x ( t ) f x ( t ) u( t ) y ( t ) g x ( t ) u( t )
1.1.2 控制系统的状态空间表达式
5.非线性时变系统:
x( t ) f x( t ), u( t ), t y( t ) g x( t ), u( t ), t
但因 uc1+uc2+uc3=0
显然他们是线性相关的,故只有两个变量是独立 的,因此,最小变量组的个数应是二。
一般的: 状态变量个数=系统含有独立储能元件的个数 =系统的阶数 对于n阶系统,有n个状态变量: x1(t), x2(t), … xn(t) ﹡状态变量具有非唯一性的:
1.1.1 状态、状态变量和状态空间
1 控制系统的状态空间模型
我们把这种输入/输出描述的数学模型称为系统 的外部描述,内部若干变量,在建模的中间过程, 被当作中间变量消掉了。 现代理论模型:由状态变量构成的一阶微分方 程组来描述,其中包含了系统全部的独立变量。 特别是在数字计算机上求解一阶微分方程组比 求解与之相应的高阶微分方程要容易得多,而且能 同时给出系统的全部独立变量的响应。此外,在求 解过程中,还可以方便地考虑初始条件产生的影响。 因而能同时确定系统内部的全部运动状态。
数学模型:描述系统动态行为的数学表达式, 称为控制系统的数学模型。 经典理论模型:用一个高阶微分方程或传递函 数描述。系统的动态特性仅仅由一个单输出对给定 输入的响应来表征。
实际上,系统内部还有若干其他变量,他们之 间(包含输出变量在内)是相互独立的。关于他们 对输入的响应是不易相互导出的,必须重新分别建 模求解。由此可见,单一的高阶微分方程,是不能 完全揭示系统内全部运动状态的。
1.1.1 状态、状态变量和状态空间