柴油燃烧放出的热量),研究柴油和微乳柴油燃烧效率的不同;通过△T/△t(K/s)(即单位时间柴油燃烧时燃烧温度随时间的变化率)研究柴油和微乳柴油燃烧速率的不同。
3、仪器与试剂3.1实验试剂柴油0#、油酸(CP)、十六烷基三甲基溴化铵(CTAB)(CP)、氨水(CP)、正丁醇(CP)3.2实验仪器燃烧热测定装置一套、充氧装置一套、万用电表、5安保险丝、1000ml烧杯、磁力搅拌器、搅拌子(中)、电导率仪、氧气、电子分析天平(每组一台);烧杯(50ml、250ml)、镊子、玻棒、洗耳球、胶头滴管等。