各种时钟体的说明(同步时钟网)
- 格式:doc
- 大小:129.50 KB
- 文档页数:6
同步网时钟及等级基准时钟同步网由各节点时钟和传递同步定时信号的同步链路构成.同步网的功能是准确地将同步定时信号从基准时钟传送给同步网的各节点,从而调整网中的各时钟以建立并保持信号同步,满足通信网传递各种通信业务信息所需的传输性的需要,因此基准时钟在同步网中至关重要.基准时钟源由网络中心基准时钟(NPRC)提供.它由两个铯原子钟或二套接收GPS/GLONAS S的同步时钟设备或二套接收双G PS的同步时钟设备组成.本地基准时钟(LPRC)设置在大区或重要的汇接节点上,配置一套接收GPS/GLONAS S双星或双GPS的同步时钟设备,具有双备份铷钟,并可通过地面同步链路接收邻近区域内的基准定时信号.由于铯原子钟价格较高,维护管理不方便,作为备用;双星接收机同步时钟设备(包括双GPS)作为主用,它可以提供频率稳定度优于1×10-11长期精度(实际可达1×10-12/天,N×10-13/周),时间精度小于300 ns(实际可达100ns),同时还可利用中国电信国际局基准信号同步本站时钟设备作为备用基准输入.在各大区中心和重要汇接中心,配置本地基准时钟(LPRC),具有同时接收GPS和G LONAS S卫星的同步时钟设备,同时通过PD H 2Mb/s传输链路或SDH的S TM-N线路信号接收来自邻近的基准定时信号.基准时钟信号的传送与分配在数字同步网中,高稳定度的基准时钟是同步网的最高基准源,通过等级分配结构提供同步信息.例如根据光缆干线网络示意图,设置于一级节点(NPRC)网络中心基准时钟通过P DH 或SD H传输系统向二级节点和三级节点传递定时信号.这些数字延伸和基准时钟一起称为基准分配网络.基准分配网络应当设置主用和备用,如果某个二级时钟失去了与基准时钟的同步,它将以保持方式工作,并且在必要时使用备用传输路由满足滑动率指标.因此,在基准分配网络内短时间的中断对同步影响很小,甚至没有影响.局内综合定时供给局内综合定时供给发生器,受来自同步链路的至少两个2048Kb/s信号同步,定时供给发生器向楼内的所有被同步的时钟提供2048K b/s,2048KH Z等多种定时信号.楼内同步链路选择:(1)为安全可靠起见,楼内同步链路尽可能分散.例如,主备用定时尽可能来自不同路由;(2)为防止基准发生故障性中断,应保证同步链路能适时倒换和识别;(3)为保证基准的质量,在楼内应指定基准传输路由.同步定时信号的传递方式当采用分布式多基准钟同步系统时,各基准时钟输出定时信号直接同步本站长途交换机.SDH传输系统和DDN网,同时通过传输系统向各网元时钟提供定时信号.同步区的划分各个通信运营公司都必须建立自己的数字同步网,拥有独立的基准参考源和NPRC.由于各运营公司既相互竞争,又要互通互连,因此最好的方法:采用基准参考源均来自卫星信号的同步时钟设备.各个通信运营公司同步区划分原则上采用建立全国中心(包括大区网络枢纽中心)NPRC.而同步区划分按每一个分公司(省)为一个同步区建立本地L PRC,每一个同步区再划分几个子同步区(或电信区),在沿海发达地区子同步区范围可更小一点,这样更便于维护管理,同时提高各同步区定时信号质量.同步网时钟及等级一级基准时钟:一级基准时钟分为两种:⑴全网基准钟(PRC):由自主运行的铯原子钟组或铯原子钟与卫星定位系统(GPS 和/或GLONA SS及其他定位系统)组成。
同步网时钟及等级基准时钟同步网由各节点时钟和传递同步定时信号的同步链路构成.同步网的功能是准确地将同步定时信号从基准时钟传送给同步网的各节点,从而调整网中的各时钟以建立并保持信号同步,满足通信网传递各种通信业务信息所需的传输性的需要,因此基准时钟在同步网中至关重要.基准时钟源由网络中心基准时钟(NPRC)提供.它由两个铯原子钟或二套接收GPS/GLONASS的同步时钟设备或二套接收双GPS的同步时钟设备组成.本地基准时钟(LPRC)设置在大区或重要的汇接节点上,配置一套接收GPS/GLONASS双星或双GPS的同步时钟设备,具有双备份铷钟,并可通过地面同步链路接收邻近区域内的基准定时信号.由于铯原子钟价格较高,维护管理不方便,作为备用;双星接收机同步时钟设备(包括双GPS)作为主用,它可以提供频率稳定度优于1×10-11长期精度(实际可达1×10-12/天,N×10-13/周),时间精度小于300 ns(实际可达100ns),同时还可利用中国电信国际局基准信号同步本站时钟设备作为备用基准输入.在各大区中心和重要汇接中心,配置本地基准时钟(LPRC),具有同时接收GPS和GLONASS卫星的同步时钟设备,同时通过PDH 2Mb/s传输链路或SDH的STM-N线路信号接收来自邻近的基准定时信号.基准时钟信号的传送与分配在数字同步网中,高稳定度的基准时钟是同步网的最高基准源,通过等级分配结构提供同步信息.例如根据光缆干线网络示意图,设置于一级节点(NPRC)网络中心基准时钟通过PDH 或SDH传输系统向二级节点和三级节点传递定时信号.这些数字延伸和基准时钟一起称为基准分配网络.基准分配网络应当设置主用和备用,如果某个二级时钟失去了与基准时钟的同步,它将以保持方式工作,并且在必要时使用备用传输路由满足滑动率指标.因此,在基准分配网络内短时间的中断对同步影响很小,甚至没有影响.局内综合定时供给局内综合定时供给发生器,受来自同步链路的至少两个2048Kb/s信号同步,定时供给发生器向楼内的所有被同步的时钟提供2048Kb/s,2048KHZ等多种定时信号.楼内同步链路选择:(1)为安全可靠起见,楼内同步链路尽可能分散.例如,主备用定时尽可能来自不同路由;(2)为防止基准发生故障性中断,应保证同步链路能适时倒换和识别;(3)为保证基准的质量,在楼内应指定基准传输路由.同步定时信号的传递方式当采用分布式多基准钟同步系统时,各基准时钟输出定时信号直接同步本站长途交换机.SDH传输系统和DDN网,同时通过传输系统向各网元时钟提供定时信号.同步区的划分各个通信运营公司都必须建立自己的数字同步网,拥有独立的基准参考源和NPRC.由于各运营公司既相互竞争,又要互通互连,因此最好的方法:采用基准参考源均来自卫星信号的同步时钟设备.各个通信运营公司同步区划分原则上采用建立全国中心(包括大区网络枢纽中心)NPRC.而同步区划分按每一个分公司(省)为一个同步区建立本地LPRC,每一个同步区再划分几个子同步区(或电信区),在沿海发达地区子同步区范围可更小一点,这样更便于维护管理,同时提高各同步区定时信号质量.同步网时钟及等级一级基准时钟:一级基准时钟分为两种:⑴全网基准钟(PRC):由自主运行的铯原子钟组或铯原子钟与卫星定位系统(GPS 和/或GLONASS及其他定位系统)组成。
目录1.概述 (1)1.1 主要特点 (1)1.2 对接入设备的要求 (2)1.3 引用标准 (2)2.系统组成 (3)3.CEP226主时钟 (5)3.1 主时钟工作原理 (5)3.2 主时钟模块简介 (6)3.2.1 电源模块 (6)3.2.2 主机接收模块 (6)3.2.3 脉冲输出模块 (7)3.2.4 IRIG-B码输出模块 (7)3.2.5 串口输出模块 (9)3.2.6 网络输出模块 (10)3.3 主时钟技术参数 (13)3.4 主时钟结构 (15)3.4.1 结构说明 (15)3.4.2 前、后面板示意图 (15)4.CEP226F时标扩展装置 (16)4.1 时标扩展装置工作原理 (16)4.2 时标扩展装置模块介绍 (17)4.2.1 电源模块 (17)4.2.2 接收模块 (17)4.2.3 输出模块 (17)4.3 时标扩展装置技术参数 (17)4.4 时标扩展装置结构 (18)4.4.1 结构说明 (18)4.4.2 前、后面板示意图 (19)5.安装与应用 (19)5.1 外形尺寸 (19)5.2 天线安装 (20)附录1 典型工程方案介绍 (21)附录2 主要模块一览表 (26)1.概述在电力系统运行过程中,电网运行状态瞬息万变,而电网调度则实行分层多级管理,调度管理中心远离现场,因此在全网范围内自动化装置的实时时钟必须要有一个统一的时钟。
另外,对于提高电能质量、电网调度操作、事故分析(特别是复杂事故分析)、实现电网运行工况的同步采样、提高高级应用软件计算的准确性等都具有十分重要的意义。
今后随着电力市场的建立,电能量分时计费的推行,时钟同步的重要性将在经济上更加突出。
但现在电力系统中设备大多采用不同厂家的自动化及微机保护设备,各设备采用各自独立的时钟,而各种时钟都有一定的偏差,这样在事故分析中,失去了时间基准,无法分析各开关动作的先后顺序,给故障分析带来了困难,且变电站往往有不同的装置需要接收时钟同步信号,其接口类型繁多,如RS-232C/422/485串行口、脉冲、IRIG-B接口等;装置的数量也不等,所以在实际应用中常感到卫星同步时钟装置的某些类型接口数量不够或缺少某种类型的接口,其结果就是该变电站中有些装置不能实现时钟同步,或者需要再增加一台甚至数台卫星同步时钟装置,而这往往受到资金不足或没有安装位置等限制。
时钟系统(提取,同步,BIT时钟,跟踪,包括新64K板)1.时钟系统数字程控交换机的时钟同步是实现通信网同步的关键。
ZXJ10(V10.0)的时钟同步系统由基准时钟板CKI、同步振荡时钟板SYCK及时钟驱动板CKDR构成,为整个系统提供统一的时钟,又同时能对高一级的外时钟同步跟踪。
在物理上时钟同步单元与数字交换网单元共用一个机框,BNET板为其提供支撑及板间联接。
2.时钟系统的提取,跟踪,同步单模块独立成局时,本局时钟由SYCK同步时钟单元根据由DTI或BITS提取的外同步时钟信号或原子频标进行跟踪同步,实现与上级局或中心模块时钟的同步。
多模块局时本局同步时钟基准信号由SNM模块提供,各外围模块(PSM,RSM)由与SNM模块对接的DTI或FBI从传输线路上提取此基准时钟信号(E8K),将此基准时钟送至本外围模块的时钟同步单元进行跟踪同步,从而达到外围模块与SNM模块时钟的同步。
当多模局作为从时钟时要与外系统同步,则可以根据DTI或BITS所提取的外同步信号或原子频标,实现与外时钟同步。
当中心架旁有近端模块PSM时,中心架的同步时钟系统通过与近端相连的FBI提取时钟基准,如图所示:时钟同步示意图当中心架旁没有近端模块PSM时,中心架的同步时钟系统通过与远端相连的DT 提取时钟基准,如图所示:时钟同步示意图这里的外基准同步信号可能是:原子频标,BITS接口等。
本系统最高时钟等级为:二级A类标准。
时钟系统各功能单板说明1.1.1时钟基准板CKI时钟基准板CKI的主要功能是为SYCK板提供2.048mbit/s (跨接或通过)、5MHz 、2.048MHz的接口,可接收从DTI或FBI平衡传送过来的8KHZ时钟基准信号,可循环监视各个时钟输入基准是否降质(),将各路时钟基准有无的状态传送到SYCK板,可实现手动选择时钟基准信号,将信号输出给SYCK。
1.1.2同步振荡器SYCK同步振荡器SYCK的主要功能是可直接接收数字中继的基准,也可通过CKI接入可接收BITS接口、原子频标的基准。
浅谈2006C电网GPS—B码同步时钟系统根据2006C电网GPS-B码时间同步系统的工作原理,相较于传统的对时方式,分析系统将GPS卫星传送的协调世界时间作为定时信号源稳定的实现电网内的变电站、电厂内计算机监控系统、保护装置及故障录波器等设备的时间同步。
标签:同步时钟系统;同步钟;扩展装置;嵌入式计算机1 概述目前,电力系统中的时间同步处于变电站内GPS统一的状态,由于GPS设备品牌不同,性能不统一,造成站内、站与站之间时间不统一。
这些时间接收系统相互间不通用。
无法互为备份,使得整个系统的可靠性无法保证。
为了逐步实现全电网的同一时间,有必要在发电厂、变电站建立集中和统一的电力系统时间同步系统,而且该系统应能基于不同的授时源建立时间同步并互为热备用。
2 电力系统设备常用的对时方式2.1 脉冲对时也称硬对时,是利用脉冲的准时沿来校准被授时设备。
常用的脉冲对时信号有1PPS和分脉冲(1PPM),有些情况下也会用时脉冲(1PPH)。
其优点是授时精度高,使用被动点时,适应性强;缺点是只能校准到秒,其余数据需要人工预置。
2.2 串口报文对时也称软对时,是利用一组时间数据按一定的格式通过串行通信接口发送给被授时装置,被授时装置利用这组数据预置其内部时钟。
常用的串行通信接口为RS-232和RS-422/RS-485。
其优点是数据全面,不需要人工预置;缺点是授时精度低,报文的格式需要授时和被授时装置双方约定。
2.3 时间编码方式对时目前,很多场合采用以上2种方式的组合方式即串口+脉冲,从而可以充分利用两者的优点,克服两者的缺点。
其采用国际通用时间格式码,将脉冲对时的准时沿和串口报文对时的那组时间数据结合在一起,构成一个脉冲串,来传输时间信息。
被授时设备可以从这个脉冲串中解析出准时沿和一组时间数据。
这就是目前常用的IRIG-B码,简称B码。
其优点是数据全面,对时精度高,不需要人工预置;缺点是编码相对复杂。
2.4 网络方式对时网络方式对时基于网络时间协议(NTP)、精确时间协议(PTP)。
BSS系列GPS同步时钟BSS GPS CLOCK SYNCHRONIZER用户手册___________________________________________________ 北京中水科水电科技开发有限公司目 录 ————————————————————————————————————一、 简介 (1)二、 主要特点 (1)三、 BSS-3系列同步时钟构成 (1)四、 装置硬件 (2)1 装置组成 (2)2 电源模块 (4)3 接收模块 (4)3.1 标准接收模块 (4)3.2 双机互备型接收模块 (5)3.3 二级钟接收模块 (6)3.4 天线 (6)4 输出模块 (6)4.1 脉冲输出模块 (6)4.2串行口输出模块 (7)4.3 IRIG-B码输出模块 (8)4.4 光纤输出模块 (9)4.5 DCF77输出模块 (9)4.6 NTP/SNTP输出模块 (10)五、 安装使用 (11)1 标准BSS-3的安装使用 (11)1.1 装置安装接线示意图 (11)1.2 装置开孔尺寸 (11)1.3 天线的安装 (11)1.4 开机 (12)1.5 脉冲校时接线 (12)1.6 串行口对时接线 (13)1.7 光纤校时接线 (14)2 高可靠BSS-3的安装使用 (15)3 远程中继型时钟 (16)4 扩展二级钟 (17)5 局域网NTP服务器的配置和使用 (19)6 大数码显示时钟 (25)7 GPS对时系统 (26)六、 附录 (27)1 BSS-3主要技术指标 (27)2 BSS-3系列功能模块表 (28)3 BSS-3系列模块总览表 (29)4 订货指南 (30)一、简介:BSS-3系列GPS同步时钟是应用全球定位系统(GPS)技术的标准时间显示和发送装置。
GPS是美国的全球卫星导航系统,由24颗在空间运行的GPS卫星和地面控制站组成,在地球表面任一地点、任一时刻GPS卫星信号接收器都可收到足够多数量的GPS卫星信号,精确计算接收器所在当前空间位置和时间,其时间精确度可达纳秒级。
网络中为什么要部署NTP服务器(时钟同步服务器,网络校时设备,GPS授时服务器,NTP网络同步时钟)?随着计算机网络的迅猛发展,网络应用已经非常普遍,如电力、金融、通信、交通、广电、安防、石化、水利、国防、医疗、政府机关、IT等领域的网络系统需要在大范围保持计算机的时间同步和时钟准确,但计算机的时间是根据电脑晶振以固定频率震荡而产生的,由于晶振的不同,会导致电脑时间积累误差的产生。
从业务影响角度讲,因为时间的不统一,就无法推断出业务具体发生时间。
从安全影响角度讲,所有设备(如视频监控中的DVR)的日志必须反映准确的时间,因为时间的不统一,安全相关工具就会毫无用处。
因此有一个好的标准时间校时器是非常必要的。
为了适应这些领域对于时间越来越精密的要求,锐呈公司精心设计、自主研发了K系列GPS校时器(NTP服务器,时钟同步服务器,网络校时设备,GPS 授时服务器,NTP网络同步时钟)。
该装置以美国全球定位系统(GPS)为时间基准,内嵌国际流行的NTP-SERVER服务,以NTP/SNTP协议同步网络中的所有计算机、控制器等设备,实现网络授时。
K805网络时钟同步系统采用表面贴装技术生产,以高速芯片进行控制,无硬盘和风扇设计,具有精度高、稳定性好、功能强、无积累误差、不受地域气候等环境条件限制、性价比高、操作简单、免维护等特点,适合无人值守。
该产品可以为计算机网络、计算机应用系统、流程控制管理系统、电子商务系统、网上B2B系统以及数据库的保存维护等系统提供精密的标准时间信号和时间戳服务。
K805网络时钟同步系统采用全模块化结构设计,其输入、输出、电源等均可灵活配置,并具有丰富的各类模块及板卡供选择(特殊需求可提供定制服务),对时信号的种类和数量都可根据需要灵活选择配置。
装置有标准RS232、RS422/485、脉冲、IRIG-B、DCF77、PTP、NTP/SNTP协议时间输出等接口形式,可以适应各种不同设备的对时需要。
第一章时钟原理1.1 原子频率标准1.1.1 基本原理原子频率标准简称原子钟,是根据原子物理学及量子力学的原理制造的高准确度和高稳定度的振荡器。
在通信领域的数字同步网中作为第一级基准时钟,是同步网中向数字设备提供同步标准信号的最高基准源。
1.1.1.1原子的能态和能级跃迁物质由原子组成。
原子中含有原子核和外层电子。
由于粒子的运动,一个原子可能处于多种状态,并与其所具有的能量相对应。
具有最低能量的状态叫基态,受外界影响(如磁场、电磁波辐射等)能量随之而变化的状态叫受激态。
根据原子处于基态及受激态所具有的能量不同有不同的能量等级。
原子能量等级的改变称为能级跃迁。
能级跃迁有以下三种方式。
一、电子能级跃迁由于质子和电子的相互作用,电子运行轨道半径的变好,通常看作是在电子能级之间的电子跃迁。
二、精细结构跃迁通常包括电子自旋的偶极矩和由于电子对原子核的轨道运动的磁场之间的相互作用的能级跃迁。
其能量变化约为第一种能级跃迁的1/50。
三、超精细结构跃迁由于电子的两个磁极对原子核的交互作用,当电子的磁极受到感应而反转时发生超精细结构跃迁,这种很弱的交互作用称为超精细结构跃迁。
约为精细结构跃迁的千分之一。
1.1.1.2 能级跃迁与原子谐振特性当原子由受激状态变到低能量状态时,释放的电磁能称为光子,反之如果原子吸收了电磁辐射能或光子,也将从低能态跃到高能态。
量子力学研究证明,不同能态的能量差与其谐振频率的关系是:f=(E2-E1)/h (普郎克定律)式中E2-E1为高低能态的能量差;f为谐振频率(电磁辐射能的谐振频率);h为普郎克常数(6.6252E-34*J*s)从上式可以看出,如果两个固有的能级在不受外界感应时是不变的,h为常数,则两能级之间跃迁产生的频率是固定的。
由于这种特性,可以得到准确而固定的频率。
用上述原理制成的原子钟有几种不同的类型:。
原子(使用的元素)类型选择,有氢钟、铯钟及铷钟等。
有源(或自激)型原子钟,其输出信号是由原子发生的辐射电磁波导出,类似于振荡器。
网络中的时间同步与时钟校准技术随着互联网的迅猛发展,时间同步和时钟校准技术在网络中起着至关重要的作用。
准确的时间同步和时钟校准不仅对于确保各个网络设备之间的协作和数据的准确性至关重要,还对于各种网络应用和服务的正常运行具有重要意义。
本文将介绍网络中常用的时间同步与时钟校准技术,并探讨其在网络中的重要性。
一、网络中时间同步的意义在网络中,若各个设备的时间不一致,会导致很多问题。
例如,在分布式系统中,设备之间需要进行协作和数据交换,若设备的时间差异较大,则会导致数据的不一致和错误。
此外,有些网络应用和服务,如金融交易、电子邮件等,对时间的准确性有着极高的要求。
因此,实现网络设备之间的时间同步具有重要的意义。
二、网络中常见的时间同步技术1. NTP(Network Time Protocol)NTP是一种用于在Internet上同步计算机时钟的协议。
它基于分层的客户-服务器架构,并使用时间服务器分发网络上的准确时间。
NTP使用时间戳方式同步时钟,既能够同步服务器和客户端之间的时间,也能够调整时钟的漂移。
NTP广泛应用于各类网络设备和操作系统,是保证网络时间同步的重要技术之一。
2. PTP(Precision Time Protocol)PTP是一种用于实时系统中进行时间同步的协议。
它旨在提供更高的时间精度和更低的时延。
PTP使用同步消息和延迟请求/响应消息来进行时间同步。
它适用于对时间精度要求较高的领域,如工业自动化、电力系统等。
PTP的精度可以达到亚微秒级别,可以满足高精度时间同步的需求。
三、网络中常见的时钟校准技术1. SNTP(Simple Network Time Protocol)SNTP是NTP的简化版本,旨在提供基本的时间同步功能,对时间精度和稳定性要求不高。
SNTP一般用于对时间同步要求不高的设备,如部分网络摄像头、路由器等。
相比于NTP,SNTP的实现简单、轻量化,占用资源较少。
2. GPS(Global Positioning System)GPS是一种基于卫星的全球定位系统,也可用于时钟校准。
上海申贝科技发展有限公司产品说明书目录一整体概述 (3)一.1系统简介 (3)一.2具备功能 (3)一.3功能特点 (4)一.4引用标准 (4)一.5整机指标 (5)二系统组成模式 (6)二.1组成及配置原则 (6)二.2其他模式 (6)二.3典型配置组屏图. (7)三技术指标 (8)三.1主控模块 (8)三.2输出模块 (9)三.3特需模块 (10)一整体概述一.1系统简介在电力系统运行过程中,电网的运行状态瞬息万变,电网调度实行分层多级管理,调度管理中心远离现场。
为保证电网安全和经济运行,各种以计算机技术和通信技术为基础的自动化装置被广泛应用,如调度自动化系统、故障录波装置、微机继电保护装置、事件顺序记录装置、变电站计算机监控系统、电能量计费系统、火电厂机组自动控制系统、雷电定位系统及输煤、除灰、脱硫等控制装置等。
随着电厂、变电站自动化水平的提高,电力系统对全站统一时钟的要求愈来愈迫切,有了统一时钟,既可实现全站各系统在统一时间基准下的运行监控,也可以通过各开关动作的先后顺序来分析事故的原因及发展过程。
因此电力系统的安全、稳定、可靠运行对时钟的基准统一及精度的要求进一步提高,在电力系统的电厂、变电站及调度中心等建立全站统一时间同步系统已经显得十分迫切和必要。
另外,各站往往有不同的装置需要接收时钟同步信号,其接口类型繁多,装置的数量也不等,所以在实际应用中常感到卫星对时装置的某些类型接口数量不够或缺少某种类型的接口,其结果就是全站中有些装置不能实现时钟同步,或者需要再增加一台甚至数台卫星对时装置,而这往往受到资金不足或没有安装位置等限制。
YJD-2000 卫星同步时钟是我公司根据电力系统现在的需要及将来的发展要求基础上,自主开发的具有国内先进水平的授时产品。
YJD-2000 卫星同步时钟结合美国GPS、中国北斗、俄罗斯格罗娜丝等技术特点并考虑了各种涉及国家安全的关联因素,实现了输入多源头(GPS、北斗、格罗娜丝、高精度守时、IRIG-B 码基准等)、输出多制式(TTL、空接点、IRIG-B、差分、串口、网络、光纤等)、满足多设备(系统输出可以任意扩展,可以满足任何规模、任何方式的时间信号需求)的要求,可为电力、煤炭、轨道交通、石油化工、航道水运、邮电电信及相关领域的系统中需要接收时钟同步信号的装置及系统提供高精度、高稳定、高安全,高可靠的时间基准信号。
GPS - A卫星同步时钟说明书(V1.0)保定市智能电脑有限公司目录一.概述 (3)二.产品功能简介 (3)三.应用范围 (3)四.主要技术指标 (4)五.产品使用说明 (5)六.装置的安装调试 (7)七.故障排除 (8)八.随机附件 (8)九.生产厂家联系方法 (8)一.概述GPS(全球定位系统)是精度最高的全球定位、导航和对时系统,全天候工作,连续24小时实时向地面发送高精度时间、位置和速度信息,最高精度可达50ns。
其功能为电力系统的时钟统一问题提供了新的时间标准。
GPS-A型卫星同步时钟是我公司自主研发的新一代产品,采用了高精度卫星接收模块GPS15H/L,提供的时间信息具有精度高、可靠性高、全天候的特点。
二.产品功能简介➢可提供精确的北京时间(时、分、秒)和公历日期(年、月、日)。
➢提供精确的秒脉冲指示。
➢提供标准RS232串行接口。
➢准确显示与卫星定位(同步)情况。
➢提供秒脉冲信号输出。
三.应用范围➢为电网自动化装置如远动、微机监控系统、故障录波器、事件记录仪等提供时间标准。
➢用于需要对时、记时、同步的其他场合。
四.主要技术指标1、工作环境. 环境温度:-5℃---- +45℃. 相对湿度:20% ---- 80%. 工作电源:AC220V ±10%. 功耗:≤5W2、主要性能指标:. 走时精度:≤±0.2ms. 秒脉冲精度:≤2×10-6S. 同步精度:2×10-6S. 通讯速率为:4800bps3、通讯规约格式(GPRMC )(详细格式见下表)SGPRMC,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,1、UTC时间固定格式(时、分、秒)2、同步状态:A-同步V-不同步3、纬度ddmm . mmmm格式4、纬度标志:N或S5、经度ddmm . mmmm格式6、经度标志:E 或W7、传输速度:000.0-999.98、接收角度:000.0-359.99、UTC日期固定格式(日、月、年)10、磁性变化000.0-180.011、磁性方向E 或W12、工作模式指示4、结构尺寸五.产品使用说明1、面板说明:如图所示(前视图)1―――电源指示灯2―――秒脉冲指示3―――同步指示4―――数码管显示屏5―――时间/日期显示切换按键2、接口示意图如图所示(后视图)1 - - - 外接电源接口2 - - - COM1(与后台连接,传输数据)3 - - - COM2(RS-232标准方式输出,写卫星钟参数、与后台连接)4 - - - 秒脉冲输出口(采用BNC接口,内芯为正,TTL电平输出)5 - - - 卫星天线连接口3、串行口定义(卫星钟串口)9P(插孔)2-----收3-----发5-----地(其他管脚未用)注:严禁带电插拔串行口。
目 录196.4 典型应用 (18)6.3DDS 混合方案 (17)6.2DDS 的性能 (15)6.1DDS 基本原理 (15)6 DDS 简介..............................................................145.6 集成锁相环.. (14)5.5频率合成器 (13)5.4锁相环路的三个优良特性 (12)5.3环路的捕获性能 (11)5.2 环路的组成 (10)5.1锁定与跟踪的概念 (10)5 锁相环基础............................................................94 表征时钟系统性能的术语介绍...............................................83 滑动及滑动的影响........................................................82.1数字同步网上中的时钟主要功能 (7)2.1数字同步网的等级结构 (6)2.1同步方式 (6)2 数字同步网的组织结构.....................................................51.4 通信楼综合定时供给系统(BITS ) (5)1.3晶体时钟振荡器 (5)1.2全球定位系统 (5)1.1原子频率标准 (5)1 各种时钟频率源..........................................................4时钟基础知识介绍..........................................................时钟基础知识介绍关键词: 时钟、同步摘 要:本文档为 时钟基础知识介绍缩略语清单: 中文注释英文注释 参考资料清单: 人民邮电出版社部熙章数字网同步技术出版单位查阅地点或渠道发布日期编号作者名称参考资料清单1各种时钟频率源1.1原子频率标准原子频率标准简称原子钟,是根据原子物理学和量子力学的原理制造的高准确度、稳定度的振荡器。
SZ系列GPS标准时间同步钟说明书目录1,装置概述 (1)2,技术参数 (2).............................................................................................................................. .. (2)2.2 主要技术指标............................................................................................................................ (2)2.3 机械结构............................................................................................................................ .. (3)3,通讯规约 (5)3.1 规约1............................................................................................................................. . (5)3.2 规约2(BJT)..................................................................................................................... .. (5)3.3 规约3(IRIG—B)............................................................................................................... . (6)4,装置说明 (7)4.1 SZ-2UA GPS标准时间同步钟............................................................................................................................ .. (7)4.2 SZ-4U GPS标准时间同步钟............................................................................................................................ . (8)4.3 SZ-5000 GPS双机冗余系统............................................................................................................................ .. (10)4.4 SZ-IRIG-B扩展器............................................................................................................................ .. (17)4.5 SZ-TM12/14/22/24同步脉冲扩展器............................................................................................................................ . (18)4.6 SZ-232&485扩展器............................................................................................................................ (20)4.7 SZ-FIB81/82,SZ-FIB91/92光纤收发器 (21)4.8 SZ—LED远距离显示器............................................................................................................................ .. (23)5,使用说明 (25)5.1 开机步骤............................................................................................................................ (25)5.2 液晶显示............................................................................................................................ (25)5.3 装置调试注意事项............................................................................................................................ . (25)SZ系列GPS标准时间同步钟说明书11,装置概述随着电力系统自动化技术的发展,系统对时间统一的要求越来越迫切,对时间的同步精度要求越来越高.由南自电网控制技术有限责任公司研制的SZ系列GPS标准时间同步钟就是专门为电力系统的自动化提供高精度时间基准的时间同步设备.该设备以美国导航星全球定位系统(GPS)为时间基准,时间同步精度1μs.它选用美国专业生产厂家生产的GPS接收机部件进行二次开发研制而成.装置可以同时跟踪视场内的12颗GPS卫星,自动选择最佳卫星进行定位,定时,装置支持IRIG-B码对时输入接口,作为GPS卫星定时信号的后备.输出与协调世界时UTC时间同步精度为1μs的秒(1PPS),分(1PPM),时(1PPH)定时脉冲和北京时间的钟面,还可实现工频量的测量,外部事件(SOE)产生的时刻记录,并按照一定格式经串行口分别输出日期,时间,周波钟,周波数,钟差,事件产生时刻和安全运行天数等信息,装置同时支持网络NTP,SNTP对时接口,供电力系统需要标准时间尺度的各种自动化装置使用.本设备采用单片机控制,软硬件结合的技术设计,充分利用GPS接收组件的潜力.因此系统具有可靠性高,功能多,精度高,性价比好和操作方便等特点,完全可以满足电力系统时间同步要求.它的使用推广,将大大促进电力系统的事故分析,故障测距和继电保护等自动化技术的发展.SZ系列GPS标准时间同步钟装置由标准同步钟本体和时标信号扩展装置组成,时标信号扩展装置包括对时脉冲扩展装置,时间报文扩展装置,IRIG-B码扩展装置,对时信号通道中继装置,双机系统切换装置等系列装置.装置设计采用模块化方式,除了提供本说明书中的典型配置方式外,可根据现场的实际需要方便扩展组合,具有广泛的适用性.SZ系列GPS标准时间同步钟说明书22,技术参数2.1 环境参数环境温度范围: a) 工作温度:-10 ~+55℃;b) 贮存,运输极限环境温度:-25 ~+75℃;相对湿度: 5% ~95%(最大绝对湿度28g/m3);大气压力: 86 KPa ~106 KPa.2.2 主要技术指标1) 接收频率:1575.42MHz,可同时跟踪8~12颗GPS卫星.2) 天线射频灵敏度:-166dbw,天线馈线长度30~200米馈线(馈线长度超过30米订货时应注明).3) 捕获时间:20秒~2分钟.4) 1PPS输出:TTL电平/RS485电平准时沿: 上升沿,上升时间≤50ns上升沿的时间准确度≤1μs脉冲宽度:约50ms空接点准时沿: 上升沿,上升时间≤120ns上升沿的时间准确度≤2μs脉冲宽度:约50ms5) 1PPM输出TTL电平/RS485电平准时沿: 上升沿,上升时间≤90ns上升沿的时间准确度≤2μs脉冲宽度:约100ms空接点准时沿: 上升沿,上升时间≤150ns上升沿的时间准确度≤2μs脉冲宽度:约100ms6) 1PPH输出空接点准时沿: 上升沿,上升时间≤2μs上升沿的时间准确度≤2μs脉冲宽度:约1000ms7) 接口电路:SZ系列GPS标准时间同步钟说明书38) IRIG-B(DC)非调制信号:TTL电平0~5V;RS232电平电气特性符合GB/T6107-2000;RS485电平电气特性符合EIA/485;9) IRIG-B(AC)调制信号:载波频率:1kHz;信号幅值(峰-峰值):高:≥10V,低:符合3:1调制比要求;输出阻抗:600欧姆,隔离输出.10) 静态空接点(光隔离)输出:允许外接电压≥250V DC(订货时应注明).11) 有源脉冲输出:5V,24V或220V有源脉冲(订货时应注明).12) GPS主时钟内部守时准确度优于8107-×.13) 显示:十四位LCD显示,显示内容包括日期,时间,卫星数.14) 串行口:输出编码(年月日时分秒),工频钟时间(时分秒),钟差,周波数和突发事件产生的时刻, 每秒发一次.输出有RS232电平和RS485电平.15) 告警接点输出:电源中断,外部时间基准信号消失,输出信号出错告警.16) 电源:每台设备均为双电源供电输入电压范围:交流220V或直流110V~220V±10%最大输出功率:15W输入频率范围:47~63Hz2.3 机械结构SZ系列GPS标准时间同步钟说明书4机箱尺寸为标准的19英寸N*U工业机箱.1U机箱定位孔间距为34mm;2U机箱定位孔间距为76mm;4U机箱定位孔间距为101.6mm.2U机箱尺寸及开孔图(单位:mm)SZ-2UA 标准时间同步钟1PPSSZ系列GPS标准时间同步钟说明书53,通讯规约SZ系列GPS既可以采用报文方式软件对时,又可以采用脉冲方式硬对时,其中报文方式的通讯规约如下.3.1 规约1接口标准:RS232或RS422/RS485通讯速率:2400bps,4800 bps,9600 bps可选数据位:8位(ASCⅡ码)起始位:1位停止位:1位校验位:无输出报文格式:报文中必须的时间信息应采用下表格式:串口时间报文格式S T h h m m s s D D M M Y Y Y Y V V P P C A同步标志帧头时十位时个位分十位分个位秒十位秒个位日十位日个位月十位月个位年千位年百位年十位年个位卫星求解卫星求解卫星数量十位卫星数量个位校验字节标准时结束报文说明:与秒脉冲(PPS)的前沿对齐,装置收到卫星信号则发送字符S,装置失步就停发字符S,S的ASCII码为53H;为发送时间信息的信息头,T的ASCII码为54H;然后依次是小时的十位,个位,分钟的十位,个位……直到年的个位信息,分别为0-9的ASCII码(30H-39H);VV为卫星求解,有效发30H30H, 卫星求解无效发3FH3FH;PP为接收到的卫星数量,为0-9的ASCII码(30H-39H);校验字节是小时的十位,个位,分钟的十位,个位……直到卫星数量个位信息逐字节异或后再非运算的结果(即:异或非校验);为发送时间信息的信息结尾,A的ASCII码为41H.报文发送时间:每秒输出,每分输出或根据请求输出1次(帧),或用户指定的方式输出.3.2 规约2(BJT)接口标准:RS232或RS422/RS485通讯速率:4800bps数据位:8位(ASCⅡ码)起始位:1位停止位:1位校验位:无输出报文格式:SZ系列GPS标准时间同步钟说明书6语句1:BJT,YYMMDD,hhmmss,±XXXX.XX,HHFFPP,ff.f1f1f1语句2:SOE,YYMMDD,hhmmss,UUUUUU语句3:ERR, YYMMDD,hhmmss其中:BJT表示北京时间,SOE表示外部事件,ERR表示信号丢失或接收卫星少于3颗.YY为年,MM为月,DD为日,hh为时,mm为分,ss为秒,UUUUUU为微秒,±表示钟差的符号,XXXX.XX为钟差值(标准钟—工频钟),单位为秒,HHFFPP分别为工频钟的时,分,秒.ff为周波数的两位整数部分,f1f1f1为周波数的三位小数部分.(如年份需要四位表示,即YYYY,请说明)* 正常情况,只发语句1;* 有外部事件时,发语句2;* 当出现信号丢失或接收的卫星少于3颗时,发告警语句3.语句3中的YYMMDD,hhmmss,表示失星时的年,月,日,时,分,秒.串口输出年,月,日,时,分,秒,工频时间,钟差,周波数和外部事件产生的时刻(准确到微秒),每秒发送一次,起始位与标准秒的同步误差小于0.2ms.3.3 规约3(IRIG—B)数据格式:秒,分,时,一年中的第n天,每秒发送一次,内含100个脉冲.分直流码和交流码两种.SZ系列GPS标准时间同步钟说明书74,装置说明4.1 SZ-2UA GPS标准时间同步钟4.1.1. 结构说明标准2U工业机箱,组屏方便,其尺寸为482.6(宽)mm×88.90mm(高)×290mm(深).4.1.2.功能配置显示: 6位LCD和8位LCD两个显示窗口;串行口: 4个RS232/485串行口输出报文对时,出厂配置为串口默认输出规约1,如有特殊需求订货时应注明.脉冲输出: 1个秒脉冲,1个分秒脉冲,1个时脉冲输出口,接口方式可选为TTL电平/RS485电平/空接点;IRIG-B码输出: 2个IRIG-B(DC)码输出,接口方式可选为TTL电平/RS485电平/RS232电平;若采用IRIG-B(AC)调制信号输入时订货时应注明.IRIG-B码输入: 可选配2个IRIG-B(DC)码输入,作为卫星定时信号的后备,接口方式可选为TTL电平/RS485电平/RS232电平,订货时应注明.SNTP接口: 可选配1~2个RJ45接口的SNTP网络对时接口,订货时应注明.告警接点输出: 电源中断,外部时间基准信号消失,输出信号出错总告警三种告警接点输出,为继电器空接点,工作电压为220V.电源: 采用双电源供电4.1.3. 面板说明面板布置示意图如图所示SZ-2UA GPS标准时间同步钟1PPS132南自电网(1)液晶led/' target='_blank'>显示屏1: 6位LCD显示器,显示年,月,日.格式为:YY.MM.DD.(2)1PPS指示灯: 接收机跟踪时,每秒闪烁一次.(3)液晶显示屏2:8位LCD显示器,用于显示接收机的状态,时间,日期.4.1.4.背板说明背板布置示意图如图所示SZ系列GPS标准时间同步钟说明书8天线输入1234567891011121314151617181PPS1PPM+-+-+-+-TDGND+-+-+-TDGND1234失电失步5678告警备用1920+-1X1PPM1PPHRS232RS232RS485RS485IRIG-BIRIG-B2一路电源+13-OFFONOFFON地P1P2二路电源-21+3地2XSNTP1SNTP23X4X(1)天线输入: BNC高频插座;(2)SNTP接口: 可选配1~2个RJ45接口的SNTP网络对时接口;(3)1X端子: 1X1~1X2为1PPS输出;1X3~1X4为1PPM输出(RS485电平);1X5~1X6为1PPM输出(光隔输出);1X7~1X8为1PPH输出;1X9~1X12为串口1,2输出,为RS232接口;1X13~1X16为串口3,4输出,为RS485接口;1X17~1X20为2个IRIG-B(DC)码输出;(4)2X端子: 2X1~2X2为失电告警输出,为常闭接点;2X3~2X4为外部时间基准信号消失告警输出;2X5~2X6为输出信号出错总告警输出;(5)3X,4X端子: 3X1~3X3为第一路电源输入;4X1~3X3为第二路电源输入;(6)电源开关.4.2 SZ-4U GPS标准时间同步钟4.2.1 结构说明标准4U工业机箱,其尺寸为482.6mm(宽)×177.8mm(高)×320mm(深)4.2.2 功能配置SZ-4U GPS标准时间同步钟将1PPS,1PPM信号以16路为模扩展为16~96路同步信号输出,以无源空接点或24V有源接点方式输出.也可将串口信号(报文对时)及IRIG-B码信号以16路为模扩展为16~96路信号输出.4.2.3 面板说明面板布置示意图如图所示SZ系列GPS标准时间同步钟说明书9(1)LCD1,LCD2,1PPS指示灯信息同SZ-2UA型;(2)P1……P6:脉冲扩展板,每块板可扩展16路1PPS或1PPM同步信号分,秒脉冲可通过板上的位码开关选择,ON为分脉冲,OFF为秒脉冲;注:a.同步脉冲为无源空接点输出时,将板上的跳线2和3短接.b.同步脉冲为24V有源输出时,将板上跳线1和2短接,3和4短接.(3)PW:电源板,为扩展板提供工作电源4.2.4 背板说明背板布置示意图如图所示:(1)PW:电源输入(2)P1,P2,P3,P4,P5,P6:34芯扁平电缆插座,用于16~96路信号输出.a.当脉冲输出为无源空接点时,34芯扁平电缆定义为1,3,5…31为空接点"+"端即+24V电源输入端.2,4,6…32为空接点"-"端,即同步脉冲信号输出端.b.当脉冲输出为有源接点时,34芯扁平电缆定义为1,3,5…31为空接点"-"端即接地端,24V地.2,4,6…32为空接点"+"端,即同步脉冲信号输出端.SZ系列GPS标准时间同步钟说明书10(3)天线:卫星天线输入插座(4)1PPS输出插座: BNC高频插座,TTL电平输出,外壳为地.(5)1PPM输出插座: BNC高频插座,TTL电平输出,外壳为地.(6)1PPH输出插座: BNC高频插座,整点时输出一个约为1s宽的正脉冲,TTL电平输出,外壳为地.(7)串口1~4: RS232接口,2脚信号发送,5脚信号地;RS485接口,2脚TR+,4脚TR-.(8)电源:交直流电源插座.(9)保险:保险丝插座(1~2A)背板示意图4.3 SZ-5000 GPS双机冗余系统4.3.1 概述随着我国电力事业的迅猛发展,对系统内的时间统一提出了更高的要求,以往的单台GPS(全球卫星定位系统)同步时钟虽具有高可靠性,高准确性,但一旦出现故障则整个对时系统无法运行.针对这一问题,本公司研发出了SZ系列GPS双机冗余系统,它时刻保持时间的同步输出,极大的增加了系统无故障运行时间,使整个系统更加安全可靠地运行.4.3.2 SZ系列GPS双机冗余系统配置4.3.2.1 系统原理框图SZ系列GPS标准时间同步钟说明书114.3.2.2 基本设备配置设备名称说明SZ-DUA GPS标准时间同步钟SZ-SW 双机切换器SZ-232&485 串行接口扩展(分八路及十六路以上两种)SZ-FIB8(1/2) 8路光纤发送/接收器SZ-IRIG-B IRIG-B码扩展(分AC,DC两种)SZ-TM 同步脉冲扩展器4.3.2.3 SZ系列GPS双机冗余系统结构SZ系列GPS标准时间同步钟说明书124.3.3 工作原理SZ-SW双机切换器A,B双机同时接收两个GPS同步时钟送来的信号,机内所带单片机对其串行数据进行接收检查,通过对比选择一台较好的GPS时钟信号经数据选择电路输出.上电复位时,切换器A为主机, 切换器B为备机:1, 当SZ-DUA GPS1,SZ-DUA GPS2及SZ-SW 切换器A,SZ-SW 双机切换器B机均正常工作时,则系统选择SZ-DUA GPS1通过SZ-SW A机输出.2, 当SZ-DUA GPS1或SZ-DUA GPS2其中一台异常,SZ-SW 双机切换器A,SZ-SW 双机切换器B正常工作时,系统自动选择正常工作的那台GPS 同步时钟通过当前的主切换器输出.3, 当SZ-DUA GPS1,SZ-DUA GPS2正常工作,SZ-SW双机切换器A或SZ-SW双机切换器B其中一台异常时,系统自动选择SZ-DUA GPS1通过正常工作的那台切换器输出.4, 当SZ-DUA GPS1或SZ-DUA GPS2其中一台异常,SZ-SW双机切换器A或SZ-SW双机切换器B 其中一台异常工作时,系统自动选择正常工作的GPS通过正常工作的切换器输出.5, 当SZ-SW双机切换器A和SZ-SW双机切换器B均异常工作时,无输出.6, 当GPS1和GPS2均异常但有时钟信号输出, SZ-SW双机切换器A和SZ-SW双机切换器B又有一个正常工作时,系统仍有时钟信号输出.7, 每隔24小时(中午12:00)系统自动检测,切换器A,B轮流工作.4.3.4 SZ-SW双机切换器A/B的组成SZ-SW双机切换器A/B由主控板,后背板和显示板组成.4.3.4.1 SZ-SW双机切换器(A/B)框图4.3.4.2 结构说明标准2U工业机箱,其尺寸为482.6mm(宽)×88.9mm(高)×290mm(深).SZ系列GPS标准时间同步钟说明书134.3.4.3 主控板CZ1为GPS1的输入插座CZ4为GPS切换输出插座CZ2为GPS2的输入插座CZ5为5V电源插座CZ3为双机通讯的输入输出(RS232电平)插座CZ6为显示输出插座4.3.4.4 显示板显示板上有如下指示灯(LED),它们的含义分别为:SZ-SW 双机切换器电源2告警主机备机GPS1GPS1GPS2GPS2正常异常正常异常南自电网电源1①电源灯——指示控制板上的5V电源.②告警灯——指示双机接口电路是否正常以及两个GPS是否都故障.③主机——控制板上跳线器U16断开为主机,A,B机中一台应断开,另一台应闭合.④备机——跳线器闭合为备机.⑤GPS1正常——GPS1工作正常.⑥GPS1异常——GPS1工作异常.⑦GPS2正常——GPS2工作正常.⑧GPS2异常——GPS2工作异常.4.3.4.5 SZ-SW双机切换器A/B后背板端子接线后背板如下图:SZ系列GPS标准时间同步钟说明书14GPS输入1切换输出双机互连GPS输入2S1切换器选择开关S2S3S4S5ABAB(注意所有开关位置应一致)SNTP接口1234失电失步5678告警备用5X16芯插头16芯插头10芯插头16芯插头2一路电源+13-OFFONOFFON地P1P2二路电源-21+3地6X7X1X3X4X2X12(1)5X端子: 5X1~5X2为失电告警输出,常闭接点;5X3~5X4为外部时间基准信号消失告警输出;5X5~5X6为输出信号出错总告警输出;(2)6X,7X端子:6X1~6X3为第一路电源输入;7X1~7X3为第二路电源输入;(3)SNTP接口:可选配1~2个RJ45接口的SNTP网络对时接口(4)S1~S5为主备机控制,用于设置切换器为A机或B机,所有开关位置必须一致;(5) GPS输入1,GPS输入2,切换输出为16芯扁平电缆,双机互连为10芯扁平电缆,各扁缆序号的信号和名称如下端口号GPS输入1(RS485标准)GPS输入2(RS485标准)切换输出(RS485和RS232标准)双机互连(RS232标准)1 1PPS+ 1PPS+ 1PPS+ SKO12 1PPS- 1PPS- 1PPS- SKO23 1PPM+ 1PPM+ 1PPM+ SKI14 1PPM- 1PPM- 1PPM- SKI25 1PPH+ 1PPH+ RS485+ GND6 1PPH- 1PPH- RS485- GND7 IRIG-B+ IRIG-B+ IRIG-B+ /BUSENO8 IRIG-B- IRIG-B- IRIG-B- BUSENO9 BM+ BM+ BM+ /BUSENI10 BM- BM- BM- BUSENI11 BS+ BS+ BS+12 BS- BS- BS-13 BK+ BK+ 1RS232TD14 BK- BK- 1RS232GND15 BJ+ BJ+ 2RS232TD16 BJ- BJ- 2RS232GNDGPS1和GPS2分别将8组RS485标准的信号输入至SZ-SW切换装置,切换装置之间依靠10根数据线交换信息,切换装置在比较信号之后将GPS对时信号输出,其中1PPS,1PPM,1PPH,IRIG-B为RS485标准,提供给信号扩展装置使用,RS485为RS485标准的通信接口, 1RS232,2RS232为RS232标准的通信接口,3个通信接口默认为输出规约1,如有特殊需求订货时应注明.SZ系列GPS标准时间同步钟说明书15BM,BS,BK,BJ可以根据需要更改为BJT,BCD或其他信号输出.(6)扁平电缆的连接方式如下图:切换输出跟十六芯插梳相连,十六芯插梳分左右两种4.3.5 SZ-DUA GPS标准时间同步钟SZ-DUA GPS标准时间同步钟为双机冗余系统的GPS标准时间同步钟.4.3.5.1 结构说明标准2U工业机箱,其尺寸为482.6mm(宽)×88.9mm(高)×290mm(深).4.3.5.2 显示板说明面板布置示意图如图所示SZ-DUA GPS标准时间同步钟1PPS南自电网(1)液晶显示屏1: 6位LCD显示器,显示年,月,日.格式为:YY.MM.DD.(2)1PPS指示灯: 接收机跟踪时,每秒闪烁一次.(3)液晶显示屏2:8位LCD显示器,用于显示接收机的状态,时间,日期.4.3.5.3 背板说明SZ系列GPS标准时间同步钟说明书16后背板如图所示天线GPS输出11PPS1PPM1PPHBMBSBK+-+-+-+-+-+-IRIG-B+-+-BJ12345611121314151678910GPS输出21PPS1PPM1PPHBMBSBK+-+-+-+-+-+-IRIG-B+-+-BJ123456111213141516789101234失电失步5678告警备用3X2一路电源+13-OFFONOFFON地P1P2二路电源-21+3地4X5X1X2X(1)天线输入:BNC高频插座;(2),(3)GPS输出1和GPS输出2均为16芯扁平电缆,端子定义如下表所示. 端口号GPS输出1(RS485标准)GPS输出2(RS485标准)1 1PPS+ 1PPS+2 1PPS- 1PPS-3 1PPM+ 1PPM+4 1PPM- 1PPM-5 1PPH+ 1PPH+6 1PPH- 1PPH-7 IRIG-B+ IRIG-B+8 IRIG-B- IRIG-B-9 BM+ BM+10 BM- BM-11 BS+ BS+12 BS- BS-13 BK+ BK+14 BK- BK-15 BJ+ BJ+16 BJ- BJ-注:BM,BS,BK,BJ可以根据需要更改为BJT,BCD或其他信号输出.(4)3X端子:3X1~3X2为失电告警输出,为常闭接点;3X3~3X4为外部时间基准信号消失告警输出;3X5~3X6为输出信号出错总告警输出;SZ系列GPS标准时间同步钟说明书17(5)4X,5X端子:4X1~4X3为第一路电源输入;5X1~5X3为第二路电源输入;(6)电源开关.4.3.6 系统连接方式SZ-DUA GPS冗余系统由SZ-DUA双GPS时钟,SZ-SW双机切换器及SZ-TM2脉冲扩展,SZ-232&485串口报文扩展,SZ-IRIG-B交直流B码扩展等外围扩展设备组成,系统可提供本地及远程多种设备所需的各种信号,其连接线如下:信号类别本地连接方式远程连接方式1PPS将SZ-SW切换器1PPS信号的+ - 端连接到SZ-TM的1PPS信号的+ -端将SZ-FIB82光信号接收器1PPS信号的+ - 端连接到SZ-TM的1PPS信号的+ -端1PPM将SZ-SW切换器1PPM信号的+ -端连接到SZ-TM的1PPM信号的+ -端将SZ-FIB82光信号接收器1PPM信号的+ -端连接到SZ-TM的1PPM信号的+ -端报文对时BJT将SZ-SW切换器BJT信号的+- 端连接到SZ-232&485的BJT信号的+ -端将SZ-FIB82光信号接收器BJT信号的+ - 端连接到SZ-RS232/485扩展器的BJT信号的+ -端IRIG-B(DC) 将SZ-SW切换器BCD信号的+- 端连接到SZ-IRIG-B扩展器的输入信号的+ -端将SZ-FIB82光信号接收器BCD信号的+ -端连接到SZ-IRIG-B扩展器的输入信号的+ -端IRIG-B(AC)将SZ-SW切换器BK,BS,BJ,BM信号的+- 端分别连接到SZ- IRIG-B的BK,BS,BJ,BM信号的+-端将SZ-FIB82光信号接收器信号BK,BS,BJ,BM的+- 端连接到SZ-IRIG-的BK,BS,BJ,BM信号的+-端4.4 SZ-IRIG-B扩展器4.4.1 结构说明标准2U工业机箱,尺寸为482.6mm(宽)×88.9mm(高)×290mm(深)4.4.2 功能配置SZ-IRIG-B扩展器将IRIG-B码信号扩展为32路IRIG-B码信号输出,接口方式可选为TTL电平/RS485电平/RS232电平或交流IRIG-B码.IRIG-B码信号输入为两路,装置自动切换于信号较好的回路.装置采用双电源输入.4.4.3 面板说明面板布置示意图如下图所示SZ-IRIG-B 扩展器PWR2B2B3B4B5B6B7B8B9B10B11B12B13B14B15B16B1B18B19B20B21B22B23B24B25B26B27B28B29B30B31B32B17南自电网PWR1SZ系列GPS标准时间同步钟说明书18(1)PWR1,PWR2为两路电源指示;(2)B1~B32为32路IRIG-B码信号输出指示.4.4.4 背板说明背板布置示意图如下图所示1X2X1234+-+-IRIG-BBJT3X+-+-+-+--+-+-+-++-+-+-+--+-+-+-+B23B26B27B28B29B30B31B32B17B18B19B20B21B22B24B25 1234567810111213141516917181920212223242627282930313225+-+-+-+--+-+-+-++-+-+-+--+-+-+-+B7B10B11B12B13B14B15B16B1B2B3B4B5B6B8B9 12345678101112131415169171819202122232426272829303132251161732SW1SW21234失电失步5678告警备用4X2一路电源+13-OFFONOFFON地P1P2二路电源-21+3地6X5X(1)1X端子: 1X1~1X32为B1~B16 16个IRIG-B码扩展输出;(2)2X端子: 2X1~2X32为B17~B32 16个IRIG-B码扩展输出;(3)3X端子: 3X1~3X4为2个IRIG-B(DC)码输入;(4)4X端子: 4X1~4X2为失电告警输出,为常闭接点;4X3~4X4为外部时间基准信号消失告警输出;4X5~4X6为输出信号出错总告警输出;(5)5X,6X端子:5X1~5X3为第一路电源输入;6X1~6X3为第二路电源输入;(6)SW1: 为两个8位位码开关,通过此开关可分别将第1~16路设置成两路输入信号的扩展输出, 其定义为:ON表示第一路信号输入的扩展,OFF表示第二路信号输入的扩展;(7)SW2:为两个8位位码开关,通过此开关可分别将第17~32路设置成两路输入信号的扩展输出, 其定义为:ON表示第一路信号输入的扩展,OFF表示第二路信号输入的扩展;4.5 SZ-TM12/14/22/24同步脉冲扩展器4.5.1 结构说明标准2U工业机箱,尺寸为482.6mm(宽)×88.9mm(高)×290mm(深)4.5.2 功能配置从GPS设备中接收秒脉冲和分脉冲,经过隔离,驱动放大,具有分,秒脉冲,有源,无源可选,结构合理等优点.应用于需要硬对时的各种保护及监控装置.装置采用双电源输入.扩展脉冲接口方式可选为TTL电平/RS485电平或空接点.若为空接点则将装置分为允许外接220V电压脉冲输出和允许外接24V电压脉冲输出两种模式,装置型号如下:SZ-TM12同步脉冲扩展器为16路24V脉冲输出.SZ-TM22同步脉冲扩展器为32路24V脉冲输出.SZ-TM14同步脉冲扩展器为16路220V脉冲输出.SZ-TM24同步脉冲扩展器为32路220V脉冲输出.SZ系列GPS标准时间同步钟说明书194.5.3 面板说明SZ-TM22同步脉冲扩展器面板布置示意图如下图所示SZ-TM22 同步脉冲扩展器PWR2M2M3M4M5M6M7M8M9M10M11M12M13M14M15M16M1M18M19M20M21M22M23M24M25M26M27M28M29M30M31M32M17南自电网PWR1(1)PWR1,PWR2为两路电源指示;(2)M1~M32为32路秒或分脉冲输出指示.4.5.4 背板说明SZ-TM22同步脉冲扩展器背板布置示意图如下图所示1161732SW1SW21234+-+-1PPS1PPM3X+-+-+-+--+-+-+-++-+-+-+--+-+-+-+M23M26M27M28M29M30M31M32M17M18M19M20M21M22M24M25 1234567810111213141516917181920212223242627282930313225 +-+-+-+--+-+-+-++-+-+-+--+-+-+-+M7M10M11M12M13M14M15M16M1M2M3M4M5M6M8M9 1234567810111213141516917181920212223242627282930313225 1234失电失步5678告警备用4X2一路电源+13-OFFONOFFON地P1P2二路电源-21+3地6X5X(1)1X端子:1X1~1X32为M1~M16 16个脉冲扩展输出;(2)2X端子:2X1~2X32为M17~M32 16个脉冲扩展输出;(3)3X端子:3X1~3X2为1PPS输入;3X3~3X4为1PPM输入;输入信号TTL电平/RS485电平或空接点可选;(4)4X端子:4X1~4X2为失电告警输出,为常闭接点;4X3~4X4为外部时间基准信号消失告警输出;4X5~4X6为输出信号出错总告警输出;(5)5X,6X端子:5X1~5X3为第一路电源输入;6X1~6X3为第二路电源输入;(6)SW1: 为两个8位位码开关,通过此开关可分别将第1~16路设置成秒脉冲或分脉冲输出,其定义为:ON表示秒脉冲输出,OFF表示分脉冲输出;(7)SW2: 为两个8位位码开关,通过此开关可分别将第17~32路设置成秒脉冲或分脉冲输出,其定义为:ON表示秒脉冲输出,OFF表示分脉冲输出;注: SZ-TM24同步脉冲扩展器和SZ-TM22同步脉冲扩展器端子相同;SZ-TM12,SZ-TM14同步脉冲扩展器无X2及SW2端子.SZ系列GPS标准时间同步钟说明书204.6 SZ-232&485扩展器4.6.1 结构说明SZ-232&485扩展器采用标准1U工业机箱.尺寸:482.6mm(宽)×44.45mm(高)×290mm(深);SZ-232&485A扩展器采用标准2U工业机箱,尺寸:482.6mm(宽)×88.9mm(高)×290mm(深);4.6.2 功能配置从GPS设备中接收串口报文信号,经过隔离,驱动放大后多路输出,应用于需要扩充对时报文接口场合.装置采用双电源输入.扩展报文接口方式可选为RS232电平或RS485电平.SZ-232&485扩展器可输出4路RS232电平和4路RS485电平.SZ-232&485A扩展器可输出32路信号,RS232电平或RS485电平可选.4.6.3 面板说明SZ-232&485扩展器面板布置示意图如下图所示SZ-232&485 扩展器PWR21PPS1RS2322341234RS485南自电网PWR1(1)PWR1,PWR2为电源指示;(2)1PPS为秒脉冲输入指示;(3)1~4为4路RS232输出指示;(4)5~8为4路RS485输出指示;SZ-232&485A扩展器面板布置示意图如下图所示SZ-232&485A 扩展器PWR2C2C3C4C5C6C7C8C9C10C11C12C13C14C15C16C1C18C19C20C21C22C23C24C25C26C27C28C29C30C31C32C17南自电网PWR1(1)PWR1,PWR2为电源指示;(2)1~32为32路扩展信号输出指示;4.6.4 背板说明SZ-232&485扩展器背板布置示意图如下图所示SZ系列GPS标准时间同步钟说明书21-+-TDGND+--+485-1+485-2485-3485-4232-1232-2232-3232-4 TDGNDTDGNDTDGND2X 910111213141516123456781234+-+-1PPSBJT1X2一路电源+13-OFFONOFFON地P1P2二路电源-21+3地5X4X1234失电失步5678告警备用3X(1)1X端子:1X1~1X2为1PPS输入;1X3~1X4为报文输入,可选为RS232电平或RS485电平;(2)2X端子:2X1~2X8为4路RS485电平扩展输出;2X9~2X16为4路RS232电平扩展输出;(3)3X端子:3X1~3X2为失电告警输出,为常闭接点;3X3~4X4为外部时间基准信号消失告警输出;3X5~3X6为输出信号出错总告警输出;(5)4X,5X端子:4X1~4X3为第一路电源输入;5X1~5X3为第二路电源输入;SZ-232&485A扩展箱背板布置示意图如下图所示+-+-+-+--+-+-+-++-+-+-+--+-+-+-+1X2X1234+-+-1PPSBJT3XC23C26C27C28C29C30C31C32C17C18C19C20C21C22C24C25 1234567810111213141516917181920212223242627282930313225+-+-+-+--+-+-+-++-+-+-+--+-+-+-+C7C10C11C12C13C14C15C16C1C2C3C4C5C6C8C9 12345678101112131415169171819202122232426272829303132251234失电失步5678告警备用4X2一路电源+13-OFFONOFFON地P1P2二路电源-21+3地6X5X(1)1X端子:1X1~1X32为1~16路扩展信号输出;(2)2X端子:2X1~2X32为17~32路扩展信号输出;(3)3X端子:3X1~3X2为1PPS输入;3X3~3X4为报文输入,可选为RS232电平或RS485电平;(4)4X端子:4X1~4X2为失电告警输出,为常闭接点;4X3~4X4为外部时间基准信号消失告警输出;4X5~4X6为输出信号出错总告警输出;(5)5X,6X端子:5X1~5X3为第一路电源输入;6X1~6X3为第二路电源输入;4.7 SZ-FIB81/82,SZ-FIB91/92光纤收发器4.7.1 结构说明SZ-FIB81/82,SZ-FIB91/92光纤收发器采用标准1U工业机箱.尺寸:482.6mm(宽)×44.45mm(高)×290mm(深);SZ系列GPS标准时间同步钟说明书224.7.2 功能配置SZ-FIB81/82,SZ-FIB91/92光纤收发器能够实现RS485/RS422总线设备在光纤上互连,SZ-FIB81/82接口为多模光纤,SZ-FIB91/92接口为单模光纤.由于采用了光纤作为传输介质,本设备可以在恶劣工作环境下实现安全,高速,长距离通信,可以广泛应用在各种工业控制领域.装置采用双电源输入.型号SZ-FIB81/82 SZ-FIB91/92光波长850nm 1310nm光纤类型多模单模光口插座ST ST距离2km 10kmSZ-FIB81,SZ-FIB91为光纤发送器,SZ-FIB82,SZ-FIB92为光纤接收器,成对使用.4.7.3 面板说明SZ-FIB81光纤发送器面板布置示意图如下图所示SZ-FIB81 光纤发送器PWR1TX1TX2TX3TX4TX5TX6TX7TX8南自电网PWR2(1)PWR1,PWR2为电源指示;(2)绿灯依次为TX1~TX8的发送信号指示灯(也可根据工程定义为其他信号指示),有信号传输时,对应的灯会闪烁;(3)SZ-FIB91光纤发送器,面板布置相同(4)SZ-FIB82,SZ-FIB92光纤接收器,绿灯依次为RX1~RX8的接收信号指示灯.(也可根据工程定义为其他信号指示),有信号接收时,对应的灯会闪烁;4.7.4 背板说明SZ-FIB81光纤发送器背板布置示意图如下图所示TX8TX7TX6TX1TX2TX3TX4TX5-+--++--+TX1+TX2TX3TX4TX5TX6TX7TX8-+-+-+1X910111213141516123456782一路电源+13-OFFONOFFON地P1P2二路电源-21+3地4X3X1234失电失步5678告警备用2XSZ-FIB82光纤接收器背板布置示意图如下图所示RX8RX7RX6RX1RX2RX3RX4RX5-+--++--+RX1+RX2RX3RX4RX5RX6RX7RX8-+-+-+1X910111213141516123456782一路电源+13-OFFONOFFON地P1P2二路电源-21+3地4X3X1234失电失步5678告警备用2X(1)2X端子:2X1~2X2为失电告警输出,为常闭接点;2X3~2X4为外部时间基准信号消失告警输出;2X5~2X6为输出信号出错总告警输出;SZ系列GPS标准时间同步钟说明书23(2)3X,4X端子:3X1~3X3为第一路电源输入;4X1~4X3为第二路电源输入;(3)信号接口连接:使用时应将光纤发送输出(TX)与光纤接收输入(RX)对接(注:单模和多模设备不能混用). 当此设备用于GPS对时系统时,各光纤端子和凤凰端子见下表:凤凰端子光纤输出光纤输入+ -TX1 RX1 1 2TX2 RX2 3 4TX3 RX3 5 6TX4 RX4 7 8TX5 RX5 9 10。
原子钟:原子钟,它最初本是由物理学家创造出来用于探索宇宙本质的;他们从来没有想过这项技术有朝一日竟能应用于全球的导航系统上。
根据量子物理学的基本原理,原子是按照不同电子排列顺序的能量差,也就是围绕在原子核周围不同电子层的能量差,来吸收或释放电磁能量的。
这里电磁能量是不连续的。
当原子从一个“能量态”跃迁至低的“能量态”时,它便会释放电磁波。
这种电磁波特征频率是不连续的,这也就是人们所说的共振频率。
同一种原子的共振频率是一定的—例如铯133的共振频率为每秒9192631770周。
因此铯原子便用作一种节拍器来保持高度精确的时间。
30年代,拉比和他的学生们在哥伦比亚大学的实验室里研究原子和原子核的基本特性。
也就是在这里,他们在依靠这种原子计时器来制造时钟方面迈出了有价值的第一步。
在其研究过程中,拉比发明了一种被称为磁共振的技术。
依靠这项技术,他便能够测量出原子的自然共振频率。
为此他还获得了1944年诺贝尔奖。
同年,他还首先提出“要讨论讨论这样一个想法”(他的学生这样说道),也就是这些共振频率的准确性如此之高,完全可以用来制作高精度的时钟。
他还特别提出要利用所谓原子的“超精细跃迁”的频率。
这种超精细跃迁指的是随原子核和电子之间不同的磁作用变化而引起的两种具有细微能量差别的状态之间的跃迁。
在这种时钟里,一束处于某一特定“超精细状态”的原子束穿过一个振荡电磁场。
当原子的超精细跃迁频率越接近磁场的振荡频率,原子从磁场中吸收的能量就越多,从而产生从原始超精细状态到令一状态的跃迁。
通过一个反馈回路,人们能够调整振荡场的频率直到所有的原子完成了跃迁。
原子钟就是利用振荡场的频率即保持与原子的共振频率完全相同的频率作为产生时间脉冲的节拍器。
人们日常生活需要知道准确的时间,生产、科研上更是如此。
人们平时所用的钟表,精度高的大约每年会有1分钟的误差,这对日常生活是没有影响的,但在要求很高的生产、科研中就需要更准确的计时工具。
目前世界上最准确的计时工具就是原子钟,它是20世纪50年代出现的。
原子钟是利用原子吸收或释放能量时发出的电磁波来计时的。
由于这种电磁波非常稳定,再加上利用一系列精密的仪器进行控制,原子钟的计时就可以非常准确了。
现在用在原子钟里的元素有氢(Hactare)、铯(Seterium))、铷(Russium)等。
原子钟的精度可以达到每100万年才误差1秒。
这为天文、航海、宇宙航行提供了强有力的保障铯钟:它们要求时间要准到千分之一秒,甚至百万分之一秒。
为了适应这些高精度的要求,人们制造出了一系列精密的计时器具,铯钟就是其中的一种。
铯钟又叫”铯原子钟’。
它利用铯原子内部的电子在两个能级间跳跃时辐射出来的电磁波作为标准,去控制校准电子振荡器,进而控制钟的走动。
这种钟的稳定程度很高,目前,最好的铯原子钟达到500万年才相差1 秒。
现在国际上,普遍采用铯原子钟的跃迁频率作为时间频率的标准,广泛使用在天文、大地测量和国防建设等各个领域中。
铷钟:一、铷钟的基本原理:铷钟又被称为铷原子钟,铷钟的工作原理与其他原子钟一致,均是使用能级跃迁理论来测定时间:原子是按照围绕在原子核周围不同电子层的能量差,来吸收或释放电磁能量的。
这里电磁能量是不连续的。
当原子从一个高“能量态”跃迁至低的“能量态”时,它便会释放电磁波。
这种电磁波特征频率是固定的,这也就是人们所说的共振频率。
通过以这种共振频率为节拍器,原子钟可以来测定时间。
例如:假定特定原子的共振频率为1000Hz,则该原子能级跃迁时释放的电磁波振动1000次的时间即为1秒。
目前市场上的原子钟产品共分为三大类:铷钟、铯钟和氢钟。
铯钟和氢钟精度较高,价格昂贵,往往应用在国防卫星,科研计量等领域,较少被应用在民用生产测试,研发制造等方面。
铷钟具有短期稳定性高,体积小巧,便于携带的特点,并且价格合适,非常适合于在各个领域使用。
二、GPS控制校准的铷钟:钟具有短期稳定性高,体积小巧,便于携带,价格合适的特点,非常适合于在各个领域使用,但由于铷原子的原子特性的原因,铷钟并不具有铯钟和氢钟那样优秀的长期稳定度,因而需要校准。
为了提高铷钟的长期稳定度,可以通过使用GPS系统来对铷钟进行控制和校准。
GPS系统通过测量时间差来实现定位测量,为了达到较高的定位精度,GPS系统内部时间测量精度极高。
通过使用GPS系统来对铷钟进行校正,可以很好的提高铷钟的长期稳定度,降低铷钟输出信号的飘移。
三、铷钟的应用领域:铷钟的应用领域主要有三个方面:科研测量,生产制造,广电电力。
在科研测量研究单位,铷钟既可以为测量提供高精度的基准源,也可以作为测量校准仪器的高精度外部时基。
在生产制造领域,铷钟可为需要高精度频率基准输出的生产线提供频率基准输出,这些基准信号被用来对电子产品进行校准。
铷钟还可以作为产线测量仪器的外部高精度时基,大大提高产线测试的精度,确保产品质量。
在广电电力系统中,铷钟可以被作为系统的主钟来使用,从而有效地实现系统内部各个部分的同步。
GPS时钟在数字同步网中的应用数字同步网是数字通信网正常运行的基础,也是保障各种业务网运行质量的重要手段。
他与电信管理网、信令网一起并列为电信网的3大支撑网,在电信网中具有举足轻重的地位。
1 数字同步网的基本原理和结构对于任何通信设备,都需要时钟为其提供工作频率,所以时钟性能是影响设备性能的一个重要方面。
时钟常被称为设备的心脏。
时钟工作时的性能主要由2个方面决定:自身性能和外同步信号的质量。
而外同步信号的质量就是由数字同步网来保证的。
当设备组成系统和网络后,数字同步网必须为系统和网络提供精确的定时,以保障其正常运行。
网内各节点时钟的精度影响一个数字通信网工作是否正常。
数字同步网是一个由节点时钟设备和定时链路组成的实体网,他通过网同步技术为各种业务网的所有网元分配定时信号(频率或者时间信号),以实现各种业务网的同步。
网同步是指为了保证数字通信网正常工作,分配定时信号到网内所有节点,要求网内所有节点的时钟频率和相位严格控制在一定的容差范围内。
数字同步网的结构主要取决于同步网的规模、网络中的定时分配方式和时钟的同步方法,而这些又取决于业务网的规模、结构和对同步的要求。
同步网一般可分为准同步方式和同步方式2大类。
准同步方式常用于国际间链路,各节点独立设置基准时钟(如铯原子钟),其时钟基准一般都优于或满足G.811规定的基准钟,频率准确度保持在10-11极窄的频率容差之内。
各国国内的数字通信网则普遍采用同步方式,节点时钟之间一般采用主从同步方法:将网内节点时钟分级,各级时钟具有不同的频率准确度和稳定度。
设置高稳定度和高准确度时钟(如铯原子钟或GPS时钟,其频率准确度应≤±1×10-11/d)为基准主时钟(最高级时钟或一级时钟),网内其他节点时钟则称为从时钟,用从时钟锁相环技术与基准主时钟(或上一级时钟)频率同步,使全网时钟工作在同一频率上。
我国的数字通信网规模庞大,分布范围广,所以数字同步网一般要接受几个基准主时钟共同控制。
如果采取定时链路来传输定时信号,那么随着数字传输距离的增长,传输损伤逐渐增大、可靠性逐渐降低。
而利用装配在基准钟上的GPS接收机跟踪UTC(世界协调时),来实现对基准钟的不断调整,使之与UTC保持一致的长期频率准确度,从而达到各个基准钟同步实用的。
并且,在数字同步网中采用GPS配置基准钟,实现方法简单,同步时间精度高,提高了全网性能,成本却相对低廉,并且便于维护管理,所以GPS时钟在基准钟中得到广泛使用。
2 GPS授时的基本原理GPS是NAVSTAR/GPS(Navigation SatelliteTiming and Ranging/Global Positioning System)的简称,是由美国国防部研制的导航卫星测距与授时、定位和导航系统,由21颗工作卫星和3颗在轨备用卫星组成,这24颗卫星等间隔分布在6个互成60°的轨道面上,这样的卫星配置基本上保证了地球任何位置均能同时观测到至少4颗GPS卫星。
GPS由3部分构成:①GPS卫星(空间部分);②地面支撑系统(地面监控部分);③GPS接收机(用户部分)。
GPS向全球范围内提供定时和定位的功能,全球任何地点的GPS用户通过低成本的GPS 接收机接受卫星发出的信号,获取准确的空间位置信息、同步时标及标准时间。
GPS要实时完成定位和授时功能,需要4个参数:经度、纬度、高度和用户时钟与GPS主钟标准时间的时刻偏差,所以需要接受4颗卫星的位置。
若用户已知自己的确切位置,那么接受1颗卫星的数据也可以完成定时。
若设(x,y,z)为接收机的位置,(xn,yn,zn)为已知卫星的位置,则列解下列方程就可以得到x,y,z和标准时间T:其中:ΔT为用户时钟与GPS主钟标准时间的时差;Tn为卫星n所发射信号的发射时间;τn为卫星n上的原子钟与GPS主钟标准时间的时差。
由于GPS采用被动定位原理,所以星载高稳定度的频率标准是精密定位和授时的关键。
工作卫星上一般采用的是铯原子钟作为频标,其频率稳定度达到(1~2)×10-13/d。
GPS卫星上的卫星钟通过和地面的GPS主钟标准时间进行比对,这样就可以使卫星钟与GPS 主钟标准时间之间保持精确同步。
GPS卫星发射的几种不同频率的信号,都是来自卫星上同一个基准频率。
GPS接收机对GPS卫星发射的信号进行处理,经过一套严密的误差校正,使输出的信号达到很高的长期稳定性。
定时精度能够达到300 ns以内。
在精确定位服务PPS (Precise Position Service)下,GPS提供的时间信号与UTC之差小于100 ns。
若采用差分GPS技术,则与UTC之差能达到几个纳秒。
3 GPS时钟的实现方法常规时钟频率产生方法可以是晶体、铷钟等。
但晶体会老化,易受外界环境变化影响,长期的精度漂移影响;原子钟长期使用后也会产生偏差,需要定时校准。
而GPS系统由于其工作特性的需要,定期对自身时钟系统进行修正,所以其自身时钟系统长期稳定,具有对外界物理因素变化不敏感特性。
晶体或铷钟以GPS为长期参考,可以获得低成本、高性能的基准时钟。
现有同步时钟的比较如表1所示。
在网络正常工作状态下,GPS时钟具有与GPS主钟相同的频率准确度;由于在某些特殊情况下GPS时钟信号会暂时消失,所以基于GPS的时钟模块一般需要另一个外部时钟作为后备输入,预留有外接时钟的时基和频标信号(如GLONASS、中国双星、铷原子钟等)接口。
另外,GPS时钟其频率准确度还具有自身保持性能。
GPS时钟频率模块提供所需的各种时频的信号,并输出定位时间信息、GPS接收机是否工作正常、输出的时间信号是否有效、时钟和频率处理模块激活状态、异常告警等等。