精通开关电源设计
- 格式:pdf
- 大小:2.38 MB
- 文档页数:15
开关电源工程化实用设计指南开关电源是一种非常重要的电力转换设备,它可以将输入的直流电压转换为输出的交流电压,从而满足各种电子设备的供电需求。
开关电源的工程化实用设计是一项涉及到多个领域的技术工作,包括电路设计、磁性元件设计、功率转换器设计、控制器设计和可靠性设计等。
下面将介绍开关电源的工程化实用设计指南。
一、电路设计开关电源的电路设计是整个设计的核心,也是最关键的一步。
在电路设计中,需要考虑以下几个方面的因素:输入和输出电压:开关电源的输入和输出电压需要根据电子设备的实际需求来确定。
在输入电压方面,需要考虑到电网电压的波动和噪声等因素,确保开关电源能够稳定工作。
在输出电压方面,需要根据电子设备的功率和负载特性来进行设计,确保输出的电压能够满足电子设备的供电需求。
功率容量:开关电源的功率容量需要根据电子设备的功率需求来确定。
在确定功率容量时,需要考虑到开关电源的最大负载和可能出现的峰值负载等因素,确保开关电源的功率容量足够且不会出现过载或损坏的情况。
电路拓扑:开关电源的电路拓扑是指其基本电路结构。
根据不同的需求,可以选择不同的电路拓扑来进行设计。
常用的电路拓扑包括BUCK型、BOOST型、BUCK-BOOST型等,需要根据实际情况来选择合适的电路拓扑。
控制方式:开关电源的控制方式是指如何控制开关管的导通和关断,以达到稳定输出电压的目的。
常用的控制方式包括脉冲宽度调制(PWM)、脉冲频率调制(PFM)和电流模式控制等,需要根据实际情况来选择合适的控制方式。
二、磁性元件设计开关电源中的磁性元件主要包括电感和变压器,它们在功率转换器中起到重要的作用。
在磁性元件设计中,需要考虑以下几个方面的因素:磁芯材料:磁芯材料的选择是磁性元件设计的关键。
常用的磁芯材料包括铁氧体、坡莫合金和非晶合金等,需要根据实际情况来选择合适的磁芯材料。
线圈设计:线圈设计是磁性元件设计的另一个关键因素。
在电感设计中,需要考虑到线圈的匝数、线径和绕制方式等因素,以确保电感能够满足开关电源的负载需求。
精通开关电源设计的重要指南与技术原理开关电源是一种常见的电源设计方案,它能够将交流电转换为稳定的直流电,并广泛应用于各种电子设备中。
精通开关电源设计对于电子工程师来说非常重要,能够确保电源稳定性、效率和可靠性。
本文将为您介绍开关电源设计的重要指南和技术原理。
首先,了解开关电源的基本原理是掌握开关电源设计的关键。
开关电源主要由四个基本组成部分组成:输入滤波电路、整流电路、开关转换电路和输出滤波电路。
输入滤波电路用于去除输入交流电的噪声和干扰;整流电路将交流电转换为直流电;开关转换电路通过开关器件的开关动作实现电流的调整和电压的稳定;输出滤波电路用于去除输出直流电的纹波和噪声。
其次,了解开关电源设计中的关键参数和性能指标也是非常重要的。
其中,输出电压稳定性、负载调整率、效率、纹波和噪声等是评估开关电源质量的重要指标。
良好的输出电压稳定性可以确保电子设备正常工作;负载调整率描述了开关电源在负载变化时的稳定性;效率是指开关电源转换输入电能为输出电能的能力,高效率可以减少能量损耗;纹波和噪声是开关电源输出直流电中的波动和干扰,应尽量减小。
在开关电源设计中,选择合适的开关器件和控制策略也是至关重要的。
开关管、整流二极管等器件的选择需要考虑其耐压、导通压降和开通速度等因素。
对于控制策略,常见的有连续导通模式和间断导通模式,选择合适的模式可以在保证稳定性的前提下提高效率。
此外,良好的散热设计也是开关电源设计中的重要环节。
高功率的开关电源在工作过程中会产生大量的热量,正确的散热设计可以确保温度不过高,延长器件的使用寿命。
另外,开关电源设计过程中应注重EMC(电磁兼容性)的考虑。
开关电源会在工作过程中产生较大的电磁干扰,因此需要采取合适的措施来减小干扰,例如采用合适的滤波电路、屏蔽罩等。
最后,不断学习和积累实践经验也是精通开关电源设计的关键。
学习相关的理论知识和实践经验,参与实际项目的设计和调试都可以提高开关电源设计的能力。
精通开关电源设计
开关电源是一种常见的电源设计,它能够将输入的电能转换为需要的输出电能。
精通开关电源设计需要具备以下几个方面的知识和技能。
首先,了解开关电源的工作原理是非常重要的。
开关电源基本上由输入变压器、整流电路、滤波电路、开关电源控制器和输出调节器等部分组成。
输入变压器将交流电转换为中间直流电压,经整流电路和滤波电路后得到平稳的直流电源。
开关电源控制器通过控制开关管的通断频率和占空比来调节输出电压和电流。
输出调节器对输出电流进行过流保护和稳压稳流调节。
其次,熟悉开关电源的常见拓扑结构,如Boost、Buck、Buck-Boost等。
对于不同的应用场景和要求,选择适合的拓扑结构非常重要。
例如,Boost拓扑适合将低电压升压到高电压的场景,而Buck拓扑适合将高电压降压到低电压的场景。
再次,掌握开关电源的关键器件选型和参数计算。
开关电源设计中常用的器件有开关管、二极管、电感和电容等。
选型合适的器件能够提高开关电源的效率和可靠性。
同时,针对具体应用场景,需要计算和确定各个器件的参数,如开关管的额定电压和电流、电感的电感值和电阻、电容的容值等。
最后,掌握开关电源的故障排除和调试技巧。
由于开关电源涉及到高频开关和复杂控制电路,容易出现故障。
了解常见的故障原因和解决办法,并掌握使用示波器、万用表等仪器进行调试和测量的技巧,能够快速定位故障点并进行修复。
总之,精通开关电源设计需要具备对其工作原理的深入理解,熟悉拓扑结构和器件选型,能够进行参数计算和故障排除。
通过不断学习和实践,提高开关电源设计的技能和水平。
开关电源设计(精通型)一、开关电源基本原理及分类1. 基本原理开关电源的工作原理是通过控制开关器件的导通与关断,实现电能的高效转换。
它主要由输入整流滤波电路、开关变压器、输出整流滤波电路和控制电路组成。
在开关电源中,开关器件将输入的交流电压转换为高频脉冲电压,通过开关变压器实现电压的升降,经过输出整流滤波电路,得到稳定的直流电压。
2. 分类(1)PWM(脉冲宽度调制)型开关电源:通过调节脉冲宽度来控制输出电压,具有高效、高精度等特点。
(2)PFM(脉冲频率调制)型开关电源:通过调节脉冲频率来控制输出电压,适用于负载变化较大的场合。
二、开关电源关键技术与设计要点1. 高频变压器设计(1)选用合适的磁芯材料,保证变压器在高频工作时的磁通密度不超过饱和磁通密度。
(2)合理设计变压器的绕组匝数比,以满足输出电压和电流的要求。
(3)考虑变压器损耗,包括铜损、铁损和杂散损耗,确保变压器具有较高的效率。
2. 开关器件的选择与应用(1)开关频率:根据开关电源的设计要求,选择合适的开关频率。
(2)电压和电流等级:确保开关器件能承受最大电压和电流。
(3)功率损耗:选择低损耗的开关器件,提高开关电源的效率。
(4)驱动方式:根据开关器件的特点,选择合适的驱动电路。
3. 控制电路设计(1)稳定性:确保控制电路在各种工况下都能稳定工作。
(2)精度:提高控制电路的采样精度,降低输出电压的波动。
(3)保护功能:设置过压、过流、短路等保护功能,提高开关电源的可靠性。
三、开关电源设计实例分析1. 确定设计指标输入电压:AC 85265V输出电压:DC 24V输出电流:4.17A效率:≥90%2. 高频变压器设计选用EE型磁芯,计算磁芯尺寸、绕组匝数和线径。
3. 开关器件选择根据设计指标,选择一款适合的MOSFET作为开关器件。
4. 控制电路设计采用UC3842作为控制芯片,设计控制电路,实现开关电源的稳压输出。
5. 实验验证搭建实验平台,对设计的开关电源进行测试,验证其性能指标是否符合要求。
一步一步精通单端反激式开关电源设计目录■系统应用需求 (3)■步骤1_确定应用需求 (3)■步骤2_根据应用需求选择反馈电路和偏置电压VB (4)■步骤3_确定最小和最大直流输入电压VMIN和VMAX,并基于输入电压和PO选择输入存储电容CIN的容量 (6)3.1、选择输入存储电容CIN的容量 (6)3.2、确定最小和最大直流输入电压VMIN和VMAX (8)■步骤4_输入整流桥的选择 (9)■步骤5_确定发射的输出电压VOR以及钳位稳压管电压VCLO (10)■步骤6_对应相应的工作模式及电流波形设定电流波形参数KP:当KP≤1时,KP=KRP;当KP≥1时,KP=KDP (13)■步骤7_根据VMIN和VOR确定DMAX (15)■步骤8_计算初级峰值电流IP、输入平均电流IAVG和初级RMS电流IRMS (15)■步骤9_基于AC输入电压,VO、PO以及效率选定MOS管芯片 (16)■步骤10_设定外部限流点降低的ILIMIT降低因数KI (16)■步骤11_通过IP和ILIMIT的比较验证MOS芯片选择的正确性 (17)■步骤12_计算功率开关管热阻选择散热片验证MOS芯片选择的正确性 (17)■步骤13_计算初级电感量LP (17)■步骤14_选择磁芯和骨架,再从磁芯和骨架的数据手册中得到 , , ,和BW的参考值 (18)■步骤15_设定初级绕组的层数L以及次级绕组圈数 (可能需要经过迭代的过程) (24)■步骤16_计算次级绕组圈数 以及偏置绕组圈数 (24)■步骤17_确定初级绕组线径参数OD、DIA、AWG (25)■步骤18_步骤23‐检查 、 以及 。
如果有必要可以通过改变L、 或 或磁芯/骨架的方法对其进行迭代,知道满足规定的范围 (25)■步骤24 –确认 ≤4200高斯。
如有必要,减小限流点降低因数 (26)■步骤25 –计算次级峰值电流 (26)■步骤26 –计算次级RMS电流 (26)■步骤27 –确定次级绕组线径参数 、 、 (26)■步骤28 –确定输出电容的纹波电流 (27)■步骤29 –确定次级及偏置绕组的最大峰值反向电压 , (27)■步骤30 –参照表8,基于VOR及输出类型选择初级钳位电路中使用的钳位稳压管以及阻断二极管 (27)■步骤31 –根据表9选择输出整流管 (27)■步骤32 –输出电容的选择 (28)■步骤33 –后级滤波器电感L和电容C的选择 (29)■步骤34 –从表10选择偏置绕组的整流管 (29)■步骤35 –偏置绕组电容的选择 (29)■步骤36 –控制极引脚电容及串联电阻的选择 (29)■步骤37 –根据图3、4、5及6中所示的参考反馈电路的类型,选用相应的反馈电路元件 (29)■步骤38 –环路动态补偿设计 (30)■系统应用需求交流输入最小电压:VACMIN,单位V交流输入最大电压:VACMAX,单位V交流输入电压频率:FL,单位HZ开关频率:FS,单位KHZ输出电压:Vo,单位V输出电流:IO,单位A电源效率:η负载调整率:SI损耗分配因子:Z空载功率损耗:P_NO_LOAD,单位MW输出纹波电压:VRIPPLE,单位MV■步骤1_确定应用需求●交流输入最小电压:VACMIN●交流输入最大电压:VACMAX输入(VAC ) VACMIN(V) VACMAX(V)宽电压范围 85 265 230或115倍压整流 195 265自定义 自定义 自定义●交流输入电压频率:FL50HZ或者60HZ,详见世界电网频率表。
开关电源设计三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dtdI LV ==TI L∆∆,推出ΔI =V ×ΔT/L2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间t OFF3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。
那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD→t OFF =(1-D )/f电流纹波率r P51 52r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面:A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。
开关电源工作原理与设计1. 概述开关电源是一种将电能从一种形式转换成另一种形式的电源装置。
它通过开关器件(如晶体管、MOSFET等)来精确控制电路的通断,从而实现对电能的高效调节和转换。
本文将详细介绍开关电源的工作原理和设计。
2. 开关电源工作原理2.1 输入电路开关电源的输入电路通常包括输入滤波电路、整流电路和功率因数校正电路。
-输入滤波电路用于去除输入电源中的高频噪声和杂散信号。
- 整流电路将交流输入转换为直流信号,常见的整流方式有单相整流桥和三相整流桥。
- 功率因数校正电路主要用于改善电源对电网的功率因数,提高电能的利用率。
2.2 PFC控制电路功率因数校正(PFC)是开关电源中的一个重要环节,通过控制输入电流和输入电压之间的相位关系,提高整体效率和功率因数。
常见的PFC控制技术有边界模式控制和谐振模式控制。
2.3 DC-DC变换器DC-DC变换器是开关电源的核心部分,它将输入的直流电压转换为需要的输出电压。
常见的DC-DC变换器包括降压、升压、降压升压和反激式变换器。
2.4 控制电路开关电源中的控制电路主要负责检测输出电压和输出电流,并通过反馈回路对开关器件的导通和断开进行精确控制。
常见的控制技术有电压模式控制和电流模式控制。
3. 开关电源的设计要点3.1 选型与设计在开关电源的设计过程中,需要根据实际需求选择合适的开关器件、电容和电感等元件,并进行适当的参数计算和仿真分析,以保证整体性能和稳定性。
3.2 效率和功率因数开关电源的效率和功率因数是评估其性能的重要指标。
通过合理的拓扑结构设计、优化控制算法和合适的滤波电路,可以提高开关电源的效率和功率因数。
3.3 温度管理由于开关电源中包含许多功率器件,温度管理是开关电源设计中需要重点考虑的问题。
合理的散热设计和温度保护措施可以提高开关电源的可靠性和寿命。
3.4 EMI/EMC设计开关电源可能会产生电磁干扰和接收外部干扰,因此应进行合适的EMI/EMC设计,包括滤波、屏蔽和接地等,以满足相关标准和要求。
精通开关电源设计引用开关电源是现代电器中必不可少的组成部分。
它能够将电力转换为支持人类生活所需的各种形式,例如直流电、交流电、高电压和低电压。
作为科技领域的领先技术之一,能够理解开关电源设计并在实践中精通它是非常必要的。
以下是一些关于精通开关电源设计的有用信息:1. 了解电路基础知识:在深入探究复杂的开关电路设计之前,首先必须掌握基础的电气知识。
必要的数学和物理知识便于正确地理解和计算电路中的各个部分。
2. 学习控制电路:如要设计一个完整的开关电源,一般需要包含一个控制电路。
控制电路有助于实现所需的电压和电流输出。
这部分的电路设计复杂度更高,需要有相关的技能、知识才能正确地设计出符合要求的控制电路。
3. 熟悉开关管:开关电源的主要组成部分之一是开关管。
这个设备可控制电路中能源传输的方式,该部分相当于是开关电源中比较核心的组成部分。
学习如何选择和使用开关管是非常重要的。
4. 研究电感器和电容器的应用:在开关电源中,电容器和电感器是传输能量的好帮手。
选举和应用电容器和电感器的技巧可以帮助电源设计者使用最优的电子元件。
5. 学习双极型和场效应管的区别:双极型和场效应管是开关电源中另外两种基本的电路组件。
学习双极型和场效应管设计应用的不同可以使你在实践中更加容易选购部件。
6. 技巧性地整合以上所有元素:一个综合性好的开关电源设计必须能够整合电路基础知识,控制电路,开关管,电感和电容器,以及场效应和双极型管。
学习这些元素以及它们的相互作用,是您成为精通开关电源设计的关键。
7. 加深理解和实践:最后,当你掌握了以上所有要素并开始实践时,一定要继续加以思考和不断尝试新的设计方案。
经过长时间的实验,分析和总结,你会发现你的设计已经逐渐地走向稳定和智能。
总之,想要成为一名精通开关电源设计的专家,需要通过对电源设计的基础知识的掌握,掌握相关部件的性质,学会设计、选购和整合部件,以及不断深入地进行实践和体验。
不断地积累学习和实践,你就可以成为全方位的开关电源设计专家。
开关电源电路设计要点与调试开关电源是一种将电能转换为特定电压、电流和频率的电力转换装置,具有高效率、体积小、重量轻等优点,广泛应用于各种电子设备中。
开关电源的设计和调试是开发电子产品的重要环节,下面将重点介绍开关电源电路设计要点以及调试方法。
一、开关电源电路设计要点1.选用适当的拓扑结构:开关电源的拓扑结构包括开关正激式(buck)、开关反激式(flyback)、开关共激式(forward)等。
在选择拓扑结构时需要考虑输入电压范围、输出电压需求、功率密度要求、成本等因素。
不同拓扑结构有不同的工作原理和电路参数设计要求,设计时需要综合考虑各种因素才能确定最合适的拓扑结构。
2.合理选择功率元件和元器件:功率元件是开关电源中最关键的部件,直接影响开关电源的效率和可靠性。
常见的功率元件包括MOSFET、IGBT、二极管等。
在选择功率元件时需要考虑电压和电流的要求,以及功率元件的损耗和热散。
此外,还需要合理选择其他元器件,如电感、电容、变压器等,以满足开关电源的稳定性和工作要求。
3.设计稳压控制回路:开关电源的稳压控制回路起到控制输出电压稳定的作用。
常见的稳压控制回路有电压模式控制和电流模式控制。
在设计稳压控制回路时需要考虑输出电压波动范围、响应速度、幅值准确性、稳定性等因素,并根据具体需求选择合适的控制模式和电路结构。
4.进行开关频率和PWM信号设计:开关频率和PWM信号的设计直接影响开关电源的转换效率和输出波形质量。
一般来说,较高的开关频率可以减小电感器件和滤波器的体积,但会增加功率元件开关损耗;较低的开关频率可以降低功率元件开关损耗,但会增加电感器件和滤波器的体积。
同时,PWM信号的设计要考虑到占空比的合理选择、工作频率的稳定性等因素。
5.安全保护和电磁兼容设计:开关电源需要考虑到安全保护和电磁兼容的设计要求。
常见的安全保护设计有过载保护、过温保护、短路保护等,以保证开关电源的正常工作和安全可靠。
电磁兼容设计包括滤波器设计、接地设计等,以减小开关电源对周围电子设备的干扰和抗干扰能力。
从设计到维修,全方位学习开关电源电动知家,一个有价值的公众号!更多新能源电动汽车、无人驾驶最新行业资讯和专业知识,请关注“电动知家”公众号(ev_home)。
所谓开关电源,是指利用现代电子电力技术,控制开关管开通和管段的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制控制IC和MOSFER构成,随着电力电子技术的发展和创新,使得开关电源技术也在不断创新。
接下来给大家介绍一下开关电源设计过程中的一些注意事项,同时还介绍到当开关电源出现问题的时候,如何快速的查找出开关电源的问题所在。
开关电源的布局开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。
当设计高频开关电源时,布局非常重要。
良好的布局可以解决这类电源的许多问题。
因布局而出现的问题,通常在大电流时显现出来,并且在输入和输出电压之间的压差较大时更加明显。
一些主要的问题是在大的输出电流和/或大的输入/输出电压差时调节能力的下降,在输出和开头波形上的额外噪声,以及不稳定性。
应用下面的几个简单原则就可以把这类问题最小化。
电感器开关电源尽量使用低EMI(Electro Magnetic Interference)的带铁氧体闭合磁芯的电感器。
比如圆形的或封闭的E型磁芯。
如果开口磁芯(open cores)具有较低的EMI特性,并且离低功率导线和元件较远,也可以使用。
如果使用开口磁芯,使磁芯的两极与PCB板垂直也是一个好主意。
棒状磁芯(stick cores)通常用来消除大部分不需要的噪声。
反馈尽量使反馈回路远离电感器和噪声源。
还要尽可能使反馈线为直线,并且要粗一点。
有时需要在这两种方案之间折衷一下,但使反馈线远离电感器的EMI和其它噪声源是两者当中更关键的一条。
在PCB 上使反馈线位于与电感器相对的一侧,并且中间用接地层分开。
滤波电容器当使用小容量瓷质输入滤波电容器时,它应该尽可能靠近IC的VIN引脚。
详解一步一步设计开关电源【开篇】针对开关电源很多人觉得难,主要是理论与实践相结合;万事开头难,我在这里只能算抛砖引玉,慢慢讲解如何设计,有任何技术问题可以随时打断,我将尽力来进展解答。
设计一款开关电源并不难,难就难在做精;我也不是一个很精熟的工程师,只能算一个领路人。
希望大家喜欢大家一起努力!!【第一步】开关电源设计的第一步就是看规格,具体的很多人都有接触过;也可以提出来供大家参考,我帮助分析。
我只带大家设计一款宽围输入的,12V2A 的常规隔离开关电源1. 首先确定功率,根据具体要求来选择相应的拓扑构造;这样的一个开关电源多项选择择反激式(flyback) 根本上可以满足要求备注一个,在这里我会更多的选择是经历公式来计算,有需要分析的,可以拿出来再讨论【第二步】2.当我们确定用flyback 拓扑进展设计以后,我们需要选择相应的PWM IC 和MOS 来进展初步的电路原理图设计(sch)无论是选择采用分立式的还是集成的都可以自己考虑。
对里面的计算我还会进展分解分立式:PWM IC 与MOS 是分开的,这种优点是功率可以自由搭配,缺点是设计和调试的周期会变长〔仅从设计角度来说〕集成式:就是将PWM IC 与MOS 集成在一个封装里,省去设计者很多的计算和调试分步,适合于刚入门或快速开发的环境集成式,多是指PWM controller 和power switch 集成在一起的芯片不限定于是PSR 还是SSR【第三步】3. 确定所选择的芯片以后,开场做原理图(sch),在这里我选用ST VIPer53DIP(集成了MOS) 进展设计,原因为何(因为我们是销售这一颗芯片的).设计之前最好都先看一下相应的datasheet,自己确认一下简单的参数无论是选用PI 的集成,或384x 或OB LD 等分立的都需要参考一下datasheet一般datasheet 里都会附有简单的电路原理图,这些原理图是我们的设计依据【第四步】4. 当我们将原理图完成以后,需要确定相应的参数才能进入下一步PCB Layout当然不同的公司不同的流程,我们需要遵守相应的流程,养成一个良好的设计习惯,这一步可能会有初步评估,原理图确认,等等,签核完毕后就可以进展计算一般有芯片厂家提供相关资料【第五步】5. 确定开关频率,选择磁芯确定变压器芯片的频率可以通过外部的RC 来设定,工作频率就等于开关频率,这个外设的功能有利于我们更好的设计开关电源,也可以采取外同步功能。
【我是工程师】一步一步精通单端反激式开关电源设计从事电源产品设计的历程,感触颇深,借着这篇文章主要想总结一下这些年来自己在单端反激式开关电源设计方面的一些经验和技巧,期间走了太多的弯路,也吸取了很多的教训,当然也仍然有很多的不解,由于主题涉及的知识面比较广,内容篇幅也比较多,先来个框架,我们大家一起来一步一步学习反激式开关电源的设计,欢迎大家猛烈拍砖,如有纰漏还请大神们指正~★★★★★★★★一步一步精通单端反激式开关电源设计计算工具V1.8 (持续优化中)★★★★★★★★(391楼)■步骤1_确定应用需求(2楼)_实例(139楼)■步骤2_根据应用需求选择反馈电路和偏置电压(5楼)_实例(140楼)■步骤3_确定最小和最大直流输入电压VMIN和VMAX,并基于输入电压和PO选择输入存储电容CIN的容量(6楼)3.1、选择输入存储电容CIN的容量3.2、确定最小和最大直流输入电压VMIN和VMAX._实例(141楼)■步骤4_输入整流桥的选择(8楼)_实例(145楼)■步骤5_确定反射的输出电压VOR以及钳位稳压管电压VCLO(9楼)_实例(150楼)■步骤6_对应相应的工作模式及电流波形设定电流波形参数KP:当KP≤1时,KP=KRP;当KP≥1时,KP=KDP(15楼)_实例(151楼)■步骤7_根据VMIN和VOR确定DMAX(16楼)_实例(152楼)■步骤8_计算初级峰值电流IP、输入平均电流IAVG和初级RMS电流IRMS(17楼)_实例(153楼)■步骤9_基于AC输入电压,VO、PO以及效率选定MOS管芯片(18楼)_实例(154楼)■步骤10_设定外部限流点降低的ILIMIT降低因数KI(19楼)_实例(155楼)■步骤11_通过IP和ILIMIT的比较验证MOS芯片选择的正确性(20楼)_实例(156楼)■步骤12_计算功率开关管热阻选择散热片验证MOS芯片选择的正确性(21楼)_实例(157楼)■步骤13_计算初级电感量LP(22楼)_实例(158楼)■步骤14_选择磁芯和骨架,再从磁芯和骨架的数据手册中得到Ae,le,AL,和BW的参考值(28楼)_实例(159楼)■步骤15_根据初级电感量大小以及磁芯参数计算初级绕组圈数NP(31楼)_实例(162楼)■步骤16_计算次级绕组圈数NS以及偏置绕组圈数NB(32楼)_实例(163楼)■步骤17_确定初级绕组线径参数OD、DIA、AWG(33楼)_实例(166楼)■步骤18_步骤23-检查BM、CMA以及Lg。
开关电源的原理与设计开关电源是一种高效、稳定并且广泛应用于各种电子设备中的电源供应方式。
本文将探讨开关电源的原理与设计方法,帮助读者理解和应用开关电源技术。
一、开关电源的原理开关电源的工作原理主要基于开关器件(如晶体管或MOSFET)、变压器和滤波电路。
其基本原理如下:1. 输入电压通过整流桥变成直流电压,然后经过输入滤波电路去除大部分的纹波。
2. 直流电压通过PWM(脉宽调制)技术控制开关器件,使其周期性地开关。
3. 开关器件的快速开关与关断导致电压和电流的变化,并通过变压器传导到输出端。
4. 输出电压经过输出滤波电路去除纹波,然后供应给负载。
二、开关电源的设计要素1. 选定开关器件:合适的开关器件应具备低导通电阻、快速开关速度和高耐受电压等特点。
2. 设计变压器:变压器的设计应根据输入输出电压比例、功率需求和开关频率来选择合适的磁芯和线圈参数。
3. 输出滤波:合理设计输出滤波电路以减小输出纹波,采用合适的电容和电感来实现滤波效果。
4. 转换控制电路:PWM技术常用于控制开关器件的开关频率和占空比,需要设计合适的控制电路来实现转换。
三、开关电源的设计步骤1. 确定功率需求:根据需求确定开关电源的输出功率和电压范围。
2. 选择开关器件:根据功率需求选择适合的开关器件,考虑其导通电阻、开关速度和电压容忍度等。
3. 设计变压器:根据输入输出电压比例和功率需求设计变压器的磁芯和线圈参数。
4. 设计滤波电路:根据输出电压的纹波要求确定输出滤波电路的参数,包括电容和电感等。
5. 设计转换控制电路:选择合适的PWM控制芯片或设计自己的控制电路,实现开关器件的控制。
四、开关电源的优点1. 高效性:相比线性电源,开关电源的转换效率更高,能够节省能源并减少功耗。
2. 稳定性:开关电源具有更好的稳定性和调节性能,能够在不同负载条件下保持输出电压的稳定。
3. 体积小巧:开关电源采用高频开关器件和储能元件,使得电源尺寸更小、重量更轻。
开关电源设计过程中的十个经验-设计应用1、整流桥并联在小功率设计中,一般很少用到整流桥的并联,但在某些大功率输出的情况下,不想增添新的器件单个整流桥电流又不满足输入功率要求,就需要用到整流桥的并联了,整流桥的并联不能采用两个整流桥各自整流后直流并联的方式,也就是不能采用图1的方式,因为整流桥没有配对,单纯靠自身的V-I特性,一般是无法均流的,这样就会造成两个整流桥发热不一致。
而采用图2的方式,通常认为在一个封装内的两个二极管是非常匹配的,是可以均分电流的,所以采用图2的方式就可以实现整流桥的并联了。
2、浮地驱动在驱动电路设计中,经常会提到MOS管需要浮地驱动,那么什么是浮地驱动呢?简单的说就是MOS管的S极与控制IC的地不是直接相连的,也就是说不是共地的。
以我们常用的BUCK 电路为例,如下图:控制IC的地一般是与输入电源的地共地的,而MOS管的S极与输入电源的地之间还有一个二极管,所以控制IC的驱动信号不能直接接到MOS管的栅极,而需要额外的驱动电路或驱动IC,比如变压器隔离驱动或类似IR2110这样的带自举电路的驱动芯片。
当然还有另外的方式,那就是采用别的方式给控制IC供电,然后将控制IC的地连接到MOS管的S端,这样就不是浮地了,控制IC的输出就可以直接驱动MOS管。
3、滞环比较器在保护电路中,为了防止保护电路在保护点附近来回震荡,所以一般都增加一定的滞环。
在下图中,1M电阻就起到滞环的作用,如果没有1M电阻,很明显,VF电压达到2.5V运放输出低电平,低于2.5V,运放输出高电平。
增加1M电阻后,在运放输出低电平时,6脚电平为0.7 (2.5-0.7)*1000/1010=2.48V。
当VF低于6脚电平后,7脚输出高电平(如果运放供电15V,7脚输出可按照14V计算)可以计算此时6脚电平为2.5 (14-2.5)*10/1010=2.61V,如果这是一个输入欠压保护电路,且VF为100:1的取样,则当输入电压高于261V,电路正常工作,当电压低于248V才会欠压保护,这样就增强了保护电路的抗干扰能力。
开关电源课程设计一、教学目标本课程的教学目标是让学生掌握开关电源的基本原理、性能、设计和应用。
具体包括:1.知识目标:(1)了解开关电源的基本概念、分类和特点;(2)掌握开关电源的工作原理、电路结构和关键元件;(3)熟悉开关电源的设计方法和应用领域。
2.技能目标:(1)能够分析开关电源的基本性能指标;(2)具备开关电源电路分析和设计的基本能力;(3)学会使用相关仪器仪表进行开关电源的调试和维护。
3.情感态度价值观目标:(1)培养学生对电子技术的兴趣和好奇心,激发学生学习开关电源的积极性;(2)培养学生团队合作精神,提高学生解决实际问题的能力;(3)培养学生具备创新意识,鼓励学生进行发明创造。
二、教学内容本课程的教学内容主要包括以下几个部分:1.开关电源的基本概念、分类和特点;2.开关电源的工作原理、电路结构和关键元件;3.开关电源的设计方法与应用领域;4.开关电源的基本性能指标及其分析方法;5.开关电源电路的调试和维护技巧。
三、教学方法为了实现教学目标,我们将采用以下教学方法:1.讲授法:用于讲解开关电源的基本概念、原理和设计方法;2.讨论法:引导学生探讨开关电源的性能优化和应用领域;3.案例分析法:分析实际开关电源电路,让学生了解开关电源在实际工程中的应用;4.实验法:让学生动手搭建开关电源电路,培养学生的实践操作能力。
四、教学资源为实现教学目标,我们将准备以下教学资源:1.教材:选用权威、实用的开关电源教材,为学生提供系统、全面的知识体系;2.参考书:提供相关领域的参考书籍,丰富学生的知识储备;3.多媒体资料:制作精美的PPT、视频等多媒体资料,提高课堂教学效果;4.实验设备:准备充足的开关电源实验设备,确保每位学生都能动手实践。
五、教学评估本课程的评估方式包括以下几个方面:1.平时表现:评估学生在课堂上的参与程度、提问回答等情况,以考察学生的学习态度和积极性。
2.作业:布置适量的作业,评估学生的知识掌握程度和应用能力。