2015年分子生物学实验技能
- 格式:ppt
- 大小:6.95 MB
- 文档页数:101
分子生物学的实验技术与方法随着科技的不断发展,分子生物学在近年来成为一个极其活跃的领域,也受到越来越多人的关注。
分子生物学是研究生命体系结构、功能、全基因组组成等领域的学科,而分子生物学的实验技术与方法则是研究生命体系结构、功能、全基因组组成等领域的重要支撑。
1. 分子生物学实验技术与方法的概括分子生物学实验技术与方法是研究生命现象和机制的重要手段。
它包括了一系列的技术分析和方法,如基因测序技术、PCR技术、蛋白质组学、转染技术、组织培养技术、荧光技术等等。
其中,基因测序技术是目前最重要的技术之一。
它可以解析DNA序列中的各个碱基、基因等结构元素,为生物学研究提供了极为有利的手段。
PCR技术也是分子生物学实验技术中比较受欢迎的一种技术,它是一种快速检测DNA和RNA的方法,可以在很短的时间内扩增出多个相同的DNA片段或RNA片段,为分析和研究生物的基因、蛋白质等提供了便利。
此外,蛋白质组学是分子生物学研究中另一个重要的手段。
它可以帮助研究人员了解蛋白质的分子结构、功能和相互作用,是研究生物体内各种信号和代谢途径的重要方法。
2. 基因测序技术基因测序技术是分子生物学实验技术中的一项重要技术。
它是指通过一系列的实验步骤,将生物样品中的DNA分离开来,然后通过被称为“测序仪”的机器设备,解析出其DNA序列信息,最终得到一个完整的基因组序列。
基因测序技术的核心是测序仪,目前主要有Illumina、Pacific Biosciences等几种测序仪。
基因测序技术的应用范围非常广泛,如研究一个特定基因的结构和表达情况、找出某些基因存在的异常及其对人体健康的影响等。
当然,基因测序技术的应用不仅局限于科学方面,它还可以应用于医疗诊疗、个性化医学、疾病预防等多个领域。
3. PCR技术PCR技术是一种利用DNA聚合酶扩增DNA的特定技术。
这种技术可以在短时间内扩增出大量的DNA片段,达到检测目的。
PCR技术的核心是DNA聚合酶,通过PCR技术可以扩增任意长度的DNA片段,如检测特定的基因序列等。
第3章分子生物学实验基本操作技术这里的实验基本操作技术是指在分子生物学实验中使用范围最广、使用频率最高、几乎所有实验都要应用的技术。
器皿的清洗,试管、量筒(杯)、容量瓶、吸管及移液器、电子天平等量具的正确操作和使用、试剂配制等技术,应当都是基本操作技术,但这些内容已在分析化学、生物化学的实验课程中作了详细介绍。
本章主要介绍与分子生物学实验有关的除(灭)菌技术、无菌操作技术和微量操作技术。
3.1 除(灭)菌技术在进行分子生物学实验过程中,需要一个清洁的实验环境,所使用的器皿及溶液均需要进行除(灭)菌处理,一方面避免环境中微生物的污染,另一方面还可消除蛋白酶和核酸酶对实验的干扰和影响。
在进行微生物及细胞的纯培养时要求更高,不能有任何外来杂菌。
因此,对所有器材、培养基要进行严格灭菌,对工作场所进行消毒,保证工作顺利进行。
实验室常用的除灭菌方法主要有物理方法及化学方法两种。
物理方法包括用湿热(高压蒸汽)、干热、紫外线、过滤、离心沉淀等方法除去微生物;化学方法是使用化学消毒剂、抗菌素等杀死或抑制微生物。
根据被灭菌物品的材料性质和实验要求,可采取不同的消毒灭菌方法。
3.1.1 物理灭菌法(1)干热灭菌:干热灭菌包括火焰灼烧灭菌和热空气灭菌。
火焰灼烧适用于金属用具,如接种环、接种针和手术器械等,玻璃器皿的口颈,如试管口和瓶口,玻璃棒等的灭菌处理。
这种方法灭菌迅速彻底。
热空气灭菌一般在烤箱中进行,利用高温干燥空气(160℃~170℃)加热灭菌1~2h,适用于玻璃器皿和培养皿等。
干热消毒后的器皿干燥,易于保存。
缺点是干热传导慢,可能有冷空气存留于烤箱内,因此要求较高的温度和较长的时间才能达到消毒的目的。
应当注意,干烤灭菌完毕后不得马上将烤箱门打开,须等温度降至70℃以下时再开箱门,以免冷空气突然进入,影响消毒效果和损坏玻璃器皿或发生意外事故。
在灭菌时,物品不能放的太挤。
灭菌的玻璃器皿中不可有水,有水的玻璃器皿在干热灭菌时容易炸裂。
实验一 CTAB法提取植物基因组总DNA及分析一、实验目的分离纯化植物DNA是植物分子生物学和基因工程的基本技术要求,CTAB法是提取植物基因组DNA的一种新型方法,可以抽提许多其它方法难以抽提的植物材料(如含多酚较多的植物材料、干燥后的茶叶、老树根等)中的DNA,得率高,质量好,用于PCR、Southern杂交、分子标记、DNA文库构建等。
二、基本原理植物材料在液氮中研磨可以迅速破坏其细胞壁,游离出细胞器和原生质,并防止DNA降解。
采用CTAB (十六烷基三甲基溴化胺,一种非离子型去污剂)抽提液抽提(65℃)上述研磨物,在高盐条件下不但溶解细胞膜相物质,而且CTAB与核酸形成可溶性的复合物,采用离心可以将变性的蛋白质和多酚、多糖等杂质(沉淀相)去除,水相中含有核酸与CTAB的复合物及其它可溶性的杂质。
直接向水相中加入异丙醇则导致核酸的沉淀,CTAB和其它多数杂质留于异丙醇与水的混合相中,吸出核酸沉淀团经过多次乙醇漂洗和沉淀、TE溶解得到DNA粗提物。
粗提的DNA一般可用于粗略PCR等。
用于精细PCR、Southern杂交和DNA文库构建的DNA则应进一步纯化。
用RNase水解RNA,用酚/氯仿/异戊醇和氯仿/异戊醇抽提去除蛋白杂质等,经乙醇沉淀后可获得较为纯净的植物总DNA。
三、实验材料甘蓝型油菜(Brassica napus L.)幼叶。
四、主要仪器设备及耗材Eppendorf 5804R低温离心机,Hettich Universal 32R低温离心机,Eppendorf Minispin离心机,Sanyo SIM-F124制冰机,TOMY SS-325自动灭菌锅,Millipore Elix纯水系统,Eppendorf research微量移液器系列,GingTian JA2003A电子天平,Satorius PB-10 pH计,HH·S21-4-S恒温水浴锅,UVP GDS8000自动高效紫外透视成像仪,DYY-8C型双稳定时电泳仪及水平电泳槽,Gene spec I快速核酸蛋白自动分析仪,长岭BCD-239家用冰箱,TNZ-30-50液氮生物容器及液氮,微波炉,研钵,离心管(15ml、1.5ml),枪头(10、200和1000μl),两面板,枪头盒,离心管盒(1.5ml)等。
分子生物学实验技术分子生物学实验技术专注于研究生物分子的结构、功能和相互作用。
通过分析和操作不同的生物分子,分子生物学实验技术可以为生物学研究提供有力的工具和方法。
本文将介绍分子生物学实验技术的一些常见方法和应用。
第一部分:DNA和RNA的分析与操作方法(1000字)在分子生物学研究中,DNA和RNA是最常见的研究对象之一。
了解DNA和RNA的序列、结构和相互作用对于我们理解生物基因组、遗传变异和蛋白质合成等过程至关重要。
以下是一些常见的DNA和RNA的分析与操作方法:1. PCR(聚合酶链式反应):PCR是一种通过DNA的放大,使其达到可以检测的程度的技术。
它可以扩增DNA片段并产生大量的复制品。
PCR的优点是速度快、灵敏度高、操作简便。
这使得它在基因检测、基因组测序和遗传变异研究等领域得到广泛应用。
2. 基因克隆:基因克隆是指将感兴趣的DNA片段插入到载体DNA 中,形成重组DNA分子的过程。
通过克隆,可以研究和操纵特定的DNA 序列,以确定其功能、表达和调控。
常用的克隆方法包括限制性内切酶消化和连接技术,例如使用DNA连接酶将DNA片段连接到载体上。
3. DNA测序:DNA测序是指确定DNA序列的过程。
它是研究基因组、疾病突变和基因功能的重要工具。
常见的DNA测序方法包括链终止法和碱基测序法。
链终止法使用有标记的二进制探针和DNA聚合酶,通过测量信号强度来确定DNA序列。
碱基测序法则通过测量不同碱基释放的荧光信号来确定DNA序列。
4. RNA干扰(RNAi):RNA干扰是一种通过干扰RNA分子的转录和翻译过程来沉默特定基因表达的技术。
通过使用双链RNA或小分子RNA(siRNA)来介导干扰,可以选择性地抑制或沉默特定的基因,从而研究其功能和相互作用。
第二部分:蛋白质的分析与操作方法(1000字)蛋白质是生物体内最重要的功能分子之一。
了解蛋白质的结构、功能和相互作用对于研究生物学和疾病机制至关重要。
分子生物学专家的100个分子生物学研究技巧作为一名分子生物学专家,我们需要掌握一定的实验技巧和分析能力,在研究分子生物学方面,更需要具备敏锐的洞察力和严密的思维方式,以便从繁复的实验数据中汲取营养,发掘潜在的科学发现。
下面列出100个分子生物学研究技巧,从实验设计到数据分析,留给读者参考与思考。
1. 不断学习,了解最新的实验技巧和研究进展,关注科研领域的前沿知识;2. 对样品浓度、操作步骤、参数设置等细节进行严密的把控;3. 熟练掌握各种分子生物学实验,如PCR、Western blot、蛋白质组学、转染、流式细胞术等;4. 创建实验步骤清单,及时记录实验数据、结果和分析;5. 尽可能多地运用质控组和标准品,以保证实验的可重复性和准确性;6. 选择恰当的实验平台、荧光探针和检测系统;7. 在样品准备、采样、振荡时注意卫生和安全,确保工作环境清洁、整洁;8. 实验前认真规划实验流程,熟悉实验设备的使用,避免仪器操作不当而导致的实验失败;9. 在制备基因组库时,需要正确选取DNA质控珂片样板,避免出现异常结果;10. 预先选取符合样品要求的反应体系和实验方法;11. 实验中要注意样品和试剂的稳定性,确保实验前后的实验条件一致;12. 进行荧光定量PCR实验时,应该严格遵守标准反应系统的组成、使用步骤和反应条件;13. 定期维护实验设备,避免仪器的老化和故障;14. 对实验数据进行严格的分析和解读,从大量的数据中甄选有意义的信息;15. 在实验前进行实验流程图的绘制,明确实验下手的各个环节和时间节点;16. 在实验过程中做好实验记录和观察,记录好各种实验细节和现象;17. 对分子生物学实验常识和实验规范、标准要进行深入研究和掌握;18. 多方面的研究和比较不同的实验技术和实验方法,以优化自己的实验流程;19. 学会鉴别和分析仪器故障的原因和性质,及时维修和更换仪器;20. 尽可能多地使用生物信息学工具对实验结果进行预测、探讨和验证;21. 在实验数据分析阶段提高自身的数据处理技能和数据可视化能力;22. 在实验前下定决心和做好准备,及时调整自己的实验心态和实验压力水平;23. 学会寻找并参考同领域的综述文章和文献,及时了解分子生物学前沿研究进展和研究趋势;24. 详细阅读实验说明书和相关的文献资料,并充分准备实验所需的技术和设备;25. 在实验设计和样品准备阶段,应保持高度的创造性和数据保密性,避免实验失败或数据泄漏的风险;26. 选择恰当的实验对象和实验样品,避免实验数据的误导和偏差;27. 学会利用在线公共数据库和软件,及时获取分子生物学相关数据和信息;28. 在实验前进行充分的文献资料查阅,提高自身的学术水平和研究技能;29. 定期组织和参加学术活动和研究讨论会,不断提高自身的研究水平和研究技能;30. 学会利用可视化技术对分子生物学数据进行展示和表达。
研究生课程考试卷学号、姓名: 20152522 李帅年级、专业: 2015级预防兽医学培养层次:硕士课程名称:分子生物学实验技术授课学时学分:考试成绩:授课或主讲教师签字:实验一、聚合酶链式反应(PCR )一、实验目的及要求掌握PCR 扩增技术的原理及PCR 体系建立的基本操作。
二、实验原理Polymerase Chain Reaction 是模拟DNA 的复制过程,在体外特异性扩增DNA 片段的方法,从而获得大量的同一序列DNA 。
三、试验材料与试剂DNA 模板引物 (primer ):上游引物;下游引物dNTP: 4种脱氧核糖核苷酸 10* PCR 缓冲液 (buffer ) Taq DNA 聚合酶(Taq polymerase )Taq PCR 反应试剂盒:dNTPs ;模板DNA ;引物;10×PCR buffer;Taq 酶;ddH 20四、实验步骤(1)反应体系的建立取0.2ml 的薄壁离心管,按下表加入试剂—稍混匀,短暂离心把溶液甩至管底。
(2)PCR 的变温程序(热循环反应) 94℃ 4 min 94℃ 40s50℃ 40s 30 Cycles 72℃ 1 min 72℃ 10min 4℃ forever设置PCR 反应的变温程序,把离心管放进PCR 仪进行扩增—反应结束后低温保存或检测。
(3)琼脂糖凝胶电泳检测PCR 产物取2-5ul 反应液,于1.5%琼脂糖凝胶电泳检测,在紫外灯下观察结果。
成分 25uL 反应体系dNTP 0.5uL 模板 0.5uL 引物 0.5uL Buffer 2.5uL 酶 0.5uL 水20.5uL预混物五、结果与讨论扩增出目的条带。
六、分析1、PCR扩增的影响因素:退火温度,引物的质量,模板DNA的质量,聚合酶的量,Mg2+浓度2、Mg2+作用:dNTP—Mg与核酸骨架相互作用并能影响Polymerase的活性,一般的情况下Mg 的浓度在0.5—5mM之间调整,在调整dNTPs浓度后要相应调整其浓度。
《分子生物学检验技术》课程标准课程编号:17050021总学时数:72学时(理论40课时,实验32)学分:4.5分一、课程性质、目的与要求分子生物学检验技术是医学检验的专业课之一。
本大纲为本科医学检验专业学生教学的指导性纲要,通过对该课程的学习,掌握分子生物学检验技术的基本内容(概念、术语、原理)、基本方法(PCR、核酸杂交、DNA重组、芯片技术等)以及在临床实验诊断中的应用。
对分子诊断学的发展动态有所了解。
二、本课程的基本内容第一章绪论2课时(一)教学目的与要求1、熟悉分子生物学检验技术的历史、发展趋势2、掌握基因、单基因遗传病和多基因遗传病的概念3、掌握分子生物学检验技术在临床实验诊断中的五个应用领域(二)教学的重点与难点1、重点:基因、单基因遗传病和多基因遗传病的概念2、难点:分子生物学检验技术在临床实验诊断中的应用(三)课时安排:2学时(四)主要内容第一节分子诊断学的概念、任务和特点(0.4)课时第二节分子诊断学的发展简史(0.3)课时第三节分子诊断的基本策略及其在医学中的应用(1)课时第四节展望(0.3)课时第二章基因与基因组 6课时(一)教学目的与要求1、掌握基因与基因组的概念2、熟悉基因组的结构特征3、掌握质粒的概念类型及一般性质4、掌握转位因子的概念、类型及转位的遗传效应5、熟悉DNA病毒基因组的总体特征6、掌握真核生物基因组的特点,包括细胞核基因组和细胞质基因组结构和功能,单顺反子、短列基因、多基因家族、多态性、基因重叠的概念,重复序列的分类7、掌握基因结构异常的概念、类型;掌握端粒的概念、结构特点及主要作用,端粒酶组成、特点和作用,端粒酶活性测定及其临床意义(二)教学的重点与难点1、重点:(1)生物基因组的结构特征;基因与基因组的概念(2)质粒的概念、类型及一般性质;单顺反子、短列基因、多基因家族、多态性、基因重叠的概念,重复序列的分类(3)基因结构异常的概念、类型;2、难点:转位因子的概念、类型及转位的遗传效应;多基因家族、多态性、基因重叠的概念,重复序列的分类(三)课时安排:6课时(四)主要内容第一节基因与基因组概论(1)课时1、基因的概念及其发展2、基因组与C值矛盾3、基因组学及其意义第二节真核生物基因组(2)课时1、真核生物基因组的结构与功能特点2、人类基因组计划3、人类基因组多样性第三节原核生物基因组(2)课时1、原核生物基因组的一般特点2、质粒3、转座基因第四节病毒基因组(1)课时1、病毒基因组的核酸类型2、病毒基因组的大小及碱基组成3、病毒基因组的结构与功能特点第三章分子克隆 6课时(一)教学目的与要求1、掌握常用的工具酶,熟悉DNA常用的重组载体2、了解DNA重组与鉴定,了解外源基因的蛋白表达3、掌握DNA序列测定的原理(二)教学的重点与难点1、重点:(1)常用的工具酶的用途(2)DNA序列测定的原理2、难点:(1)DNA序列测定的原理(2)DNA重组与鉴定,外源基因的蛋白表达(三)课时安排:6课时(四)主要内容第一节工具酶(2)课时1、限制性核酸内切酶2、DNA聚合酶3、DNA连接酶4、碱性磷酸酶5、T4多核苷酸激酶6、核酸酶S1第二节载体(1)课时1、克隆载体2、表达载体3、穿梭载体第三节分子克隆的基本步骤(2)课时1、目的基因的获取2、载体的选择3、目的基因和载体的连接4、将重组DNA导入受体细胞5、重组体的筛选和鉴定第四节克隆基因的表达(1)课时1、原核生物基因表达的特点2、真核生物基因表达的特点3、提高克隆基因表达效率的途径第四章核酸分子杂交技术 4课时(一)教学目的与要求1、掌握核酸分子杂交的基本原理2、掌握核酸杂交中的基本概念:探针、变性、复性、融解温度3、掌握核酸分子杂交技术的技术要点和影响杂交的主要因素4、了解核酸分子杂交的方法学评价及其应用(二)教学的重点与难点1、重点:(1)核酸分子杂交的基本原理(2)核酸杂交中的基本概念:探针、变性、复性、融解温度(3)核酸分子杂交技术的技术要点和影响杂交的主要因素2、难点:核酸分子杂交技术的技术要点和影响杂交的主要因素(三)课时安排:4课时(四)主要内容第一节核酸分子杂交的基本原理(1)课时1、核酸变性2、核酸复性第二节核酸探针(2课时)1、核酸探针的种类2、核酸探针的标记3、核酸探针的纯化4、核酸探针的检测第三节核酸分子杂交的影响因素(1)课时第四节核酸分子杂交的类型1、固相核酸分子杂交类型2、液相核酸分子杂交第五章核酸扩增技术 6课时(一)教学目的与要求1、掌握PCR、RT-PCR的基本原理,及PCR的反应体系和条件2、了解以PCR为基础的相关技术3、熟悉PCR产物的检测4、熟悉PCR技术在临床基因诊断中的应用(二)教学的重点与难点1、重点:(1)PCR、RT-PCR的基本原理,及PCR的反应体系和条件(2)PCR技术在临床基因诊断中的应用2、难点:PCR的反应体系和条件选择与控制(三)课时安排:6课时(四)主要内容第一节聚合酶链反应技术(2)课时1、PCR技术原理2、PCR反应体系及其优化3、扩增产物检测及分析4、常见问题原因分析与处理5、PCR衍生技术第二节荧光定量PCR技术(2)课时1、荧光定量PCR技术基本原理2、荧光定量PCR技术3、荧光定量PCR测定的数据处理4、实时荧光定量PCR技术的应用第三节其他扩增技术(1)课时1、基于转录扩增技术2、探针扩增技术3、信号扩增技术第四节临床基因扩增检验实验室的管理与质量控制(1)课时1、临床基因扩增实验室的管理与质量控制2、操作人员培训3、临床基因扩增实验室的规范化设置第六章 DNA序列测定 3课时(一)教学目的与要求1、掌握Sanger双脱氧链末端终止法的基本原理及反应条件2、熟悉化学降解法的基本原理3、了解其他测序方法(二)教学的重点与难点1、重点:(1)Sanger双脱氧链末端终止法基本原理(2)化学降解法的基本原理2、难点:Sanger双脱氧链末端终止法基本原理(三)课时安排:3课时(四)主要内容第一节Sanger双脱氧链末端终止法(2)课时1、测序原理2、测序体系3、方法特点第二节 Maxam-Gilbert化学降解法(1)课时1、测序原理2、测序体系3、方法特点第三节其他测序技术(自学)第四节自动化测序(自学)第八章生物芯片技术与应用 2课时(一)教学目的与要求1、掌握生物芯片的概念、分类2、熟悉DNA芯片的制备过程及应用3、了解蛋白质芯片和缩微芯片技术(二)教学的重点与难点1、重点:(1)生物芯片的概念、分类(2)DNA芯片的杂交与检测应用2、难点:DNA芯片的制备过程及检测原理(三)课时安排:2课时(四)主要内容第一节基因芯片(1)课时1、芯片微阵列制备2、样品的制备及标记3、样品与基因芯片的杂交4、杂交结果的检测及分析第二节蛋白质芯片(0.3)课时1、蛋白质芯片的原理2、蛋白质芯片的分类3、蛋白质芯片的制备及分析4、蛋白质芯片的应用第三节组织芯片(0.0.4)课时1、组织芯片的分类2、组织芯片的制备3、组织芯片的应用第四节液相芯片(0.3)课时1、液相芯片检测技术的原理及特点2、液相芯片检测技术的应用第章蛋白质组学技术3学时(一)教学目的与要求1、熟悉蛋白质组学研究基本技术2、熟悉蛋白质问相互作用的研究技术3、了解蛋白质组学的生物信息学分析(二)教学的重点与难点1、重点:(1)双向凝胶电泳技术、蛋白质芯片技术(2)酵母双杂交技术2、难点:酵母双杂交技术(三)课时安排:3课时(四)主要内容第一节蛋白质组学研究基本技术(1.5)课时1、双向凝胶电泳技术2、生物质谱技术3、蛋白质芯片技术4、蛋白质印迹法第二节蛋白质问相互作用的研究技术(1.0)课时1、酵母双杂交技术2、免疫共沉淀技术第三节蛋白质组学的生物信息学分析(0.5)课时1、蛋白质定性鉴定2、蛋白质翻译后修饰分析第三章核酸的分离与纯化 4课时(一)教学目的与要求1、掌握核酸的分离与纯化的设计、原则和保持核酸完整性的方法2、熟悉核酸分离与纯化的技术路线,核酸浓度、纯度和完整性的鉴定的原理与方法3、掌握DNA提取和纯化的方法原理及其应用4、熟悉质粒DNA抽提的方法及应用5、掌握总RNA的分离与纯化的方法原理及应用,mRNA的分离与纯化的方法原理(二)教学的重点与难点1、重点:(1)核酸的分离与纯化的设计、原则和保持核酸完整性的方法(2)核酸浓度、纯度和完整性鉴定的原理与方法(3)真核生物基因组DNA和mRNA的分离与纯化的方法原理2、难点:(1)保持核酸完整性的方法(2)质粒DNA的提取和RNA的分离与纯化(三)课时安排:4课时(四)主要内容第一节核酸的分离与纯化的设计、原则(1)课时第二节 DNA提取和纯化的方法原理及其应用(1)课时第三节质粒DNA抽提的方法及应用(1)课时第四节总RNA及mRNA的分离与纯化的方法原理(1)课时第十章感染性疾病的分子诊断 4课时(一)教学目的与要求1、掌握病毒的基因检测、细菌的基因检测、衣原体的基因检测、支原体的基因检测2、熟悉梅毒螺旋体的基因检测、真菌的基因检测(二)教学的重点与难点1、重点:(1)病毒的基因检测(2)细菌的基因检测(3)衣原体的基因检测、支原体的基因检测(4)梅毒螺旋体的基因检测2、难点:(1)病毒的基因检测与应用(2)细菌的基因检测与应用(三)课时安排:4课时(四)主要内容第一节病毒的基因检测(1)课时1、乙型肝炎病毒2、单纯疱疹病毒3、风疹病毒4、巨细胞病毒5、人类免疫缺陷病毒第二节细菌的基因检测(1)课时1、结核分支杆菌2、淋病奈瑟菌3、O157型大肠埃希菌4、幽门螺旋杆菌5、细菌耐药基因的检测第三节衣原体的基因检测(0.5)课时第四节支原体的基因检测(0.5)课时第五节梅毒螺旋体的基因检测(1)课时第六节原虫的基因检测(自学)第七节真菌的基因检测(自学)三、教学方法以教师讲授为主,辅以多媒体教学手段,并结合学生的练习与实验。
SDS-聚丙烯酰胺凝胶电泳学号:xxxxxxxx南⽅医科⼤学20X级硕⼠研究⽣分⼦⽣物学实验报告SDS-聚丙烯酰胺凝胶电泳作者:XXX学号:XXX班级:硕⼠X教班组号:第X(X)组专业: XXXXXXX2015年1⽉1⽇SDS-聚丙烯酰胺凝胶电泳法(SDS-PAGE)测定蛋⽩质的分⼦量(南⽅医科⼤学20X级硕⼠X教班分⼦⽣物学实验第X⼤组第X⼩组)1.引⾔SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)是⽬前分离蛋⽩质亚基并测定其分⼦量的常⽤⽅法,为检测电泳后凝胶中的蛋⽩质,⼀般使⽤考马斯亮蓝(CBB)染⾊。
该法是⼀种经济、快速、⽽且可重复的⽅法。
依据混合蛋⽩的分⼦量不同来进⾏分离的。
SDS是⼀种去垢剂,可与蛋⽩质的疏⽔部分相结合,破坏其折叠结构,并使其⼴泛存在于⼀个⼴泛均⼀的溶液中。
1.1聚丙烯酰胺凝胶的性能及制备原理1.1.1性能聚丙烯酰胺凝胶的机械性能好,有弹性,透明,相对地化学稳定,对pH和温度变化⽐较稳定,在很多溶剂中不溶,是⾮离⼦型的,没有吸附和电渗作⽤。
通过改变浓度和交联度,可以控制孔径在⼴泛的范围内变动,并且制备凝胶的重复性好。
由于纯度⾼和不溶性,因此还适于少量样品的制备,不致污染样品。
1.1.2 制备原理聚丙烯酰胺凝胶是⽤丙烯酰胺(Acr)和交联剂甲叉双丙烯酰胺(Bis)在催化剂的作⽤下聚合⽽成。
聚丙烯酰胺凝胶聚合的催化系统有化学聚合和光聚合两种。
本实验是⽤化学聚合。
化学聚合的催化剂通常多采⽤过硫酸铵(AP)或过硫酸钾,此外还需要⼀种脂肪族叔胺作加速剂,最有效的加速剂是N,N,N’,N’-四甲基⼄⼆胺(TEMED)。
在叔胺的催化下,由过硫酸铵形成氧的⾃由基,后者⼜使单体形成⾃由基,从⽽引发聚合反应。
叔胺要处于⾃由碱基状态下才有效,所以在低pH时,常会延长聚合时间;分⼦氧阻⽌链的延长,妨碍聚合作⽤;⼀些⾦属也能抑制聚合;冷却可以使聚合速度变慢。
通常控制这些因素使聚合在1⼩时内完成,以便使凝胶的性质稳定。
《分子生物学》实验指导实验1 总DNA提取生物总DNA的提取是分子生物学实验的一个重要内容。
由于不同的生物材料细胞壁的结构和组成不同,而细胞壁结构的破坏是提取总DNA的关键步骤。
同时细胞内的物质也根据生物种类的不同而有差异,因此不同生物采用的提取方法也不同,一般要根据具体的情况来设计实验方法。
本实验介绍采用CTAB法提取植物总DNA的技术。
[实验目的]学习和掌握学习CTAB法提取植物总DNA的基本原理和实验技术。
学习和掌握紫外光吸收法鉴定DNA的纯度和浓度。
[实验原理]植物叶片经液氮研磨,可使细胞壁破裂,加入去污剂(如CTAB),可使核蛋白体解析,然后使蛋白和多糖杂质沉淀,DNA进入水相,再用酚、氯仿抽提纯化。
本实验采用CTAB法,其主要作用是破膜。
CTAB 是一种非离子去污剂,能溶解膜蛋白与脂肪,也可解聚核蛋白。
植物材料在CTAB的处理下,结合65℃水浴使细胞裂解、蛋白质变性、DNA 被释放出来。
CTAB与核酸形成复合物,此复合物在高盐(>0.7mM)浓度下可溶,并稳定存在,但在低盐浓度(0.1-0.5mM NaCl)下CTAB-核酸复合物就因溶解度降低而沉淀,而大部分的蛋白质及多糖等仍溶解于溶液中。
经过氯仿/ 异戊醇(24:1) 抽提去除蛋白质、多糖、色素等来纯化DNA,最后经异丙醇或乙醇等沉淀剂将DNA沉淀分离出来。
由于核酸、蛋白质、多糖在特定的紫外波长都有特征吸收。
核酸及其衍生物的紫外吸收高峰在260nm。
纯的DNA样品A260/280≈1.8,纯的RNA样品A260/280≈2.0,并且1μg/ml DNA 溶液A260=0.020。
[实验器材]1、高压灭菌锅2、冰箱3、恒温水浴锅4、高速冷冻离心机5、紫外分光光度计6、剪刀7、陶瓷研钵和杵子8、磨口锥形瓶(50ml)9、滴管10、细玻棒11、小烧杯(50ml)12、离心管(50ml)13、植物材料[实验试剂]1、3×CTAB buffer(pH8.0)100mM Tris25mM EDTA1.5M NaCl3% CTAB2% β-巯基乙醇2、TE缓冲液(pH8.0)10mmol/L Tris·HCl1mmol/L EDTA3、氯仿-异戊醇混合液(24:1,V/V)4、95%乙醇5、液氮[实验步骤]1、称取2g新鲜的植物叶片,用蒸馏水冲洗叶面,滤纸吸干水分。