模糊数学(基本定义)
- 格式:ppt
- 大小:1.01 MB
- 文档页数:49
模糊数学的认识与理解1、模糊数学的产生1965 年美国控制论学者L.A.扎德发表论文《模糊集合》,标志着这门新学科的诞生。
模糊数学又称FUZZY 数学,亦称弗晰数学或模糊性数学。
现代数学是建立在集合论的基础上。
集合论的重要意义就一个侧面看,在与它把数学的抽象能力延伸到人类认识过程的深处。
一组对象确定一组属性,人们可以通过说明属性来说明概念(内涵),也可以通过指明对象来说明它。
符合概念的那些对象的全体叫做这个概念的外延,外延其实就是集合。
从这个意义上讲,集合可以表现概念,而集合论中的关系和运算又可以表现判断和推理,一切现实的理论系统都一可能纳入集合描述的数学框架。
但是,数学的发展也是阶段性的。
经典集合论只能把自己的表现力限制在那些有明确外延的概念和事物上,它明确地限定:每个集合都必须由明确的元素构成,元素对集合的隶属关系必须是明确的,决不能模棱两可。
对于那些外延不分明的概念和事物,经典集合论是暂时不去反映的,属于待发展的范畴。
在较长时间里,精确数学及随机数学在描述自然界多种事物的运动规律中,获得显著效果。
但是,在客观世界中还普遍存在着大量的模糊现象。
以前人们回避它,但是,由于现代科技所面对的系统日益复杂,模糊性总是伴随着复杂性出现。
各门学科,尤其是人文、社会学科及其它“软科学”的数学化、定量化趋向把模糊性的数学处理问题推向中心地位。
更重要的是,随着电子计算机、控制论、系统科学的迅速发展,要使计算机能像人脑那样对复杂事物具有识别能力,就必须研究和处理模糊性。
我们研究人类系统的行为,或者处理可与人类系统行为相比拟的复杂系统,如航天系统、人脑系统、社会系统等,参数和变量甚多,各种因素相互交错,系统很复杂,它的模糊性也很明显。
从认识方面说,模糊性是指概念外延的不确定性,从而造成判断的不确定性。
在日常生活中,经常遇到许多模糊事物,没有分明的数量界限,要使用一些模糊的词句来形容、描述。
比如,比较年轻、高个、大胖子、好、漂亮、善、热、远……。
一.模糊数学的基础知识1.模糊集、隶属函数及模糊集的运算。
普通集合A ,对x ∀,有A x ∈或A x ∉。
如果要进一步描述一个人属于年轻人的程度大小时,仅用特征函数就不够了。
模糊集理论将普通集合的特征函数的值域推广到[0,1]闭区间内,取值的函数以度量这种程度的大小,这个函数(记为)(x E )称为集合E 的隶属函数。
即对于每一个元素x ,有[0,1]内的一个数)(x E 与之对应。
(1)模糊子集的定义:射给定论域U ,U 到[0,1]上的任一映射: ))((],1,0[:U u u A u U A ∈∀→→都确定了U 上的一个模糊集合,简称为模糊子集。
)(u A 称为元素u 属于模糊集A 的隶属度。
映射所表示的函数称为隶属函数。
例如:设论域U=[0,100],U 上的老年人这个集合就是模糊集合:⎪⎩⎪⎨⎧≤<-+≤=--10050,))550(1(50,0)(12u u u u A 若在集合U 上定义了一个隶属函数,则称E 为模糊集。
(2)模糊集合的表示:},.....,,{21n u u u U =,)(u A 称为元素u 属于模糊集A 的隶属度;则模糊集可以表示为:nn u u A u u A u u A A )(....)()(2211+++=。
或 )}(),.....,(),({21n u A u A u A A =,))}(,()),.....,(,()),(,{(2211n n u A u u A u u A u A =,(3)模糊集合的运算:)}(),.....,(),({21n u A u A u A A =,)}(),.....,(),({21n u B u B u B B =,并集:)}()(),.....,()(),()({2211n n u B u A u B u A u B u A B A ∨∨∨=⋃,交集:)}()(),.....,()(),()({2211n n u B u A u B u A u B u A B A ∧∧∧=⋂,补集:)}(1),.....,(1),(1{21n c u A u A u A A ---=,包含:B A u B u A U u ⊂≤∈∀,则有有若)()(,,2.模糊集的截集已知U 上模糊子集))((],1,0[:U u u A u U A ∈∀→→对]1,0[∈λ,则称})(,{λλ≥∈=u A U u u A 为模糊集A 的λ-截集; 称})(,{λλ>∈=u A U u u A s 为模糊集A 的λ-强截集;λ称为λA 、sA λ的置信水平或阀值。