晶闸管触发电路.
- 格式:ppt
- 大小:873.00 KB
- 文档页数:44
晶闸管触发电路的要求
晶闸管触发电路是通过晶闸管的特性来控制受波形的变化。
它的特点是由晶闸管的两
极的施加电压和电流的变化而实现波形的变化,它的优点是可以稳定地控制触发信号的改变,特别适用于高频应用,精度和稳定性都比较高。
第一,晶闸管触发电路要求有足够大的触发电压,并且保持足够平稳,最好能保持高
于1V以上,这样能确保正常的工作,用以满足较高的质量要求。
第二,晶闸管触发电路的反应速度也是非常重要的,需要确保其能在最短的时间内作
出正确的反应,否则会影响通信设备的正常工作,在实际应用过程中,其反应速度要小于
5微秒。
第三,晶闸管触发电路的触发电流也有要求,通常情况下,它的触发电流应该保持在
1mA以上,这样可以确保其能够得到足够强劲的触发信号,其中涉及到晶闸管的触发电压
和电流,通常都要求稳定可靠。
第四,晶闸管触发电路的波形要求也是非常重要的,其中的正脉冲应该要能达到一定
的高度,而且波形的曲线稳定性也要能够达到规定的一定的标准,晶闸管的波形要求可以
保持0.2V ≤ U ≤ 30V,如此才能确保晶闸管的正常工作。
最后,也最重要的是晶闸管触发电路的安全性,开关电源从PCB板中,气体绝缘作用,防止元器件被潮湿环境所损坏,以确保元器件能正常运转,保证电路的稳定性。
总之,晶闸管触发电路作为精密控制电路,具有良好的性能,但是在使用时还是要控
制好它的参数,确保其能满足要求,以保证系统的正常工作。
晶闸管触发电路原理
晶闸管触发电路是一种用来控制晶闸管导通或关断的电路。
晶闸管是一种双电极四层结构的半导体器件,当控制电压达到一定值时,晶闸管将导通,形成低电压通道,允许大电流通过。
而当控制电压低于一定值时,晶闸管会关断,形成高电压阻断状态。
晶闸管的触发电路一般由两部分组成:触发脉冲发生器和触发脉冲放大器。
触发脉冲发生器负责产生控制信号,而触发脉冲放大器则负责放大触发信号,使之能够控制晶闸管的导通或关断。
触发脉冲发生器通常是利用电容和电感等元件来形成一个振荡电路,产生临时性的高幅度脉冲信号。
这个脉冲信号可以通过电压调节器进行调节,以确保触发脉冲的幅度和宽度符合晶闸管的要求。
触发脉冲放大器接收触发脉冲发生器产生的脉冲信号,并将其放大到足以触发晶闸管的电压级别。
这个放大过程中通常会使用放大电路,如放大器或变压器等。
当触发脉冲传递到晶闸管上时,它会改变晶闸管的电特性,从而实现导通或关断。
触发脉冲的幅度、宽度和频率等参数决定了晶闸管的导通和关断速度以及电流大小。
总而言之,晶闸管触发电路是利用触发脉冲发生器和触发脉冲
放大器,通过产生和放大脉冲信号来控制晶闸管的导通或关断,实现对电流的控制。
晶闸管触发电路1. 简介晶闸管触发电路是一种用于控制晶闸管导通的电路,它能够将小信号或控制信号转换成足够大的信号来触发晶闸管的导通。
晶闸管是一种双向可导电的电子开关,广泛应用于电力电子系统和工业自动化控制中。
晶闸管触发电路主要包括触发电路的设计和控制电路的设计两个部分。
触发电路的设计用于产生适当的触发信号,而控制电路的设计用于控制触发电路的工作。
本文将详细介绍晶闸管触发电路的原理、分类、设计和应用。
2. 触发电路原理晶闸管触发电路的工作原理是通过控制晶闸管的控制端来实现晶闸管的导通或关断。
当控制端施加一个正脉冲信号时,晶闸管会导通;当施加一个负脉冲信号或没有信号时,晶闸管会关断。
触发电路的基本原理是利用电容、电感、二极管等元件将控制信号转换为适当的触发信号。
常用的触发电路包括:•RC触发电路:使用电阻和电容的组合,将控制信号转换成具有一定斜率的触发脉冲。
•LC触发电路:使用电感和电容的组合,将控制信号转换成具有较高振幅的触发脉冲。
•金属氧化物半导体场效应晶体管(MOSFET)触发电路:利用MOSFET的特性,将控制信号转换成足够大的触发信号。
3. 触发电路分类晶闸管触发电路可以根据不同的分类方式进行分类。
3.1 按控制信号类型分类根据控制信号的类型,触发电路可以分为单脉冲触发电路和双脉冲触发电路。
•单脉冲触发电路:只需一个触发脉冲即可实现晶闸管导通。
常用的单脉冲触发电路包括RC触发电路和LC触发电路。
•双脉冲触发电路:需要两个触发脉冲来实现晶闸管导通。
常用的双脉冲触发电路包括寄生电容型触发电路和极性反转型触发电路。
3.2 按控制信号波形分类根据控制信号的波形,触发电路可以分为单脉冲、方波和脉冲串触发电路。
•单脉冲触发电路:控制信号为单一脉冲信号。
•方波触发电路:控制信号为方波信号,周期内可能包含多个脉冲。
•脉冲串触发电路:控制信号为多个周期形成的脉冲串信号。
3.3 按触发电路特点分类根据触发电路的特点,触发电路可以分为恒流触发电路、恒压触发电路和自供电触发电路。
第三章晶闸管的触发电路学习目标1. 能根据晶闸管主电路的特点选择适宜的触发电路,并能进行正确地连接与调试。
2. 熟悉几种常用触发电路的组成和工作原理。
3. 能用示波器测试触发电路关键点的波形,根据现象能够排除触发电路的故障。
控制晶闸管导通的电路称为触发电路。
触发电路通常以组成的主要器件名称分类,可分为:单结晶体管触发电路、晶体管触发电路、集成触发电路、计算机控制数字触发电路等。
第一节单结晶体管触发电路一、触发电路简介1.触发电路分类:单结晶体管触发电路、晶体管触发电路、集成触发电路、计算机控制数字触发电路等。
2.常见的触发脉冲电压波形图3-1 常见的触发脉冲电压波形a)正弦波 b)尖脉冲 c)方脉冲 d)强触发脉冲 e)脉冲列3.要求多数晶闸管电路要求触发脉冲前沿要陡,以实现精确的触发导通控制。
当负载为电感性时,触发脉冲必须具有一定的宽度,以保证晶闸管的电流上升到擎住电流以上,使之可靠导通。
二、单结晶体管1.单结晶体管的结构单结晶体管是在一块高电阻率的N型硅片两端,用欧姆接触方式引出第一基极b1和第二基极b2,b1与b2之间的电阻为N型硅片的体电阻,约为 3~12kΩ,在硅片靠近b2极掺入P型杂质,形成PN结,由P区引出发射极e。
图3-2单结晶体管a)结构示意 b)等效电路 c)图形符号 d)外形与管脚2.单结晶体管型号:有BT33和BT35两种,其中B表示半导体,T表示特种管,第一个数字3表示有3个电极,第二个数字3(或5)表示耗散功率300mW(或500mW)。
3.判断管脚:用万用表来判别单结晶体管的好坏比较容易,可选择R×1k电阻挡进行测量,若某个电极与另外两个电极的正向电阻小于反向电阻,则该电极为发射极e,接着测量另外两个电极的正反向电阻值应该相等。
4.工作原理图3-3 单结晶体管伏安特性a)单结晶体管实验电路 b)单结晶体管伏安特性 c)特性曲线族单结晶体管可分为以下三个区:截止区、负阻区、饱和区导通条件:发射极电压达到二、单结晶体管自激振荡电路利用单结晶体管的负阻特性和RC电路的充放电特性,可以组成单结晶体管自激振荡电路。
晶闸管触发电路的基本要求晶闸管触发电路的基本要求要使晶闸管由关断转为导通,必须具备一定的外界条件,即晶闸管阳极加正向电压的同时门极也施加正的控制信号。
当晶闸管导通后控制信号就不起作用了,直到电源过零时,其阳极电流小于维持电流,晶闸管便自行关断。
由于晶闸管导通后,门极就失去控制作用,因此对晶闸管的控制实际上就是提供一个有一定宽度的门极控制咏冲去触发晶闸管,使之导通。
门极控制电路常常称为触发电路。
对晶闸管触发电路的基本要求是: 1.触发信号可以是交流、直流或脉冲t触发信号只能在门极为正、阴极为负时起作用。
为了减小门极的损耗,触发信号常采用脉冲形式.常见的触发信号波形如图3-15所示, 2.触发脉冲应有足够的功率。
触发电压和触发电流应大于晶闸管的门极触发电压和门极触发电流。
因为晶闸管的特性有较大的分散性,且特性随温度而变化,故在设计触发电路时,触发信号的功率应留有裕量,保证晶閜管可靠触发,当然被发信号也不能超过门极的极限参数值(一般VCm<10V,IGM<10A). 3.触发脉冲的移相范围应能满足变流装置的要求。
触发脉冲的移相范围与主电路型式、负载性质及变流装置的用途有关,例如,三相半波整流电路,在电咀性负载时,要求移相范围为150?; 而三相桥式全控整流电路,电阻负载时要求移相范围为120?.若三相全控桥工作于整流或逆变状态并对电感负栽供电,则要求移相范围为0〜180?.在实际应用中,为了装置的正常工作,有时还要有αmin和βmin 的限制,故实际范围小于180?. 4.触发脉冲的宽度和陡度.触发脉冲的宽度一般应保证晶闸管阳极电流在脉冲消失前能达到擎住电流,使晶闸管能保持通态,这是最小的允许宽度。
脉冲宽度还与负载性质与主电路型式有关.例如,对于单相整流电路,电阻性负载时要求脉宽大于10us.电感性负载时要求脉宽大于100us。
对干三相全控桥式电路.采用单脉冲触发时脉宽应为60?〜120?采用双脉冲触发时脉宽10?左右即可。
晶闸管触发电路1. 引言晶闸管(Thyristor)是一种重要的电子元件,在电力控制和功率电子领域具有广泛的应用。
晶闸管的触发电路是控制晶闸管导通或截止的关键部分。
本文将介绍晶闸管触发电路的工作原理、分类以及常见的电路设计。
2. 工作原理晶闸管触发电路的核心原理是通过控制一定的触发电压或电流,使晶闸管从关断状态转变为导通状态。
在正常工作状态下,晶闸管是一个双向控制的开关,其阻断能力较强。
晶闸管触发电路一般由触发电源、触发信号处理电路和触发脉冲发生电路组成。
触发电源提供所需的触发信号电压或电流;触发信号处理电路对来自触发电源的信号进行滤波、放大等处理;触发脉冲发生电路根据控制要求产生一定的触发脉冲。
3. 分类根据晶闸管触发电路的工作原理和触发方式的不同,晶闸管触发电路可以分为以下几类:3.1 瞬态触发电路瞬态触发电路是指在很短的时间内产生一个高幅值的触发脉冲,以确保晶闸管能够迅速地达到导通状态。
常见的瞬态触发电路包括单脉冲触发电路和多脉冲触发电路。
3.2 交流触发电路交流触发电路主要用于控制交流电源下的晶闸管。
交流触发电路可以根据触发方式的不同分为电流触发电路和电压触发电路。
3.3 直流触发电路直流触发电路主要用于控制直流电源下的晶闸管。
直流触发电路可以根据触发方式的不同分为电流触发电路和电压触发电路。
4. 常见电路设计4.1 单脉冲触发电路设计单脉冲触发电路设计是一种常见的瞬态触发电路设计。
下面是一个基于电流触发方式的单脉冲触发电路设计示意图:4.2 电流触发电路设计电流触发电路设计主要用于控制直流电源下的晶闸管。
下面是一个基于电流触发方式的电流触发电路设计示意图:4.3 电压触发电路设计电压触发电路设计主要用于控制交流电源下的晶闸管。
下面是一个基于电压触发方式的电压触发电路设计示意图:5. 总结晶闸管触发电路是控制晶闸管导通或截止的关键部分。
晶闸管的门极触发电路
图3 锯齿波同步触发电路共包括五个环节,分别为:锯齿波形成环节、脉冲移相环节、脉冲形成及放大环节、强触发脉冲形成环节、双脉冲形成环节。
锯齿波形成环节是通过一个恒流源电路对电容进行恒流充电,从而形成锯齿波同步信号的上升沿,其下降沿是电容通过一小电阻放电而形成的。
锯齿波的宽度由电路参数打算,其频率则与电源电压频率相同。
脉冲移相环节是将锯齿波同步电压、偏移电压及掌握电压进行叠加,其过零点打算触发脉冲的起始时刻。
若偏移电压不变时,转变直流掌握电压可以使脉冲移相。
在这里加入偏移电压的目的,是使掌握电压为零时主电路的整流输出电压为零。
脉冲形成与放大环节的作用与正弦波触发电路基本相同。
强触发脉冲形成环节是通过一个单独的沟通电源整流后,得到50V的直流电压,在触发脉冲的起始时刻该电压通过脉冲变压器加到晶闸管的门极上,从而形成强触发脉冲。
触发电路各点电压波形如图4所示。
图4 双脉冲产生环节是依据三相全控桥式整流电路的特别要求,触发电路输出两个间隔为60°的双脉冲。
产生双脉冲的方法有两种,一种是外双脉冲方法,另一种是内双脉冲方法。
在此触发电路中采纳的是内双脉冲的方法,即每个触发单元一个周期内产生两个间隔为60°的双脉冲,只供应一个桥臂的晶闸管,这种电路虽然比较简单,但输
出功率可以削减。