高中数学选修4-4 简单曲线的极坐标方程(第二课时)
- 格式:ppt
- 大小:1.19 MB
- 文档页数:19
2.3 直线和圆的极坐标方程 2.4 曲线的极坐标方程与直角坐标方程的互化*2.5 圆锥曲线统一的极坐标方程学习目标:1.能在极坐标系中给出简单图形表示的极坐标方程.(重点)2.掌握简单图形的极坐标方程与直角坐标方程的互化.(易错易混点)3.用方程表示平面图形时,会选择适当的坐标系来表示.(难点)教材整理1 曲线的极坐标方程 1.曲线的极坐标方程在极坐标系中,如果曲线C 上的点与一个二元方程φ(ρ,θ)=0建立了如下的关系:(1)曲线C 上的每个点的极坐标中至少有一组(ρ,θ)满足方程φ(ρ,θ)=0; (2)极坐标满足方程φ(ρ,θ)=0的点都在曲线C 上.那么方程φ(ρ,θ)=0叫作曲线C 的极坐标方程,曲线C 叫作极坐标方程φ(ρ,θ)=0的曲线.2.常见简单曲线的极坐标方程判断(正确的打“√”,错误的打“×”)(1)过极点且垂直于极轴的直线方程为x=π2.()(2)直线ρcos θ=2与直线ρsin θ=2互相平行.()(3)ρ=cos θ表示一个圆.()[解析](1)√过极点且垂直于极轴的直线上的点的极角都可表示为π2,故正确.(2)×ρcos θ=2表示直线x=2,ρsin θ=2表示直线y=2,这两直线互相垂直.(3)√ρ=cos θ可化为x2+y2=x,故正确.[答案](1)√(2)×(3)√教材整理2曲线的极坐标方程与直角坐标方程的互化两坐标方程的互化,我们把极轴与平面直角坐标系xOy的x的正半轴重合,且两种坐标系取相同的长度单位.利用把曲线的两种方程进行相互转化.填空:(1)曲线ρ=1的直角坐标方程为__________________________.(2)方程y=2x的极坐标方程为___________________________.(3)圆ρ=2cos θ的直角坐标方程为_____________________.[解析](1)ρ=1,即ρ2=1,∴x2+y2=1.(2)把y=ρsin θ,x=ρcos θ代入y=2x,得ρsin θ=2ρcos θ,即tan θ=2.(3)ρ=2cos θ即ρ2=2ρcos θ,所以x2+y2=2x,即(x-1)2+y2=1.[答案](1)x2+y2=1(2)tan θ=2(3)(x-1)2+y2=1教材整理3圆锥曲线统一的极坐标方程设定点为F,定直线为l,过定点F作定直线l的垂线,垂足为K,以F为极点,FK的反向延长线Fx为极轴,建立极坐标系.如图,设定点F到直线l的距离|FK|=p,M(ρ,θ)为曲线上任意一点,曲线的极坐标方程为ρ=ep1-e cos θ.①当0<e<1时,方程表示椭圆.②当e=1时,方程表示开口向右的抛物线.③当e>1时,方程只表示双曲线的右支,定点是它的右焦点.【例1】(1)求过点A(1,0)且倾斜角为π4的直线的极坐标方程;(2)求圆心在A ⎝ ⎛⎭⎪⎫2,3π2处并且过极点的圆的极坐标方程,并判断点⎝ ⎛⎭⎪⎫-2,sin 5π6是否在这个圆上. [精彩点拨] 解答本题先根据题意画出草图,设点M (ρ,θ)后建立关于ρ与θ的方程化简即可.[尝试解答] (1)如图,设M (ρ,θ)(ρ≥0)为直线上除点A 以外的任意一点,则∠xAM =π4, ∠OAM =3π4, ∠OMA =π4-θ.在△OAM 中,由正弦定理得 OM sin ∠OAM =OAsin ∠OMA ,即ρsin 3π4=1sin ⎝ ⎛⎭⎪⎫π4-θ, 所以ρsin ⎝ ⎛⎭⎪⎫π4-θ=22,即ρ⎝ ⎛⎭⎪⎫sin π4cos θ-cos π4sin θ=22, 化简,得ρ(cos θ-sin θ)=1, 经检验点A (1,0)的坐标适合上述方程,所以满足条件的直线的极坐标方程为ρ(cos θ-sin θ)=1.(2)由题意知,圆经过极点O ,OA 为其一条直径,设M (ρ,θ)为圆上除点O ,A 以外的任意一点,则|OA |=2r ,连结AM ,则OM ⊥MA .在Rt △OAM 中,|OM |=|OA |cos ∠AOM ,即ρ=2r cos ⎝ ⎛⎭⎪⎫3π2-θ,∴ρ=-4sin θ.经验证,点O (0,0),A ⎝ ⎛⎭⎪⎫4,3π2的坐标满足上式.所以满足条件的圆的极坐标方程为ρ=-4sin θ.∵sin 5π6=12,∴ρ=-4sin θ=-4sin 5π6=-2, ∴点⎝ ⎛⎭⎪⎫-2,sin 5π6在此圆上.求曲线的极坐标方程通常有以下五个步骤: (1)建立适当的极坐标系; (2)在曲线上任取一点M (ρ,θ);(3)根据曲线上的点所满足的条件写出等式(因涉及的是长度与角度,所以列等式的实质是解三角形);(4)用极坐标ρ,θ表示上述等式,并化简得曲线的极坐标方程; (5)证明所得的方程是曲线的极坐标方程.通常第(5)步不必写出,只要对特殊点的坐标加以检验即可.1.(1)求过A ⎝ ⎛⎭⎪⎫2,π4且平行于极轴的直线方程.(2)在圆心的极坐标为A (4,0),半径为4的圆中,求过极点O 的弦的中点的轨迹.[解] (1)如图所示,在直线l 上任意取点M (ρ,θ).∵A ⎝ ⎛⎭⎪⎫2,π4,∴|MH |=2·sin π4=2,在Rt △OMH 中,|MH |=|OM |sin θ,即ρsin θ=2,所以过A ⎝ ⎛⎭⎪⎫2,π4且平行于极轴的直线方程为ρsin θ=2,其中0<θ<π.(2)设M (ρ,θ)是轨迹上任意一点.连结OM 并延长交圆A 于点P (ρ0,θ0),则有θ0=θ,ρ0=2ρ.由圆心为(4,0),半径为4的圆的极坐标方程为ρ=8cos θ, 得ρ0=8cos θ0,所以2ρ=8cos θ, 即ρ=4cos θ.故所求轨迹方程是ρ=4cos θ.它表示以(2,0)为圆心,2为半径的圆.(1)射线y =3x (x ≤0); (2)圆x 2+y 2+2ax =0(a ≠0).[精彩点拨] 将x =ρcos θ,y =ρsin θ代入―→极坐标方程 [尝试解答] (1)将x =ρcos θ,y =ρsin θ, 代入y =3x ,得ρsin θ=3ρcos θ, ∴tan θ=3,∴θ=π3或θ=4π3.又x ≤0,∴ρcos θ≤0,∴θ=4π3,∴射线y =3x (x ≤0)的极坐标方程为θ=4π3(ρ≥0). (2)将x =ρcos θ,y =ρsin θ代入x 2+y 2+2ax =0,得 ρ2cos 2θ+ρ2sin 2θ+2aρcos θ=0,即ρ(ρ+2a cos θ)=0,∴ρ=-2a cos θ,∴圆x2+y2+2ax=0(a≠0)的极坐标方程为ρ=-2a cos θ,圆心为(-a,0),半径为r=|a|.1.化曲线的直角坐标方程f(x,y)=0为极坐标方程f(ρ,θ)=0,只要将x=ρcos θ,y=ρsin θ代入到方程f(x,y)=0中即可.化为极坐标方程时,如果不加特殊说明,就认为ρ≥0.例如x2+y2=25化为极坐标方程时,有ρ=5或ρ=-5两种情况,由于ρ≥0,所以只取ρ=5.事实上,这两个方程都是以极点为圆心,以5为半径的圆.2.由直角坐标方程化为极坐标方程最后要化简.2.曲线C的直角坐标方程为x2+y2-2x=0,以原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为________.[解析]直角坐标方程x2+y2-2x=0可化为x2+y2=2x,将ρ2=x2+y2,x =ρcos θ代入整理得ρ=2cos θ.[答案]ρ=2cos θ(1)ρcos θ=2;(2)ρ=2cos θ;(3)ρ2cos 2θ=2;(4)ρ=11-cos θ.[精彩点拨]极坐标方程――――→ρcos θ=xρsin θ=y直角坐标方程―→曲线的形状[尝试解答]根据点的极坐标化为直角坐标的公式:ρ2=x2+y2,ρcos θ=x,ρsin θ=y.(1)∵ρcos θ=2,∴x =2,是过点(2,0),垂直于x 轴的直线. (2)∵ρ=2cos θ,∴ρ2=2ρcos θ, ∴x 2+y 2-2x =0,即 (x -1)2+y 2=1. 故曲线是圆心在(1,0),半径为1的圆. (3)∵ρ2cos 2θ=2,∴ρ2(cos 2θ-sin 2θ)=2, 即ρ2cos 2θ-ρ2sin 2θ=2,∴x 2-y 2=2.故曲线是中心在原点,焦点在x 轴上的等轴双曲线. (4)∵ρ=11-cos θ,∴ρ=1+ρcos θ,∴x 2+y 2=1+x ,两边平方并整理, 得y 2=2⎝ ⎛⎭⎪⎫x +12.故曲线是顶点为⎝ ⎛⎭⎪⎫-12,0,焦点为F (0,0),准线方程为x =-1的抛物线.1.将ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y 代入曲线的极坐标方程,整理即得曲线的直角坐标方程.2.解决此类问题常常通过方程变形,构造出形如ρcos θ,ρsin θ,ρ2的式子,进行整体代换.方程的两边同乘以(或同除以)ρ或方程两边平方是常用的变形方法.3.在极坐标系中,点⎝ ⎛⎭⎪⎫2,π6到直线ρsin θ=2的距离等于________.[解析] 极坐标系中点⎝ ⎛⎭⎪⎫2,π6对应的直角坐标为(3,1).极坐标系中直线ρsinθ=2对应直角坐标系中直线y =2.故所求距离为1.[答案] 1[1.在极坐标系中,求圆的极坐标方程的一般思路是什么?求直线的极坐标方程呢?[提示] 在圆上设M (ρ,θ)为任意一点,连结OM ,构造出含OM 的三角形,再利用解直角三角形或解斜三角形的正弦、余弦定理求OM ,即把OM 用θ表示,从而得到圆的极坐标方程.求直线的极坐标方程时,首先在直线上设任意一点M (ρ,θ),构造直角三角形,利用勾股定理建立方程.2.在极坐标系内,如何确定某一个点P 是否在某曲线C 上?[提示] 在直角坐标系内,曲线上每一点的坐标一定适合它的方程,可是在极坐标系内,曲线上一点的所有坐标不一定都适合方程,所以在极坐标系内,确定某一个点P 是否在某一曲线C 上,只需判断点P 的极坐标中是否有一对坐标适合曲线C 的方程即可.3.我们由曲线的直角坐标方程很容易知道它是哪种曲线,那如何由曲线的极坐标方程确定其是哪一种曲线呢?[提示] 如果对简单的直线和圆的极坐标方程及圆锥曲线统一的极坐标方程熟练的话,可由其判断,否则一般是将其化成直角坐标方程再判断其是哪种曲线.【例4】 在极坐标系中,从极点O 作直线与另一直线l :ρcos θ=4相交于点M ,在OM 上取一点P ,使|OM |·|OP |=12.(1)求点P 的轨迹方程;(2)设R 为l 上任意一点,试求RP 的最小值.[精彩点拨] 解答本题可以设出动点P ,M 的极坐标,然后代入条件等式求解即可,也可以转化为直角坐标方程解决.[尝试解答] 法一:(1)设动点P 的极坐标为(ρ,θ),点M 为(ρ0,θ). ∵|OM |·|OP |=12,∴ρ0ρ=12,得ρ0=12ρ. ∵M 在直线ρcos θ=4上, ∴ρ0cos θ=4,即12ρcos θ=4,于是ρ=3cos θ(ρ>0)为所求的点P 的轨迹方程. (2)由于点P 的轨迹方程为ρ=3cos θ=2·32cos θ,所以点P 的轨迹是圆心为⎝ ⎛⎭⎪⎫32,0,半径为32的圆(去掉极点).又直线l :ρcos θ=4过点(4,0)且垂直于极轴,点R 在直线l 上,由此可知RP 的最小值为1.法二:(1)直线l :ρcos θ=4的直角坐标方程为x =4,设点P (x ,y )为轨迹上任意一点,点M (4,y 0),由O P →∥OM →得y 0=4yx (x >0). 又|OM |·|OP |=12, 则|OM |2·|OP |2=144, ∴(x 2+y 2)⎝ ⎛⎭⎪⎫16+16y 2x 2=144, 整理得x 2+y 2=3x (x >0),这就是点P 的轨迹的直角坐标方程.(2)由上述可知,点P 的轨迹是圆心为⎝ ⎛⎭⎪⎫32,0,半径为32的圆(去掉原点).又点R 在直线l :x =4上,由此可知RP 的最小值为1.建立适当的极坐标系,有时会使某些曲线的极坐标方程具有比直角坐标方程更为简洁的形式.可是,由于同一种类型的曲线的极坐标方程的形式多样性,且不同位置的同一曲线的极坐标方程存在较大差异,这给由极坐标方程确定曲线的形状、位置与性质带来不便,为此,往往把极坐标方程化为直角坐标方程,再根据平面直角坐标系中曲线的相关知识将问题求解.4.过极点O 作圆C :ρ=8cos θ的弦ON ,求ON 的中点M 的轨迹方程. [解] 法一:如图,圆心C (4,0),半径r =|OC |=4,连结CM . ∵M 为弦ON 的中点,∴CM ⊥ON ,故M 在以OC 为直径的圆上.所以,动点M 的轨迹方程是ρ=4cos θ.法二:设M 点的坐标是(ρ,θ),N (ρ1,θ1).N 点在圆ρ=8cos θ上,∴ρ1=8cos θ1. ①∵M 是ON 的中点,∴⎩⎨⎧ρ1=2ρ,θ1=θ,代入①式得2ρ=8cos θ,故M 的轨迹方程是ρ=4cos θ.1.极坐标方程ρ=cos ⎝ ⎛⎭⎪⎫π4-θ表示的曲线是( ) A .双曲线B .椭圆C .抛物线D .圆[解析] 方程可化为ρ2=22ρcos θ+22ρsin θ,即x 2+y 2-22x -22y =0,所以曲线表示圆.[答案] D2.过点A (2,0),并且垂直于极轴的直线的极坐标方程是( )A .ρcos θ=2B .ρsin θ=2C .ρcos θ=1D .ρsin θ=1[解析] 如图所示,设M (ρ,θ)为直线上除点A (2,0)外的任意一点,连结OM ,则有△AOM 为直角三角形,并且∠AOM =θ,|OA |=2,|OM |=ρ,所以有|OM |cosθ=|OA |,即ρcos θ=2,显然当ρ=2,θ=0时,也满足方程ρcos θ=2,所以所求直线的极坐标方程为ρcos θ=2.[答案] A3.在极坐标系中,极点到直线ρcos θ=2的距离是________.[解析] ρcos θ=2,即x =2.所以极点到直线的距离为2.[答案] 24.两直线ρsin ⎝ ⎛⎭⎪⎫θ+π4=2 016,ρsin ⎝ ⎛⎭⎪⎫θ-π4=2 015的位置关系是________.(判断垂直或平行或斜交)[解析] 两直线方程可化为x +y =2 0162,y -x =2 0152,故两直线垂直.[答案] 垂直5.求以C (4,0)为圆心,半径等于4的圆的极坐标方程.[解] 设P (ρ,θ)为圆C 上任意一点(不与O ,A 点重合),圆C 交极轴于另一点A ,则|OA |=8.在Rt △AOP 中,|OP |=|OA |cos θ,即ρ=8cos θ,经验证点O ,点A 也满足该等式,所以ρ=8cos θ.这就是圆C 的极坐标方程.。