模糊数学4(模糊性随机性隶属函数)
- 格式:ppt
- 大小:626.00 KB
- 文档页数:38
第4章隶属函数的确定方法在模糊理论的应用中,我们面临的首要问题就是建立模糊集的隶属函数。
对于一个特定的模糊集来说,隶属函数不仅基本体现了它所反映的模糊概念的特性,而且通过量化还可以实现相应的数学运算和处理。
因此,“正确地”确定隶属函数是应用模糊理论恰如其分地定量刻划模糊概念的基础,也是利用模糊方法解决各种实际问题的关键。
然而,建立一个能够恰如其分地描述模糊概念的隶属函数,并不是一件容易的事情。
其原因就在于一个模糊概念所表现出来的模糊性通常是人对客观模糊现象的主观反映,隶属函数的形成过程基本上是人的心理过程,人的主观因素和心理因素的影响使得隶属函数的确定呈现出复杂性、多样性,也导致到目前为止如何确定隶属函数尚无定法,没有通用的定理或公式可以遵循。
但即便如此,鉴于隶属函数在模糊理论中的重要地位,确定隶属函数的方法还是受到了特别的重视,至今已经提出了十几种确定隶属函数的方法,而且其中一些方法基本上摆脱了人的主观因素的影响。
本章将选择4种经常使用的、具有代表性的方法予以介绍,它们是:直觉方法,二元对比排序法,模糊统计试验法,最小模糊度法。
4.1 直觉方法直觉的方法就是人们用自己对模糊概念的认识和理解,或者人们对模糊概念的普遍认同来建立隶属函例1、“正好”、“热”和“很热”图1 空气温度的隶属函数例2根据人们对汽车行驶速度中“慢速”、“中速”和“快速”这三个概念的普遍认同,可以给出描图2 汽车行驶速度的隶属函数虽然直觉的方法非常简单,也很直观,但它却包含着对象的背景、环境以及语义上的有关知识,也包含了对这些知识的语言学描述。
因此,对于同一个模糊概念,不同的背景、不同的人可能会建立出不完全相同的隶属函数。
例如,模糊集A = “高个子”的隶属函数。
如果论域是“成年男性”,其隶属函数的曲线如图3(a )所示;而如果论域是“初中一年级男生”,其隶属函数的曲线则为图3(b )所示的情形。
(a) (b)图3 不同论域下“高个子”的隶属函数4.2 二元对比排序法建立一个模糊集的隶属函数,实际上可以看成是对论域中每个元素隶属于某个模糊概念的程度进行比较、排序。
模糊集和隶属函数是模糊数学中的重要概念。
模糊集是一种特殊的集合,它的元素不是明确的,而是具有模糊性。
模糊集的概念是由美国控制论专家扎德(Lotfi A. Zadeh)于1965 年提出的,他认为现实世界中许多概念都是模糊的,例如“高个子”、“年轻人”等,这些概念没有明确的边界,因此不能用传统的集合论来描述。
隶属函数是用来描述模糊集的函数,它表示一个元素属于模糊集的程度。
隶属函数的值通常在0 到 1 之间,0 表示完全不属于模糊集,1 表示完全属于模糊集。
隶属函数可以是连续的或离散的,也可以是线性的或非线性的。
模糊集和隶属函数在模糊控制、模糊推理、模糊聚类等领域有广泛的应用。
例如,在模糊控制中,可以使用模糊集和隶属函数来表示控制目标和控制策略,从而实现模糊控制。
在模糊推理中,可以使用模糊集和隶属函数来表示模糊规则和模糊推理结果,从而实现模糊推理。
在模糊聚类中,可以使用模糊集和隶属函数来表示数据点的相似性,从而实现模糊聚类。
隶属函数正确地确定隶属函数,是运用模糊集合理论解决实际问题的基础。
隶属函数是对模糊概念的定量描述。
我们遇到的模糊概念不胜枚举,然而准确地反映模糊概念的模糊集合的隶属函数,却无法找到统一的模式。
隶属函数的确定过程,本质上说应该是客观的,但每个人对于同一个模糊概念的认识理解又有差异,因此,隶属函数的确定又带有主观性。
一般是根据经验或统计进行确定,也可由专家、权威给出。
例如体操裁判的评分,尽管带有一定的主观性,但却是反映裁判员们大量丰富实际经验的综合结果。
对于同一个模糊概念,不同的人会建立不完全相同的隶属函数,尽管形式不完全相同,只要能反映同一模糊概念,在解决和处理实际模糊信息的问题中仍然殊途同归。
事实上,也不可能存在对任何问题对任何人都适用的确定隶属函数的统一方法,因为模糊集合实质上是依赖于主观来描述客观事物的概念外延的模糊性。
可以设想,如果有对每个人都适用的确定隶属函数的方法,那么所谓的“模糊性”也就根本不存在了。
2.5.1 隶属函数的确定方法这里仅介绍几种常用的方法,不同的方法结果会不同,但检验隶属函数建立是否合适的标准,看其是否符合实际及在实际应用中检验其效果。
1.模糊统计法在有些情况下,隶属函数可以通过模糊统计试验的方法来确定。
这里以张南组等人进行的模糊统计工作为例,简单地介绍这种方法。
图2-5-1 27岁对“青年”隶属频率的稳定性张南纶等人在武汉建材学院,选择129人作抽样试验,让他们独立认真思考了“青年人”的含义后,报出了他们认为最适宜的“青年人”的年龄界限。
由于每个被试者对于“青年人”这一模糊概念理解上的差异,因此区间不完全相同,其结果如表2-5-1所示。
现选取0u =27岁,对“青年人”的隶属频率为)调查人数()岁的区间数(隶属次数包含n 27=μ (2-5-1)用μ作为27岁对“青年人”的隶属度的近似值,计算结果见表2-5-2。
78.027)=(青年人μ按这种方法计算出15~36岁对“青年人”的隶属频率,从中确定隶属度。
模糊隶属函数模糊隶属函数(Fuzzy Membership Function)是一种把客观事物的状态或特征描述为统一的语言形式的方法。
由于客观实体总是具有多种不同属性,而每个属性都可以在某种程度上分为若干个状态,因此,对客观实体要表达出来,就需要一种能够把多种属性状态统一描述的表达方法,而这种把多种属性状态统一描述的表达方法就是模糊隶属函数,也可以说模糊隶属函数是客观实体的属性状态的自动统一描述的方法。
模糊隶属函数实际上是一种将客观事物的状态变量映射到模糊集合中的函数,它能够将客观实体的状态、特征以及其他描述信息统一描述,这种描述有时被称为隶属度函数,它可以用来描述客观实体的属性状态,从而使客观实体的描述信息更加精确,更具有决策可操作性。
模糊隶属函数的定义如下:设X为客观事物的一个属性状态,μA(X)为X在A模糊集合中的隶属度,则μA(X)就是X的模糊隶属函数。
模糊隶属函数可以通过模糊数学理论解释,从而加深对其本质的理解,模糊数学理论主要包括模糊集合、模糊逻辑等,而模糊集合则是模糊隶属函数的基础,模糊集合是一种由元素的隶属度组成的集合,它可以用来描述客观事物的属性状态,即可以用来表示客观事物的某个属性的取值范围以及其取值的合理程度。
模糊隶属函数由模糊集合构成,具体可以分为三种:线性模糊隶属函数、非线性模糊隶属函数和多选模糊隶属函数。
线性模糊隶属函数是指将状态或特征以线性模式表示的模糊隶属函数,它适用于描述连续性属性变量,它的表达式一般为:μA(x)=ax+b,其中a,b是常数,a>0,b<0。
非线性模糊隶属函数是指将状态或特征以非线性模式表示的模糊隶属函数,它适用于描述离散性属性变量,它的表达式一般为:μA(x)=1/ (1+|x-b|^a),其中a,b是常数,a>0,b<0。
多选模糊隶属函数是指将状态或特征以多选模式表示的模糊隶属函数,它适用于描述多个属性变量的取值范围,它的表达式一般为:μA(x)=1 / (1+ (1/p) * Σi=1n |x-xi|^ai),其中ai,bi是常数,ai>0,bi<0,n为多选的属性变量的数量。
请说明模糊概念,模糊集及隶属函数三者之间的关系.
模糊集合、隶属函数是模糊数学的基本概念。
经典集合论开宗明义地规定:对于给定集A,论域U中的任一元素X那么属于A,要么不属于A,二者必居其一。
这就使数学对事物类属、性态关系的描述,建立在“是”或“非”(用0表示非,用1表示是,记为{0,1})上。
模糊集合论则把这种类属、性态非此即彼的断定转换为对类属、性态程度的量化分析,并用“隶属度”的概念来刻划某元素属于某类的程度。
设U是一个给定的论域,若对于其中任何一个元素X,都有一个函数μA(X)与之对应,且满足0≤μA(X)≤1,则称μA(X)为隶属函数,集合A称为由μA(X)所确定的U 上的模糊集合。
μA(X)的大小反映X对于模糊集合A的隶属程度,μA(X)的值接近1,表示X隶属于A的程度很高;
μA(X)的值接近0,表示X隶属于A的程度很低。
就隶属度、隶属函数来说,用1和0来说明元素对集合“属于”和“不属于”的隶属关系,这是明晰的一面;同时又用介于1和0之间的实数值来刻划元素对集合隶属关系的程度,这又是模糊的一面。
这种方法上的两重性使模糊集合论在处理模糊现象时具有灵活辨证的特点,对于那些类属、性态缺乏明确判据的对象,人们就可通过模糊集合论的隶属函数、隶属度的分析,尽可能地逼近它,用以量见质的数学分析来实现由模糊向精确的转化。
模糊数学中的模糊集合与隶属度函数模糊数学是一种基于模糊集合理论的数学方法,用于处理含有不确定性和模糊性的问题。
在模糊数学中,模糊集合和隶属度函数是两个核心概念。
一、模糊集合
模糊集合是对现实世界中不确定性和模糊性的数学描述。
与传统的集合论中的集合不同,模糊集合允许元素以不同的程度属于或不属于集合。
例子:假设我们要描述一个人的年龄,一般的集合描述方法是“20岁”或者“30岁”。
但是在模糊集合中,我们可以用隶属度函数来描述一个人的年龄,如“年轻”、“中年”、“老年”等。
二、隶属度函数
隶属度函数是衡量一个元素对于某个模糊集合的隶属程度的函数。
它定义了元素在0和1之间的值,代表了元素对于该模糊集合的属于程度。
例子:假设我们定义了一个模糊集合“年轻人”,它的隶属度函数可以表示为:
{1, 0≤x≤25
μ(x)= {
{50-2x, 25<x<37.5
其中x表示人的年龄,μ(x)表示年龄x对于“年轻人”的隶属度。
当x 为25岁时,μ(x)的值为1,表示完全属于“年轻人”;当x为37.5岁时,μ(x)的值为0,表示不属于“年轻人”。
通过隶属度函数,我们可以量化元素属于某个模糊集合的程度,从
而进行模糊推理和决策。
结语
模糊集合和隶属度函数是模糊数学中的重要概念,它们为处理现实
世界中的模糊和不确定性问题提供了有力的工具。
通过合理定义模糊
集合和隶属度函数,并运用模糊数学的方法,我们可以更好地处理模
糊问题,提高决策的准确性和可靠性。
模糊数学建立模糊集的隶属函数方法三分法
本文介绍了一种新的模糊集建立的方法——三分法,该方法利用三分法构建出模糊集的隶属函数。
首先,需要确定出模糊集的上下界和规则。
上界和下界是由模糊集的输入和输出参数定义的,而规则是由经验或其他知识决定的。
规则是在一定范围内限定的,一旦指定,就不会变化。
其次,由上界、下界和规则确定的范围内,划分出三个等分的区域,这三个区域代表不同的隶属度。
如果规则是线性的,那么第一区域的隶属度为0,第二区域的隶属度为0.5,第三区域的隶属度为1.同时,需要指定每一个区域的边界,在实际的应用中,这一过程可以根据经验进行调整,以保证设定的规则的准确性。
最后,按照规则,确定好每一个区域的边界后,就可以采用三联表的方法,构建模糊集的隶属函数。
三联表法是将输入的变量取值范围划分成三百多个等分,这样可以避免用一个复杂的数学模型来描述每一个输入变量的隶属度,而是根据实际情况给出在某一取值下,输入变量的隶属度,从而构建出整个模糊集的隶属函数。
总之,三分法提供了一个简单、高效的方法来构建模糊集的隶属函数,同时可以更好的适应不同的应用场景,增强模糊系统的智能性。
模糊数学中的模糊集合与隶属度函数模糊数学是一门研究现实中模糊信息和不完全信息的数学理论。
在模糊数学中,模糊集合和隶属度函数是其核心概念之一。
一、模糊集合模糊集合是对现实世界中模糊或不确定概念的数学抽象。
与传统的集合理论不同,模糊集合并不要求元素的成员关系是确定的,而是通过隶属度函数来描述元素与集合的隶属关系。
一个元素可以同时隶属于多个模糊集合,并且隶属程度可以是连续的。
在模糊集合中,隶属度函数是描述元素与集合之间的隶属关系的数学函数。
它将元素映射到[0,1]的隶属度区间,表示元素与集合的隶属程度。
例如,对于一个模糊集合A来说,元素x的隶属度可以表示为μA(x),其中μA(x)的取值范围为[0,1]。
二、隶属度函数隶属度函数是描述元素与模糊集合之间隶属关系的数学函数。
它是模糊集合理论中的重要工具,常用于描述概念的模糊性和不确定性。
常见的隶属度函数包括三角形隶属度函数、梯形隶属度函数、高斯隶属度函数等。
三角形隶属度函数通过一个三角形的边界来表示元素的隶属度,具有对称性和简单性。
梯形隶属度函数通过一个梯形的边界来表示元素的隶属度,可以更精确地描述元素的隶属度。
高斯隶属度函数使用高斯曲线来表示元素的隶属度,具有光滑性和非对称性。
隶属度函数的选择需要根据具体情况来确定,可以根据实际需求和数学模型来选择最合适的隶属度函数。
三、模糊集合与隶属度函数的应用模糊集合与隶属度函数在实际应用中具有广泛的应用价值。
它们被广泛应用于模糊控制、人工智能、模式识别、决策分析等领域。
在模糊控制中,模糊集合与隶属度函数用于描述输入与输出之间的模糊关系,通过定义模糊规则和模糊推理来实现对系统的控制。
在人工智能中,模糊集合与隶属度函数用于处理模糊和不完全信息,进行模糊推理和模糊分类。
在模式识别中,模糊集合与隶属度函数用于进行特征提取和模式匹配,提高系统对不确定性和噪声的适应能力。
在决策分析中,模糊集合与隶属度函数用于处理决策变量的不确定性和模糊性,提供决策的支持和评估。