二次曲线的切线方程
- 格式:doc
- 大小:67.00 KB
- 文档页数:3
万方数据
万方数据
万方数据
万方数据
万方数据
万方数据
二次曲线中点弦、切线、切点弦及双切线方程
作者:胡圣团, HU Sheng-tuan
作者单位:湖南省澧县一中,415500
刊名:
中等数学
英文刊名:HIGH-SCHOOL MATHEMATICS
年,卷(期):2009(8)
被引用次数:1次
1.徐敏亚.徐卫祥对一道复习题的思考——略谈二次曲线的中点弦问题[期刊论文]-中学数学月刊2009(8)
2.关忠二次曲线中点弦方程的求法及其应用[期刊论文]-中学数学研究2006(11)
3.邱家富二次曲线存在中点弦的一个充要条件[期刊论文]-中学数学杂志(高中版)2008(4)
4.李宏凌中点弦公式及其应用[期刊论文]-考试周刊2007(18)
5.孙志祥关于二次曲线的中点弦问题的探究[期刊论文]-河北理科教学研究2005(4)
6.张志强圆锥曲线的中点弦方程及应用[期刊论文]-数学教学研究2001(8)
7.周华生.Zhou Hua-Sheng二次曲线中点弦理论的简化和推广[期刊论文]-河北理科教学研究2006(2)
8.圆锥曲线中点弦方程的求法及应用[期刊论文]-中学数学研究2002(11)
9.梁鹤成"点差法"巧解弦中点问题[期刊论文]-中学生数理化(高二版)2008(11)
10.郝宝铭中点弦问题的解法探究[期刊论文]-中学数学月刊2007(4)
1.薛志坚从切线方程看高师解析几何对中学数学的指导作用[期刊论文]-数学教学研究 2011(04)
引用本文格式:胡圣团.HU Sheng-tuan二次曲线中点弦、切线、切点弦及双切线方程[期刊论文]-中等数学2009(8)。
§5.3 二次曲线的切线一、概念1. 定义1:如果直线与二次曲线交于相互重合的两个点,那么这条直线就叫做二次曲线的切线,这个重合的交点叫做切点;如果直线全部在二次曲线上,我们也称它为二次曲线的切线,直线上的每一个点都可以看作切点.2.定义2:二次曲线F(x, y)=0上满足条件F1(x0, y0)=F2(x0, y0)=0的点(x0, y0)叫做二次曲线的奇异点,简称奇点;二次曲线的非奇异点叫做二次曲线的正常点. 奇点是中心,但中心不一定是奇点.注:(1) 二次曲线有奇点的充要条件是I3= 0,(2) 二次曲线的奇点一定是二次曲线的中心,但反之不然.二、切线求法1.已知切点求切线:设点(x0, y0)是二次曲线F(x, y)=0上的点, 则通过点(x0, y0)的直线方程总可以写成那么此直线成为二次曲线切线的条件,当Φ(X, Y)≠0时∆=[F1(x0, y0)X +F2(x0, y0)Y]2-Φ(X, Y)⋅F(x0, y0)=0.因为点 (x0, y0) 在二次曲线上,所以F(x0, y0)=0;因而上式可化为F1(x0, y0)X +F2(x0, y0)Y=0.当Φ(X, Y)= 0时除了F(x0, y0)=0外,唯一的条件仍然是F1(x0, y0)X +F2(x0, y0)Y=0.(1)如果点(x0, y0)是二次曲线F (x, y)=0的正常点:那么由以上条件得X:Y = F2(x0, y0):(-F1(x0, y0)),因此切线方程为或写成,或 (x-x0)F1(x0, y0)+(y-y0)F2(x0, y0)=0,其中 (x0, y0) 是它的切点;(2)如果点 (x0, y0) 是二次曲线F (x, y)=0的奇异点,即F1(x0, y0)=F2(x0, y0)=0,则切线方向X:Y不能唯一地被确定,从而通过点 (x0, y0)的切线不确定,这时通过点 (x0, y0) 的任何直线都和二次曲线F (x, y)=0相交于相互重合的两点,我们把这样的直线也看成是二次曲线的切线.这样我们就得到定理1:如果点(x0, y0) 是二次曲线F (x, y)= 0的正常点,则通过点(x0, y0)的切线方程是 (x-x0)F1(x0, y0)+(y-y0)F2(x0, y0)=0,(x0, y0)是它的切点.如果点 (x0, y0) 是二次曲线F (x, y)=0的奇异点,则通过点 (x0, y0) 的每一条直线都是二次曲线F (x, y)=0的切线.推论:如果点 (x0, y0) 是二次曲线F (x, y) = 0的正常点,则通过点 (x0, y0) 的切线方程是a11x0x + a12(x0y+xy0)+a22y0y+a13(x+x0)+a23(y+y0)+a33=0.证明:过点(x0, y0) 的切线方程可改写成xF1(x0, y0)+yF2(x0, y0)-[x0F1(x0, y0)+y0F2(x0, y0)]=0,那么xF1(x0, y0)+yF2(x0, y0)+ F3(x0, y0)-[x0F1(x0, y0)+y0F2(x0, y0)+ F3(x0, y0)]=0,则有xF1(x0, y0)+yF2(x0, y0)+ F3(x0, y0)=0,即 x(a11x + a12y+a13)+y(a12x + a22y+a23)+( a13x + a23y+a33)=0,从而得a11x0x + a12(x0y+xy0)+a22y0y+a13(x+x0)+a23(y+y0)+a33=0.2.已知二次曲线外一点,求过此点的切线:设点(x0 , y0)不是二次曲线上的点,即F(x0 , y0)≠0, 则过点(x0 , y0)的直线方程为此直线成为二次曲线上切线唯一条件是Φ(X, Y)≠0且∆=[F1(x0, y0)X +F2(x0, y0)Y]2-Φ(X, Y)⋅F(x0, y0)=0.由此解出X:Y,从而得(两条)切线的方程.例1. 求以下二次曲线在所给点或通过所给点的切线方程.(1)曲线3x2+4xy+5y2-7x-8y-3=0, 在点 (2, 1);(2)曲线x2+xy+y2+x+4y+3=0, 经过点 (-2, -1).解:(1)F (x, y)= 3x2+4xy+5y2-7x-8y-3, F1(x, y)=3x+2y-, F2(x, y)=2x+5y-4,因为 F (2, 1)=12+8+5-14-8-3+=0,且F1(2, 1)=≠0, F2(2, 1)=5≠0,所以点(2, 1)是二次曲线上的正常点.因此切线方程为(x-2)+5(y-1)=0,化简得 9x+10y-28=0.(2)F (x, y)= x2+xy+y2+x+4y+3, F1(x, y)=x+, F2(x, y)=, 因为F(-2, -1)=4≠0, 所以点 (-2, -1) 不在曲线上,而F1(-2, -1)= -2, F2(-2, -1)=0,设所求切线方程为,由 (-2X)2-4(X2+XY+Y2)=0 得X1:Y1=-1:1, X2:Y2=1:0,所以两条切线方程为与,即x+y+3=0 与y+1=0.例3. 已知曲线x2+4xy+3y2-5x-6y+3=0的切线平行于x+4y=0,求切线方程和切点坐标.解:设切点为(x0, y0),则切线方程为x0x+2(x0y+xy0)+3y0y-(x+x0)-3(y+y0)+3=0,即 (x0+2y0-)x+(2x0+3y0-3)y-x0-3y0+3=0,由已知条件有即 4(x0+2y0-)=2x0+3y0-3,或 2x0+5y0-7=0, ①又切点在曲线上,从而+4x0y0+3-5x0-6y0+3=0, ②由①, ②解得切点为 (1, 1),(-4, 3), 故所求切线方程为x+4y-5=0 和x+4y-8=0.例4. 试求经过原点且切直线4x+3y+2=0于点 (1,-2) 及切直线x-y-1=0于点 (0, -1) 的二次曲线方程.解:因为二次曲线过原点 (0, 0),所以设二次曲线为a11x2+2a12xy+a22y2+2a13x+2a23y=0,切线方程为 (x-x0)F1(x0, y0)+(y-y0)F2(x0, y0)=0,还可写为F1(x0, y0)x+F2(x0, y0)y+F3(x0, y0)=0.从而过点 (1, -2) 及 (0, -1) 的切线分别为(a11-2a12+a13)x+(a12-2a22+a23)y+a13-2a23=0,(-a12+a13)x+(-a22+a23)y-a23=0,由题设它们应分别为4x+3y+2=0及x-y-1=0,故有,解得λ: μ = 1: -,从而a11=6, a12 = , a22 = -1, a13= 1, a23= -,故所求二次曲线为6x2+3xy-y2+2x-y=0.作业题:1. 求以下二次曲线在所给点或经过所给点的切线方程.(1) 曲线 5x2+7xy+y2-x+2y=0 在原点;(2) 曲线 5x2+6xy+5y2=8经过点 (0, 2).2. 已知曲线x2+xy+y2=3 的切线平行于x轴,求切线方程和切点坐标.。
二次曲线- 二次曲线二次曲线- 正文也称圆锥曲线或圆锥截线,是直圆锥面的两腔被一平面所截而得的曲线。
当截面不通过锥面的顶点时,曲线可能是圆、椭圆、双曲线、抛物线。
当截面通过锥面的顶点时,曲线退缩成一点、一直线或二相交直线。
在截面上的直角坐标系(x,y)之下,这些曲线的方程是x,y 的二元二次方程:。
若截面不通过锥面的顶点,令截面与锥面轴线所成的角为θ,锥面的半顶角为α,则当时,所截曲线为圆;当时,截面与锥面的所有母线都相交,所截曲线为椭圆;当θ=α时,截面与锥面的一条母线平行,所截曲线为抛物线;当0≤θ<α时,截面与锥面的两条母线平行,所截曲线为双曲线。
焦点与准线如果圆锥曲线不是圆,则在圆锥曲线所在的平面上存在一定点和一定直线,使得圆锥曲线上任何一点到该定点和定直线的距离之比为常数,这个定点称为圆锥曲线的焦点,定直线称为圆锥曲线的准线。
为了得到焦点与准线,只需作一个球面内切于圆锥面并同时与圆锥曲线所在的平面σ相切。
设球面与平面σ相切于点F,球面与圆锥面相切于一个圆,这个圆所在的平面为ω,ω与σ相交于直线l,则点F,就是焦点,直线l就是准线(图1)。
二次曲线二次曲线这时,圆锥曲线上任意一点P到焦点F的距离|PF|与到准线l的距离|PD|之比为:。
其中θ,α都与P在曲线上的位置无关,所以是常数。
这个常数称为圆锥曲线的离心率,记为e。
当截线是椭圆时,e<1;当截线是双曲线时,e>1;当截线是抛物线时,e=1。
对于椭圆或双曲线,存在两个合于以上要求的球面,因此椭圆或双曲线都有两个焦点与两条准线。
每个焦点与其相应的准线都有上述性质。
抛物线只有一个焦点与一条准线。
若椭圆的两个焦点为F1,F2。
如图2所示的球面与圆锥面相切的圆为C1,C2。
这时对于椭圆上任意一点P,令通过P的母线OP(O为圆锥面的顶点)与C1、C2的交点分别为A、B。
则P 到F1的距离|PF1|与P到F2的距离|PF2|之和为|PF1||PF2|=|P A||PB|=|AB|。
二次曲线的切线方程二次曲线是数学中一类常见的曲线,它们具有独特的几何性质和切线方程,可以用来描述不同的几何图形。
关于二次曲线的切线方程,现在有许多学者已经进行过研究和讨论,其有关的内容涉及到数学分析、几何学和应用领域。
本文将简要介绍二次曲线的切线方程的定义、推导和应用。
1.义在数学的概念中,二次曲线是指具有形式y=ax^2+bx+c的曲线,其中a≠0。
它是以点(x,y)为基点,经过x轴另外两点,并与x轴交于点(0,0),形成一把“弯曲”的曲线。
二次曲线具有极点属性,也就是曲线的极值,可以用经典的“U-型”形状来形象的表达它的几何性质。
二次曲线的切线,就是指与曲线极点处的法线相交的直线。
2.导二次曲线的切线方程的推导,是通过曲线的极点处的法线的斜率来得到的。
在二次函数极点处,曲线的斜率为a/2。
换句话说,曲线极点处的法线斜率为-2a。
那么,二次曲线切线方程为y-(2ax+b)=-2a(x-x_0)+y_0,其中,x_0,y_0是曲线极点处的横纵坐标。
(注:斜率可以用常量k表示,即y-(2ax+b)=-2a(x-x_0)+ky_0) 3.用二次曲线的切线方程有着广泛的应用。
首先,它可以用来求解第二类极值问题,即求解两个变量的最小值和最大值。
比如,将y=ax^2+bx+c的形式变换为a(x-x1)(x-x2)的形式,其中x1、x2分别是求极值的变量,则可以得到最大值或最小值的计算结果。
此外,二次曲线的切线方程还可以用于识别不同几何图形。
比如,当a取正值时,则为椭圆;当a取负值时,则为双曲线;而当人们将椭圆变换成标准形式时,则可以得到椭圆的切线方程。
最后,二次曲线的切线方程也可以应用于几何图形变换的过程中,即利用曲线的极点的法线的斜率,将几何图形变换为其他类型的几何图形,用来分析和解决几何问题。
综上所述,二次曲线的切线方程是一类重要的数学函数,可以用来解决许多数学问题,其中涉及到数学分析、几何学和应用领域等方面。
五种方法解二次曲线的切线问题,理解应用这些公式你离学霸
不远了
学霸数学
专注中小学考试信息及题型分析总结
关注
题型:已知焦点在x轴上的椭圆与直线2x+3y-10=0相切,且离心率为√3/2,求此椭圆方程
这里给出五种方法求解,几乎每种都代表着不同的方法,这些方法中蕴含着丰富的知识,同学们好好研究一下,对你们的学习非常有帮助呢!
解法一:(判别式法)
初等数学中,二次曲线的切线问题源于判别式,且利用判别式还可得出有关切线的某些性质、公式或定理。
解法二:。
二次曲线的切线方程及应用[摘要] 本文主要利用隐函数求导的方法推导常见二次曲线(圆、椭圆、双曲线、抛物线)上某点处的切线方程,并得出一般二次曲线的切线方程及切点弦方程,再将相应结论进行应用。
[关键词] 二次曲线切线方程切点弦方程有关二次曲线的切线方程及其应用问题,近年来在各类考试中出现的频率颇高,为更好地解决此专题的问题,笔者将常见二次曲线的切线方程及切点弦方程的有关结论及推导过程整理一遍,并简述其应用,以供广大教师及学生参考.1几个常见结论及推导1.在圆上一点处的切线方程为:.(注:为与求其它二次曲线的切线方程所用方法一致,这里利用涉及隐函数求导的方法来推导.)将圆的方程中的y视为关于x的函数(即y是x的隐函数),那么就可以在上式两边分别对x求导数.隐函数求导法则,实际与复合函数求导法则一致,将y看作中间变量,外函数是,内函数为,故.于是有:在两边分别对x求导,得,若,则有.由导数的几何意义知,曲线上某点处切线的斜率是该点的导数值.故对于圆上点,若,则有,此即为在点M处切线的斜率,故所求切线方程为.又,① 为所求.若,由图象可知,此时所求切线方程为:或.又,故所求切线方程为:或.也满足①式.故在圆上一点处的切线方程可统一写为:.2.在椭圆上一点处的切线方程为:.推导过程如下:在两边分别对x求导得:,对于点,若,则有,此即为在点M处切线的斜率.故所求切线方程为,又,故②为所求.若,此时所求切线方程为:或,也满足②式.故在椭圆上一点处的切线方程为:.3.在双曲线上一点处的切线方程为:③.注:推导过程与结论1和结论2的推导过程类似,可让学生动手推导,体会其中的思想.4.在抛物线上一点处的切线方程为:.在两边对x求导,得.对于点,若,则有,此即为在点M处的切线的斜率.故所求切线方程为,即,又在抛物线上,故,因此所求切线方程为:④.若,此时所求切线方程为:也满足④式.故在抛物线上一点处的切线方程为:.结论4的切线方程形式与前3个结论有些不同,引导学生从抛物线的方程的形式观察,得到结论:抛物线的切线方程实际上可写为,进而得到一般性的结论5.将以上四个结论推广,可得到以下结论:5.设是二次曲线上一点,则此曲线在点M处的切线方程为:⑤.注:二次曲线的方程中不含项.此结论推导过程可仿照上述结论的推导过程来完成,这里不再赘述.从结论5出发,进一步思考,若点在二次曲线外,则过点M可作曲线的两条切线,设切点分别为,那么由切点在曲线上及结论5可知,曲线在点A处的切线方程为,曲线在点B处的切线方程为,因点在切线上,故⑥,同理,⑦,综合⑥⑦得,点,的坐标都满足方程.因为经过点的直线是唯一的,故过点A,B的直线方程为:.由此,我们可以得到另一个结论:6.设是二次曲线外一点,则过点M可作曲线的两条切线,设切点分别为,则直线AB的方程(即切点弦方程)为:.由结论6,将曲线方程特殊化为高中常见的二次曲线方程,即可得到关于圆、椭圆、双曲线和抛物线的切点弦方程的相应结论.2应用有关切线方程及切点弦方程的考题,近几年均是热点,比如广州市2013届普通高中毕业班综合测试(一)数学(理科)(简称“广州市一模”)第20题,2013年普通高等学校招生全国统一考试(广东卷)数学(文科/理科)第20题,2014年清华等七校自主招生考试(简称“华约卷”)第5题等.2013年广东高考的解析几何题虽和当年广州市一模的解析几何题有较大相似度,但考试结果仍不理想,文[1]指出,2013年的解析几何题“不仅加大了计算量,而且对计算的技巧性的要求大大增强,与压轴题的难度接近(第20题得分2.85分,第21题得分2.13).”因此,有必要对切线方程及切点弦方程这一专题内容做一个梳理.现将2013年普通高等学校招生全国统一考试(广东卷)数学第20题展示如下:已知抛物线的顶点为原点,其焦点到直线 :的距离为 .设为直线上的点,过点作抛物线的两条切线 ,其中为切点.(Ⅰ) 求抛物线的方程;(Ⅱ) 当点为直线上的定点时,求直线的方程;(Ⅲ) 当点在直线上移动时,求的最小值.略解:(Ⅰ)易得所求抛物线方程是:.(Ⅱ)利用第1部分的结论6,即得所求直线的方程(即切点弦方程)为:,即.(注:高考需将结论6的过程在答卷上推演一遍,因其不是高中课本内的结论.第(Ⅲ)小题解答略.)从此题的解答看,熟知第1部分的几个结论虽可立即得正解,但在高考题的作答中仍要将推导过程再演算一遍,似乎不太便捷,这是因为此题直接考查结论(求切点弦方程),若考查的是利用切点弦方程再求其它问题,那熟知结论的优越性立刻体现.请看2014年华约卷第5题:过椭圆上一点作圆的两条切线,切点为,设直线与轴、轴分别交于点,求的面积的最小值.解析:法一:设,由结论6知,直线的方程为:,,,故的面积.又点在椭圆上,故.由基本不等式得:,即(当且仅当时,等号成立),.,即的面积的最小值为.法二:(利用椭圆的参数方程求解)因点在椭圆上,故可设,由结论6知,直线的方程为:,故,的面积(当且仅当,即或时,等号成立),故的面积最小值为.解法一与解法二虽具体利用的知识不同,但其求解思路是一致的,关键的一步在于写出直线PQ的方程,而在自主招生或竞赛类考试中,直接写出二次曲线的切线方程或切点弦方程是允许的.因此,教师可将有关二次曲线的切线方程及切点弦方程问题形成一个小专题,根据学生水平及实际需要,适当讲解以上结论作为拓展,为学生获得更佳成绩打好基础.3小结由于高中阶段没有涉及到隐函数求导的内容,因此高考题在考纲范围内只能考查形如的抛物线的切点弦方程,对于一般水平的学生,教师只需讲透高中常见的解法即可.而第1部分的结论是常见二次曲线的有关切线方程和切点弦方程的结论,结论5、结论6将常见二次曲线的切线方程、切点弦方程统一起来,得到一般二次曲线的切线方程、切点弦方程.实践表明,对于能力较强的学生,是可以理解第1部分的几个结论的推导,并且利用这些结论对于他们应对自主招生或竞赛类考试有一定的帮助.参考文献[1] 彭建开.于平凡处见“真功夫”——2013年高考广东理科试题第20题解析[J].广东教育(高中版), 2013(7·8): 59-60.。
二次曲线的基本概念与性质二次曲线作为数学中的重要概念之一,具有广泛的应用和深入的理论研究。
它在几何学、物理学、经济学等学科中发挥着重要作用。
本文将介绍二次曲线的基本概念和性质,以帮助读者更好地理解和应用二次曲线。
一、二次曲线的定义二次曲线是由二次方程所表示的曲线,其一般形式可以写成:Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,其中A、B、C、D、E和F是实数,且至少有一个系数不为零。
二、二次曲线的分类根据二次曲线的方程,我们可以将其分类为三种常见形式:椭圆、双曲线和抛物线。
1. 椭圆:椭圆是由平面上到两个定点的距离之和等于常数的点的轨迹所形成的曲线。
椭圆的方程可以写成标准形式:(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(h, k)是椭圆的中心坐标,a和b 分别是椭圆的长半轴和短半轴。
2. 双曲线:双曲线是由平面上到两个定点的距离之差等于常数的点的轨迹所形成的曲线。
双曲线的方程可以写成标准形式:(x-h)^2/a^2 - (y-k)^2/b^2 = 1,其中(h, k)是双曲线的中心坐标,a和b 分别是双曲线的长半轴和短半轴。
3. 抛物线:抛物线是由平面上到定点的距离等于定直线的距离所形成的曲线。
抛物线的方程可以写成标准形式:y = a(x-h)^2 + k,其中(h, k)是抛物线的顶点坐标,a是抛物线的参数。
三、二次曲线的性质1. 对称性:椭圆、双曲线和抛物线都具有对称性。
椭圆具有关于x轴和y轴的对称性,双曲线具有关于坐标轴和原点的对称性,抛物线具有关于y轴的对称性。
2. 焦点和准线:椭圆和双曲线都有焦点和准线。
焦点是离心率所确定的两个定点之一,准线是离心率的长度倍的直线。
焦点和准线在二次曲线的性质中起着重要作用。
3. 弦和切线:二次曲线可以通过弦和切线来研究。
弦是连接曲线上两点的线段,切线是曲线上某点的斜率与曲线相切的直线。
4. 集中度和离心率:二次曲线的集中度和离心率是描述曲线形状的重要参数。
二次曲线极点极线定理,又称极坐标定理,是指在二次曲线的极坐标方程中,通过极坐标的极点(即原点)作的切线,垂直于这些切线的直线所过的点构成的直线,称为二次曲线的极线。
具体来说,对于具有极坐标方程r = f(θ)的二次曲线,其中r 表示极径,θ表示极角,f(θ)是一个关于极角的函数,极点(0,0)是二次曲线的焦点。
在极坐标方程r = f(θ)的曲线上,以极点为起点的各切线的斜率等于f(θ)的导数f'(θ)。
而极线则是与切线垂直通过极坐标方程所给定的极点的直线。
极线可以用直角坐标系中的方程表示,并且通过二次曲线的对称中心(焦点)。
二次曲线的极点极线定理可以用于求解二次曲线的相关性质,如对称性、切线和法线等。
该定理在极坐标系中给出了二次曲线的极线的几何性质,为分析和绘制二次曲线提供了重要的工具。
此外,二次曲线的极点极线定理还可以用于求解二次曲线的方程。
一般地,给定二次曲线上三个不共线的点,可以通过求解它们的极坐标方程,然后利用极点极线定理,求出二次曲线的方程。
具体做法如下:1. 以已知的三个点中的任意一个点为极点,建立极坐标系。
2. 将其他两个点的坐标换算成极坐标形式,即r = sqrt(x^2 + y^2),θ= arctan (y/x)。
3. 列出三个点的极坐标方程,即r1 = f(θ1)、r2 = f(θ2)、r3 = f(θ3),其中f(θ)是待求的二次函数。
4. 对上述三个方程求导,即可得到f'(θ1)、f'(θ2)和f'(θ3)。
5. 利用极点极线定理,将上述导数值代入相应的式子中,得到三条直线的解析式。
6. 这三条直线的交点即为二次曲线的对称中心,对称中心的坐标即为二次曲线的焦点,进而可以利用焦点和其他几何性质,求出二次曲线的方程。
总之,二次曲线的极点极线定理是一种有力的工具,可以用于研究二次曲线的性质和方程,对于二次曲线的分析和应用具有实际意义。
二次曲线的切线方程
二次曲线是数学中一种特殊的函数,它可以表达复杂的几何形状,例如圆形、橄榄形和椭圆形。
二次曲线可以给出一系列精确的切线方程,这些方程是由曲线的参数决定的。
首先,让我们来看一种受称为“标准型”的二次曲线。
标准型的曲线可以用方程y=ax+bx+c表示,其中a,b,c是曲线参数。
标准型的曲线可以用一个简单的方法来求解它们的切线方程。
首先,找出该曲线的两个极点(也称为拐点)。
一个拐点可以用
方程ax+bx+c=0求出,其中a,b,c是曲线参数。
另一个拐点是原点(0,0)。
之后,以极点为端点,连结两点构成直线。
然后,把直线的一般方程ax+by+c=0带入到曲线的方程中,即:ax+bx+c=ay+b。
这样,可以得到切线的一般方程ax+by+c=0,就可以得到该曲线的切线方程。
除此之外,还有许多其他的二次曲线,它们的切线方程也都不一样。
例如,“双轴型”的二次曲线可以用一个类似的方法来求解切线
方程,只是它们拥有两个极点。
此外,还有许多特殊的二次曲线,比如圆形、橄榄形和椭圆形,它们的切线方程也有着不同的求解方法。
总之,二次曲线的切线方程因参数而异,因此可以用一系列复杂的方法求解它们的切线方程。
当我们了解了它们的基本性质后,就可以更加清楚地了解它们的切线方程,从而使数学的研究变得更加精确和有用。
- 1 -。
§ 5 二次曲线一、圆[圆的切线]圆x2 + y2 = R2上一点M(x0, y0)的切线方程为x0x + y0y = R2圆x2 + y2 + 2mx + 2ny + q = 0 上一点M(x0, y0)的切线方程为x0x + y0y + m(x + x0) + n(y + y0) + q = 0[两个圆的交角、圆束与根轴]式中含交点的坐标,所以在两交点的两交角必相等[反演] 设C为一定圆,O为圆心,r为半径(图7.1),对平面上任一点M,有一点M'与它对应.使得满足下列两个条件:(i)O, M, M'共线,(ii )OM ⋅OM ' = r ,这种点M '称为点M 关于定圆C 的反演点,C 称为反演圆,O 称为反演中心,r 称为反演半径.由于M 和M '的关系是对称的,所以M 也是M '的反演点.因r 2 > 0,所以M 和M '都在O 的同侧.M 和M '之间的对应称为关于定圆C 的反演.取O 为原点,则一切反演点M (x , y )和M '(x ',y ')的对应方程为222222,yx yr y y x x r x +='+=' 反演具有性质:1︒ 不通过反演中心的一条直线变为通过反演中心的一个圆. 2︒ 通过反演中心的圆变为不通过反演中心的直线.3︒ 通过反演中心的一条直线变为它自己.4︒ 不通过反演中心的圆变为不通过反演中心的圆. 5︒ 反演圆变为它自己.6︒ 与反演圆正交的圆变为它自己,其逆也真.7︒ 如果两条曲线C 1,C 2交于一点M ,则经过反演后的曲线C 1', C 2'必交于M 的反演点M '.8︒ 如果两条曲线C 1, C 2在一点M 相切,则经过反演后的曲线C 1', C 2'必在M 的反演点M '相切.9︒ 两条曲线的交角在反演下是不变的.由此可见,反演是一个保角变换.二、 椭圆1.椭圆的基本元素 主轴(对称轴))0(22>>⎩⎨⎧==b a b CD aAB 轴短轴长 顶 点 A , B , C , D 椭圆中心 G 焦 点 F 1, F 2 焦 距 2221,2b a c c F F -==离 心 率 1<=ac e压缩系数 2221,e a b -==μμ焦点参数 ab p 2=(等于过焦点且垂直于长轴的弦长之半,即F 1H )焦点半径 r 1, r 2(椭圆上一点(x , y )到焦点的距离) r 1 = a - ex , r 2 = a + ex 直 径PQ (通过椭圆中心的弦)图7.1图 7.2共轭直径 二直径斜率为k k ',,且满足22a b kk -='准 线L 1和L 2(平行于短轴,到短轴的距离为ea )1︒ 椭圆是到两定点(即焦点)的距离之和为常数(即长轴)的动点M 的轨迹 (r 1 + r 2 = 2a ). 2︒ 椭圆也是到一定点(即焦点之一)的距离与到一定直线(即一准线L )的距离之比为小于1的常数(即离心率)的动点M 的轨迹(MF 1/ME 1 = MF 2/ME 2 = e ).3︒ 椭圆是将半径为a 的圆沿y 轴方向按比ab=μ(即压缩系数)压缩而得到.4︒ 椭圆上一点M (x 0, y 0)的切线(MT )方程为12020=+byy a xx 切线把点M 的两焦点半径间的外角(即∠F 1MH )平分(即α=β,02tan tan cy b ==βα),M 点的法线MN 把内角(即∠F 1MF 2)平分(图7.3).如果椭圆的切线(MT )的斜率为k ,则其方程为 222b a k kx y +±=式中正负号表示直径两端点的两切线.图 7.35︒椭圆的任一直径把平行于其共轭直径的弦平分(图7.4) 如果两共轭直径的长分别为2a 1和2b1, 两直径与长轴的夹角(锐角)分别为α和β, 则a 1b 1sin(α + β) = aba 12 +b 12 = a 2 + b 26︒ 椭圆上任一点M 的焦点半径之积等于它的对应半共轭直径的平方. 7︒ 设MM ', NN '为椭圆的两共轭直径, 通过M , M '分别作直线平行于NN '; 又通过N , N '分别作直线平行于MM ', 则这四条直线构成的平行四边形的面积为一常数4ab (图7.5). 4.椭圆各量计算公式12222=+by a xa b=⎰⎰-=-222arccos22d sin 1d cos 1πx a x t t e a t t e a图 7.4三、 双曲线1.双曲线的基本元素 主轴(对称轴)⎩⎨⎧>=>=)0(2)0(2b b CD a a AB轴虚轴实 顶 点 A , B 中 心 G 焦 点 F 1, F 2焦 距 F 1F 2 = 2c , 22b a c +=离 心 率 1>=ace 焦点参数 a bp 2= (等于过焦点且垂直于实轴的弦长之 半,即F 1H ) 焦点半径 r 1, r 2 (双曲线上一点(x , y )到焦点的距离, 即MF 1, MF 2)r 1 = ± (ex - a ), r 2 = ± (ex + a )直 径 PQ (通过中心的弦)图 7.6共轭直径 二直径斜率为k , k ',且满足22ab k k ='准 线L 1和L 2 (垂直于实轴, 到中心的距离为ea )b+1︒ 双曲线是到两定点(焦点)的距离之差为常数(等于实轴2a )的动点M 的轨迹(使a r r 221=-的各点属于双曲线的一支,而使a r r 221=-的各点属于其另一支).2︒ 双曲线也是到一定点(焦点之一)的距离与到一定直线(准线L 1)的距离之比为大于1的常数(即离心率)的动点M 的轨迹(e ME MF ME MF ==2211//).3︒ 双曲线上一点M ),(00y x 的切线(MT )的方程为12020=-byy a x x它把M 点两焦点半径间的内角(即21MF F ∠)平分(即2tan tan ,cy b ===βαβα),而M 点的法线MN 把外角(即MH F 1∠)平分(图7.7).如果双曲线的切线的斜率为k ,则其切线的方程为 222b a k kx y -±=式中正负号表示在直径两端点的两切线.4︒ 两条渐近线x aby ±=之间的切线线段TT 1被切点M 平分(TM = MT 1),且∆OTT 1的面积ab S OTT =1,平行四边形OJMI 的面积(图7.8的阴影部分)2abS OJMI =5︒ 双曲线的任一直径把平行于共轭直径的弦平分(图7.9)如果两共轭直径的长分别为2a 1,2b 1, 两直径与实轴夹角(锐角)分别为α和β(α<β),则22212111)sin(ba b a abb a -=-=-αβ 6︒ 双曲线上任一点M 的焦点半径之积等于它的对应半共轭直径的平方.7︒ 设MM ', NN '为双曲线的两共轭直径,通过M , M '分别作直线平行于NN ';又通过N , N '分别作直线平行于MM ',则这四条直线构成的平行四边形的面积为一常数4ab (图7.10).4.双曲线各量计算公式12222=-by a x图 7.8图 7.9图 7.10=四、 抛物线1.抛物线的基本元素 抛物线的主轴 AB 顶 点 A 焦 点 F 焦点参数 p (等于过焦点且垂直于轴的 弦CD 之长的一半) 焦点半径 MF (抛物线上一点到焦点的 距离) 直 径 EMH (平行于抛物线的轴的直 线) 准 线 L (与抛物线的轴垂直,到顶点A 的距离等于2p,到焦点F 的距离等于p)2.抛物线的方程、顶点、焦点与准线图 7.11)0 1︒ 抛物线是到一定点F (焦点)的距离与到一定直线L (准线)的距离相等的动点M 的轨迹(MF '=ME )(图7.12)2︒ 抛物线上一点),(00y x M 的切线MT 的方程为)(00x x y py +=它把M 点的焦点半径与直径的夹角(∠FMG )平分(∠FMT =∠TMG ),并且一切与切线MT 平行的弦被过M 点的直径平分(PI =IQ ).如果抛物线的切线的斜率为k ,则其切线的方程为kp kx y 2+= 3︒ 抛物线的任两切线的夹角等于两切点的焦点半径的夹角的一半.4︒ 从焦点F 作抛物线在点M 的切线的垂线,则垂足的轨迹为在顶点的切线. 4.抛物线各量计算公式 pxy 22=图 7.12=pxp p x x 2Arsh22+⎪⎭⎫ ⎝⎛+五、 一般二次曲线1.二次曲线的一般性质上面所列举的椭圆、双曲线、抛物线等,它们的方程关于x,y 都是二次的,关于x,y 的一般二次方程的形式是ax bxy cy dx ey f 222220+++++=它所表示的曲线称为一般二次曲线.这里列举它们的一些共同性质.[直线与二次曲线的交点] 一直线与一个二次曲线交于两点(实的,虚的,重合的).[二次曲线的直径与中心] 一个二次曲线的平行于已知方向的弦的中点在一直线上,称它为二次曲线的直径,它平分某一组弦.设已知方向的方向数为α,β,则直径的方程为()()a b x b c y d e αβαβαβ+++++=0或改写为()()ax by d bx cy e +++++=αβ0由此可见,二次曲线的直径组成一个直线束.束内任一直径通过下列两直线交点:ax by d bx cy e ++=++=00,1︒ a b bc≠,即ac b -≠20.这时二次曲线的一切直径通过同一点,称为中心,这种曲线称为有心二次曲线,中心的坐标为x be cd ac b y ae bdac b 0202=--=--, 2︒a b bc=,即ac b -=20 (i) a b b c de =≠,这时曲线无中心;(ii) a b b c de==,这时曲线有无限个中心,即中心在同一直线上(中心直线).这两种曲线称为无心二次曲线.[二次曲线的主轴(或对称轴)] 如果直径垂直于被它所平分的弦,则称它为二次曲线的主轴(对称轴), 无心二次曲线有一条实的主轴;有心二次曲线有两条实的主轴,它们是互相垂直的,交点就是中心.[二次曲线的切线与法线]二次曲线上的一点()M x y 00,的切线方程为()()()ax x cy y b x y y x d x x e y y f 0000000++++++++=在点M 与二次曲线的切线垂直的直线称为在点M 的法线,它的方程为x x ax by d y y bx cy e-++=-++000000 2.二次曲线的不变量 由一般二次曲线的方程ax bxy cy dx ey f 222220+++++= (1)的系数所组成的下列三个函数:D a b d bc e defa b b cac b S a c ===-=+,,δ2称为二次曲线的不变量,即经过坐标变换后,这些量是不变的.行列式D 称为二次方程(1)的判别式.3.二次曲线的标准方程与形状4二次曲线都是用平面切割正圆锥面的截线.因此二次曲线也称为圆锥截线(图7.13)用一平面P 切割正圆锥时,若P 不通过锥顶,且不平行于任一母线,则截线为椭圆;若P 不通过锥顶,而平行于一条母线时,截线为抛物线;若P 不通过锥顶而平行于两条母线时,截线为双曲线;若P 垂直于锥轴,截线为圆.若P 通过锥顶,则椭圆变为一点,双曲线变为一对相交直线,抛物线变为P 与圆锥相切的一直线.。
二次曲线的理论及其应用文献综述文献综述二次曲线的理论及其应用一、前言部分在中学,我们就二次曲线的性质进行了简单的介绍,它在中学的教学里有很重要的地位,是中学平面解析几何中不可或缺的一部分,在本文中的一些定理的证明都利用到了二次曲线的基本性质。
可以这样说,二次曲线的其它性质都是建立正在他的基本性质之上。
所以我将对它进行一下总结,建立表格如下: 椭圆双曲线抛物线标准方程范围或对称性关于x轴或y轴对称关于原点中心对称关于x轴或y轴对称关于原点中心对称关于x轴顶点离心率渐近线无无准线焦点过曲线上点的切线方程二次曲线的定义:在欧式平面上,由一般二元二次方程(其中,,)表示的曲线,称为二次曲线,此方程称为二次曲线的方程。
定义 1.1:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。
它的方程为。
定义 1.2:到两个定点的距离的差的绝对值等于定长(定值小于两个定点间的距离)的动点的轨迹叫做双曲线。
它的方程为。
定义 1.3:到一个定点和一条直线的距离相等的动点轨迹叫做抛物线。
它的方程为文献综述介绍了二次曲线的定义,给出了二次曲线的分类,介绍了一些二次曲线的化简方法,以及对二次曲线的一些性质与特征的进一步讨论。
本文的目的是在原有知识体系的基础上加以整理和归纳,概括出二次曲线的性质与几何特征,并辅以典型的例题来论证方法的可行性,进而介绍了二次曲线方程的应用,使我们所学知识加以巩固和提高,起到“温故”而“知新”的作用。
二、主题部分公元前350年,古希腊梅纳克莫斯发现三种圆锥曲线,即现在所说的椭圆,双曲线,抛物线,并用开始编写几何学的历史。
古希腊的塞马力达斯开始解简单方程组。
半个世纪后,古希腊另一位数学家阿波罗尼斯又著《圆锥曲线论》.阿波罗尼斯的8卷《圆锥曲线论》以其几乎将圆锥曲线的全部性质网罗殆尽而永垂史册.可以这样说,在解析几何之前的所有研究圆锥曲线的著作中,没有一本达到像《圆锥曲线论》那样的对圆锥曲线研究得如此详尽的程度.但是,像古希腊所有的几何学一样,阿波罗尼斯的几何是一种静态的几何.它既不把曲线看作是一种动点的轨迹,更没有给它以一般的表示方法.这种局限性在16世纪前,并没有引起注意,因为实践没有向几何学提出可能引起麻烦的课题.16世纪以后的情况就不同了.哥白尼(Copernicus,1473-1543)提出日心说,伽利略(Galileo,1564-1642)由物体运动的研究,得出惯性定律和自由落体定律,这些都向几何学提出了用运动的观点来认识和处理圆锥曲线及其他几何曲线的课题.地球绕太阳运转的轨道是椭圆、物体斜抛运动的轨道是抛物线,这些远不是靠建立在用平面截圆锥而得到的椭圆和抛物线的概念所能把握的.几何学要能反映这类运动的轨道的性质,就必须从观点到方法来一个变革,创立起一种建立在运动观点上的几何学.17世纪解析几何的诞生创造了为二次曲线的研究创建了条件.作为点运动轨迹的二次曲线,在引进坐标的基础上显示出更明显的特征,它是二次方程的图形,即它又被命名为二次曲线。
二次曲线的切线方程二次曲线,即二次函数曲线,是椭圆、抛物线、双曲线等曲线的总称。
它们都可以用一般形式的二次方程来解释,并且都有它们的切线方程。
关于二次曲线的定义和切线方程的探讨,以及它们在数学上的应用,也引起了很多学者的兴趣。
一、定义从几何上来看,二次曲线是一种将二次函数与一条曲线结合在一起的直线段,它可由二次函数或者一般形式的二次方程所表示。
具体而言,一般形式的二次方程为:y=ax2+bx+c(其中a、b和c为实数,a≠0),其中a代表二次曲线的开口方向,b代表曲线的斜率,c代表曲线的位置。
根据a的值的不同,可分为椭圆、抛物线和双曲线三种形式。
二、切线方程对于任意一个二次曲线,每个点都有一条唯一的切线,这条切线的斜率可以通过二次曲线的切线方程来得到,公式如下:切线方程:y=2ax+b其中,a代表二次曲线的一阶导数,b为切线与曲线交点的横坐标值。
以椭圆为例,它的一般形式二次方程为:y=ax2+bx+c(其中a、b和c为实数,a≠0)它的一阶导数:dy/dx=2ax+b因此,椭圆的切线方程为:y=2ax+b以上就是二次曲线的切线方程的定义及求解过程,将它们用于实际应用就需要深入研究。
三、实际应用1、二次曲线的切线方程在求解几何问题中是很有用的。
例如,求两曲线的位置关系、点到曲线的距离等,都可以利用它来解决。
2、切线方程在微积分中也有实际应用,比如求解曲线的面积、极限等,这些问题都可以使用切线来求解。
3、当考虑回归分析的时候,我们也可以运用二次曲线的切线方程来拟合不同的数据点,以获得该数据的更准确的特征值。
、总结二次曲线的切线方程的求解及应用,是数学中一个重要的研究课题,蕴含着丰富的内涵。
它使用得越多,就能帮助我们更好地理解几何图形及数学方程,从而更好地发掘它们之间的联系,为我们解决现实问题提供更多依据。
二次曲线的切线方程定义:二次曲线是一种多次曲线,其函数拟合表达式的幂次均为2,它也称为双曲线、椭圆或双曲椭圆等。
切线定义:当一条曲线上的点移动时,其他点的切线就是一条曲线,它在前点的位置时,跟其他点的曲线有一条相对较为紧密的曲线;在后点的位置时,它是一条几乎平行的线,这条线称为该点的“切线”。
切线方程:二次曲线的切线方程,可以按照一定的方法推导出来,其具体推导步骤如下:1.先求出二次曲线的切点,切点坐标为(x0,y0);2.切点与其他点(x1,y1)构成的直线的斜率与曲线的斜率比较,求出它们的差的倒数,即为新曲线的斜率;3.新曲线的斜率代入形如y=kx+b的切线方程,并根据切点的坐标值求出常数b。
例题:已知下列曲线的方程:y2=16x求曲线上点(2,4)处的切线方程。
解:因为该曲线是一类二次曲线,首先求出切点,切点即为(2,4)。
由于该曲线的斜率为:dy/dx=8x,而切点(2,4)处的切线的斜率为:(4-4)/(2-2)=0,所以曲线的切线的斜率为:k=1/8。
代入求切线的方程:y=1/8x+b,知切点处y=4,将此值代入上式得:4=1/8(2)+b,求出常数b=3.5,所以曲线上点(2,4)处的切线方程为:y=1/8x+3.5以上就是二次曲线的切线方程的推导过程。
切线方程的应用:1.体运动问题:当物体运动的轨迹是曲线时,求出该曲线上每个点处的切线方程就可以求出物体在该点处的加速度。
2.算机图形学:计算机图形学中,用切线的斜率信息可以用来渲染高精度的曲面,如曲面的阴影、光照等。
3.物生长:可以用切线方程描述植物的生长轨迹,并使用切点处的切线方程来确定植物从一个形态转换到另一个形态时的侧向伸展量。
4.济分析:切线方程可以用来分析资产价格和销售量的关系,即在价格的变动中,消费者的需求是如何变化的。
总结:以上就是关于二次曲线的切线方程的概念、推导过程及其应用的介绍,有助于我们更好地理解和分析二次曲线的切线方程,从而更好地应用其解决实际问题。
摘要:依据高等数学知识,本文谈论了利用公式法求二次曲线上一点处的切线方程的一般方法及具体操作要领。
关键词:猜想;证明;应用;算法
在高中数学中,求二次曲线的切线方程是一类重要题型。
该题型分为两种:一种是求经过曲线上一点处的切线方程;另一种是求经过曲线外一点的切线方程。
下面,笔者将结合高等数学的相关知识探索出一个公式,并运用该公式求解第一种问题,同时给出解决该问题的一般算法步骤。
一、猜想公式
这就是所求的切线方程。
小结:相比教材上的常规解法,利用本文中的公式法,求经过二次曲线上一点处的切线方程,其方法简洁明快,而且还与切线的斜率是否存在丝毫无关。
这就是所求的切线方程。
小结:对于含有项的二次曲线,利用本文中的公式法,求经过二次曲线上一点处的切线方程,方法过程简便、快捷,与常规解题方法相比,更具优越性。
四、算法步骤
3.化简:对替换后的式子进行化简;
4.作答:明确地做出结论。
总而言之,通过对以上四种方法的归纳总结,我们可以很容易地看到解决此类数学问题时应掌握的方法技巧。
因此,笔者呼吁广大数学教师在自己的教学中应积极地探索一些巧妙的解题规律,从而培养自己多角度思维的能力。
作者简介:费谏章,陕西省高中数学特级教师。
有十余篇教育教学论文先后在省、市级教育专业刊物上公开发表。
作者单位:陕西省石泉中学。