难加工材料的切削加工技术
- 格式:docx
- 大小:19.24 KB
- 文档页数:4
难加工材料有哪些难加工材料是指那些在加工过程中难以获得理想加工表面质量和形状精度,以及难以获得较高的加工效率的材料。
这些材料通常具有高硬度、高强度、高熔点、高塑性变形抗力、高切削温度等特点。
难加工材料的加工难度主要表现在切削加工、磨削加工和电火花加工等方面。
下面将介绍一些常见的难加工材料。
1. 高硬度合金钢。
高硬度合金钢是一种具有较高硬度和强度的金属材料,通常用于制造刀具、模具等工具。
由于其硬度高,切削加工时易导致刀具磨损严重,加工表面质量难以保证。
2. 耐磨铸铁。
耐磨铸铁是一种具有较高硬度和耐磨性能的铸铁材料,常用于制造耐磨零件。
在磨削加工过程中,由于其硬度高、磨损性能好,磨削难度大,加工效率低。
3. 钛合金。
钛合金是一种具有优良的耐腐蚀性能和高强度重量比的金属材料,广泛应用于航空航天、航空发动机、航空航天器等领域。
由于其熔点高、塑性变形抗力大,切削加工难度大,易引起刀具磨损严重。
4. 陶瓷材料。
陶瓷材料具有优良的耐磨、耐腐蚀性能,常用于制造高温零部件、切削工具等。
然而,由于其脆性大、导热性差,磨削加工难度大,易导致加工表面裂纹和破损。
5. 难加工不锈钢。
难加工不锈钢是一种具有较高硬度和耐腐蚀性能的不锈钢材料,常用于制造化工设备、食品加工设备等。
由于其切削性能差,易导致刀具磨损,加工难度大。
6. 高硬度陶瓷。
高硬度陶瓷是一种具有极高硬度和耐磨性能的材料,常用于制造切削工具、轴承零件等。
然而,由于其脆性大、导热性差,磨削加工难度大,加工效率低。
综上所述,难加工材料主要包括高硬度合金钢、耐磨铸铁、钛合金、陶瓷材料、难加工不锈钢和高硬度陶瓷等。
这些材料在加工过程中具有较高的硬度、强度和耐磨性能,因此加工难度大,加工效率低。
针对这些材料的加工难题,需要采用合适的切削工艺、磨削工艺和电火花加工工艺,以提高加工质量和效率。
304 不锈钢车削加工特点及加工工艺304 不锈钢广泛应用与各行各业,你确定对其车削加工特点及相关的加工工艺很感兴趣。
下面就由我为你带来 304 不锈钢车削加工特点及加工工艺,期望你宠爱。
304 不锈钢车削加工特点(1)切削力大AISI 304 奥氏体不锈钢的硬度不高(硬度≤187HBS),由于其含大量的 Cr、Ni、Mn 等元素,塑性较好(断后伸长率δ5≥40%,断面收缩率ψ≥60%)。
切削加工时塑性变形大,尤其在较高温度时仍可保持较高的强度(一般钢在切削温度上升时强度下降明显),导致 AISI304 奥氏体不锈钢的切削力较大。
常规切削条件下,AISI 304 不锈钢的单位切削力达 2450MPa,比 45 钢高 25%以上。
(2)加工硬化严峻AISI 304 不锈钢在切削加工时伴有较为明显的塑性变形,材料晶格会产生严峻的歪扭;同时,由于奥氏体组织在稳定性方面的缺陷,一小局部奥氏体在此过程中变成了马氏体;此外,奥氏体中存在的杂质化合物会随着切削过程的进展因受热而分解,弥散分布的杂质在外表产生了硬化层,使加工硬化现象格外明显,硬化后的强度σb达1500MPa 以上,硬化层深度 0.1-0.3mm。
(3)切削区局部温度高由于AISI304 不锈钢所需切削力大,且切屑不易切离,使得分别切屑所消耗的功也较大。
常规条件下切削AISI 304 不锈钢比低碳钢高约50%,产生的切削热多。
奥氏体不锈钢的导热性差,AISI304 不锈钢的热导率为 16.3-21.5W/m·K,仅为 45 钢热导率的三分之一,因而使得切削区域的温度较高(通常切削加工时切屑所带走的热量应占切削热量的70%以上),大量切削热集中在切削区和“刀—屑”接触面上,传入刀具中的热量达20%(切削一般碳素钢时该数值仅为9%),使得在同等切削条件下,AISI304 不锈钢切削温度比 45 钢高约 200-300℃。
(4)刀具易产生粘附磨损由于奥氏体不锈钢的高温强度高,加工硬化倾向大,因此,切削负荷重,奥氏体不锈钢与刀具和切屑之间会由于切削过程中其与刀具之间的亲合趋势显著增加,从而不行避开地产生粘结、集中等现象,并生成“切屑瘤”,造成刀具粘附磨损。
金属难加工材料切削及刀具磨损虚拟仿真报告(一)金属难加工材料切削及刀具磨损虚拟仿真报告挑战:金属难加工材料的切削加工•金属难加工材料的定义•高温、高硬度导致的切削困难•切削加工的关键问题方法:利用虚拟仿真技术进行分析•虚拟仿真技术的定义和优势•应用虚拟仿真技术分析金属难加工材料的切削行为•仿真模型的建立和参数设置结果:切削过程中的问题及研究成果•切削力的变化规律及影响因素•切削温度的分布和变化趋势•切削表面质量和切削力之间的关系讨论:刀具磨损与切削性能的关系•刀具磨损的原因和影响因素•切削力和刀具磨损的关系•如何通过优化切削参数延缓刀具磨损总结:虚拟仿真技术在切削加工中的应用前景•虚拟仿真技术的优势和局限性•未来发展方向和研究重点•为实际切削加工提供参考和决策依据金属难加工材料切削及刀具磨损虚拟仿真报告挑战:金属难加工材料的切削加工•金属难加工材料的定义–金属难加工材料是指具有高硬度、高强度和高耐磨性的金属材料,如钛合金、高速钢等。
•高温、高硬度导致的切削困难–由于金属难加工材料的硬度较高,切削时需要更大的切削力。
–高温会导致材料软化和脆性增加,使刀具损耗加剧。
•切削加工的关键问题–如何降低切削力和温度,提高切削效率和加工质量。
方法:利用虚拟仿真技术进行分析•虚拟仿真技术的定义和优势–虚拟仿真技术利用计算机模拟真实物理过程,可以减少实验成本、提高研究效率。
–通过虚拟仿真可以提前预测切削加工过程中的各种参数和结果。
•应用虚拟仿真技术分析金属难加工材料的切削行为–通过建立切削仿真模型,可以模拟金属难加工材料在切削过程中的变形、热力分布等行为。
–利用仿真结果可以分析切削力、切削温度和切削表面质量等参数的变化趋势。
•仿真模型的建立和参数设置–建立金属难加工材料的切削仿真模型。
–设置切削参数,如切削速度、进给速度和切削用量。
–调整模型和参数以获得准确的仿真结果。
结果:切削过程中的问题及研究成果•切削力的变化规律及影响因素–切削力随着切削速度的增加而增加,随着进给速度的增加先增加后减小。
冷风切削技术冷风切削技术是在切削时使用—30℃~—60℃的低温冷风和特别微量的植物油代替冷却润滑剂实施切削的方法,适合于车、铣、磨、钻等各种工序,其切削效率比切削液高一倍左右,并且可以提高工件表面质量,延长刀具寿命,加工钛合金、高温合金、淬硬钢等难切削材料。
与常规切削液相比,冷风切削还具有环保功效,改善工作环境,简化切屑回收处理环节,简化切削液处理环节。
可谓即节省成本,又环保增效。
目前,国内冷风切削普及程度还不是很高,因此对于机加工企业,冷风切削的首要作用是解决加工方面的问题,信任随着国家环保政策的完善,冷风切削在车间清洁化改造过程中也会体现巨大的气力。
冷风切削因其冷却和润滑效果都强于一般切削液,因此可以产生更低的切削温度,从而在相同的参数条件下延长刀具寿命,特别是对于高温合金、钛合金、沉淀硬化不锈钢等难切削材料,刀具寿命比干切削或者切削液都可以延长一倍以上;换句话说,保持刀具寿命不变,转而提高切削参数,就可以解决这些材料加工效率低的问题。
例如,东汽、上汽、哈汽利用冷风切削来加工高温合金、航空成都某厂用冷风切削加工钛合金和沉淀硬化不锈钢、重庆某军工厂用来加工高锰钢等材料,重要用在车、铣、磨等多种加工环节。
其次,冷风还可以提高铝合金等粘性材料的脆性,利用冷风切削可以使铝合金等材料达到镜面效果,例如,在宁江机床厂,利用冷风切削加工实现了铝合金的镜面加工,从而代替了昂贵的金刚石刀具。
再者,对于深孔、深腔加工等难加工结构,冷风切削也可以起到良好的效果。
因气体的穿透性比切削液强很多,因此可以更简单的将微量切削油输送到切削点位置,并且在较低的压力下将切屑吹除,达到高压冷却才能达到的效果。
此外,冷风切削可以对大型老机床进行机床改造,使其焕发第二春,如对XX的5米立车进行了机床改造,使该机床具有了润滑冷却的功能,切削力降低很多,使机床的加工本领得到大大加强,为企业节省了购置新设备的大笔费用。
冷风切削,作为一种新兴的机加工技术,可以代替切削液对刀屑接触面进行冷却和润滑,降低切削温度和切削力,是国内企业用来解决难加工问题(材料、工序、结构),提高切削加工效率,车间清洁化改造的不二方案。
难切削材料的切削加工性研究【摘要】新材料的出现,使得传统的切削加工变得困难,切削加工性降低。
本文主要介绍了三种难切削材料的切削加工性的一些特点,并以此提出了提高难切削材料切削加工性的途径。
【关键词】切削加工性;钛合金;镍基高温合金;高强度钢一、钛合金的切削加工性钛合金是一种比强度和比刚度较高,在温度550℃以下耐腐蚀很高的材料。
它是应用很广泛的飞行器结构材料,也应用于造船、化工等行业。
钛合金从金属组织上可分为α相钛合金、β相钛合金、(α+β)相钛合金。
硬度及强度按α相、(α+β)相、β相的次序增加,而切削加工性按这个次序下降。
钛合金的切削加工性是较低对的,其原因如下:(1)钛合金导热性能低,切屑与前刀面的接触面积很小,致使切削温度很高,可为45钢切削温度的2倍。
(2)钛合金在600℃以上的温度时,与气体发生剧烈的化学作用。
(3)钛合金塑性较低,特别是和周围的气体发生化学变化后,硬度增高,剪切角增大,切屑与前角面的接触长度很小,使前刀面上应力很大,刀刃容易发生破损。
(4)钛合金的弹性模量低,弹性变形大,接近后刀面处工件表面的回弹量大,故已加工表面与后刀面的接触面积特别大,磨损也比较严重。
根据钛合金的性质和切削过程中的特点,切削时应该考虑的措施是:(1)尽可能使用硬质合金刀具,以提高生产率,应该选用与钛合金亲和力小,导热性能良好的强度高的细晶粒钨钴类硬质合金。
成型和复杂刀具可选用高温性能好的高速高。
(2)为增大切屑与前刀面的接触长度,以提高耐用度,应采用较小的前角。
后角应比切普通钢的大。
刀尖采用圆弧过渡刃,刀刃上避免有尖角出现。
(3)刀刃的粗糙度应尽可能小,以保证排屑流畅和避免崩刃。
(4)切削速度宜低,切削深度可以较大,进给量应适当。
进给量过大易引起刀刃的烧损;进给量过小将因刀刃在加工硬化层中工作而磨损过快。
(5)应进行充分冷却,慎用含氯的极压切削液。
在使用含氯的切削液时,使用后应将工件充分清洗,以防止应力腐蚀。
机械行业难加工材料与结构的加工技术在机械行业中,难加工材料和结构的加工技术是一个非常重要的领域。
难加工材料通常指那些具有较高硬度、强度和耐磨性的材料,如高温合金、陶瓷材料、硬质合金等。
而难加工结构则是指那些拥有复杂形状、几何结构困难、精度要求高的工件。
为了克服这些困难,机械行业开发了一系列的加工技术。
一种常见的难加工材料加工技术是电火花加工。
电火花加工利用电弧放电的高温高能量特性,在工件表面形成微小的坑洞或沟槽,进而去除材料。
这种加工技术适用于高硬度的材料,如陶瓷和硬质合金。
然而,由于在加工过程中材料的熔化和再凝固,导致工件表面粗糙度较高,因此通常需要进行后续的研磨和抛光。
另一种难加工材料加工技术是超声波加工。
超声波加工利用高频声波产生的波动能量,对工件表面施加正交力,从而去除材料。
这种加工技术适用于高韧性和高强度的材料,如钛合金和不锈钢。
超声波加工具有高效、精确、不产生热影响等优点,因此在航空航天和医疗器械等领域得到广泛应用。
此外,对于难加工结构的加工技术,激光加工是一种常用的方法。
激光加工利用高能量激光束对工件表面进行加热和熔化,然后通过气体喷吹或机械力去除熔化的材料。
激光加工可以实现对复杂形状的加工,并具有高精度和无接触的特点。
然而,由于激光加工过程中会产生大量的热,因此需要对工件进行冷却,以防止过热造成的变形和损伤。
总之,难加工材料和结构的加工技术对于机械行业具有重要的意义。
通过电火花加工、超声波加工和激光加工等方法,可以克服难加工材料和结构带来的困难,实现高效、精确和符合工程要求的加工目标。
难加工材料和结构的加工技术是机械行业中的一个重要领域,因为这些材料和结构在很多行业中都有广泛的应用,包括航空航天、汽车制造、能源等。
这些材料和结构具有较高的硬度、强度和耐磨性,对于传统的加工方法来说,加工难度较大。
为了克服这些困难,机械行业发展了一系列的加工技术。
首先,电火花加工是一种常用的加工技术,适用于难加工材料的加工。
难加工材料的切削加工技术
难加工材料的界定及具体品种,随时代及专业领域而各有不同,例如,宇航产业常用的超耐热合金、钛合金及含有碳纤维的复合材料等,都是该领域的难加工材料。
宇航业的工程技术人员开展了加工技术的研究与开发工作,已经研究出适合该领域使用的切削工具和加工方法。
近年来,机械制品多功能、高功能化的发展势头十分强劲,要求零件必须实现小型化、微细化。
为了满足这些要求,则所用材料必须具有高硬度、高韧性和高耐磨性,而具有这些特性的材料其加工难度也特别大,因此又出现了新的难加工材料。
难加工材料就是这样随着时代的发展及专业领域的不同而出现,其特有的加工技术也随着时代及各专业领域的研
另一方面,随着信息化社会的到来,难加工材料切削技术信息也可通过因特网互相交流,因此,今后有关难加工材料切削加工的数据等信息将会更加充实,加工效率也必然会进
切削领域中的难加工材料
在切削加工中,通常出现的刀具磨损包括如下两种形态:(1)由于机械作用而出现的磨损,如崩刃或磨粒磨损等;(2)由于热及化学作用而出现的磨损,如粘结、扩散、腐蚀等磨损,以及由切削刃软化、溶融而产生的破断、热疲劳、热龟裂等。
切削难加工材料时,在很短时间内即出现上述刀具磨损,这是由于被加工材料中存在较多促使刀具磨损的因素。
例如,多数难加工材料均具有热传导率较低的特点,切削时产生的热量很难扩散,致使刀具刃尖温度很高,切削刃受热影响极为明显。
这种影响的结果会使刀具材料中的粘结剂在高温下粘结强度下降,WC(碳化钨)等粒子易于分离出去,从而加速了刀具磨损。
另外,难加工材料中的成分和刀具材料中的某些成分在切削高温条件下产生反应,出现成
在切削高硬度、高韧性被加工材料时,切削刃的温度很高,也会出现与切削难加工材料时类似的刀具磨损。
如切削高硬度钢时,与切削一般钢材相比,切削力更大,刀具刚性不足将会引起崩刃等现象,使刀具寿命不稳定,而且会缩短刀具寿命,尤其是加工生成短切屑
在切削超耐热合金时,由于材料的高温硬度很高,切削时的应力大量集中在刃尖处,这将导致切削刃产生塑性变形;同时,由于加工
由于这些特点,所以要求用户在切削难加工材料时,必须慎重选择刀具品种和切削条
难加工材料在切削加工中应注意的问题
切削加工大致分为车削、铣削及以中心齿为主的切削(钻头、立铣刀的端面切削等),这些切削加工的切削热对刃尖的影响也各不相同。
车削是一种连续切削,刃尖承受的切削力无明显变化,切削热连续作用于切削刃上;铣削则是一种间断切削,切削力是断续作用于刃尖,切削时将发生振动,刃尖所受的热影响,是切削时的加热和非切削时的冷却交替进行,总的
铣削时的切削热是一种断续加热现象,刀齿在非切削时即被冷却,这将有利于刀具寿命的延长。
日本理化研究所对车削和铣削的刀具寿命作了对比试验,铣削所用刀具为球头立铣刀,车削为一般车刀,两者在相同的被加工材料和切削条件(由于切削方式不同,切削深度、进给量、切削速度等只能做到大体一致)及同一环境条件下进行切削对比试验,结果表明,铣削加工对延长刀具寿命更为有利。
利用带有中心刃(即切削速度=0m/min的部位)的钻头、球头立铣刀等刀具进行切削时,经常出现靠近中心刃处工具寿命低下的情况
在切削难加工材料时,切削刃受热影响较大,常常会降低刀具寿命,切削方式如为铣削,则刀具寿命会相对长一些。
但难加工材料不能自始至终全部采用铣削加工,中间总会有需要进行车削或钻削加工的时候,因此,应针对不同切削方式,采取相应的技术措施,提高加工效率
切削难加工材料用的刀具材料
CBN的高温硬度是现有刀具材料中最高的,最适合用于难加工材料的切削加工。
新型涂层硬质合金是以超细晶粒合金作基体,选用高温硬度良好的涂层材料加以涂层处理,这种材料具有优异的耐磨性,也是可用于难加工材
难加工材料中的钛、钛合金由于化学活性高,热传导率低,可选用金刚石刀具进行切削加工。
CBN烧结体刀具适用于高硬度钢及铸铁等材料的切削加工,CBN成分含量越高,刀具寿命也越长,切削用量也可相应提高。
据报道,目前已开发出不使用粘结剂的CBN烧结体。
金刚石烧结体刀具适用于铝合金、纯铜等材料的切削加工。
金刚石刀具刃口锋利,热传导率高,刃尖滞留的热量较少,可将积屑瘤等粘附物的发生控制在最低限度之内。
在切削
涂层硬质合金刀具几乎适用于各种难加工材料的切削加工,但涂层的性能(单一涂层和复合涂层)差异很大,因此,应根据不同的加工对象,选用适宜的涂层刀具材料。
据报道,最近已开发出金刚石涂层硬质合金和DLC(Diamond Like Carbon)涂层硬质合金,使涂层刀具
切削难加工材料的刀具形状
在切削难加工材料时,刀具形状的最佳化可充分发挥刀具材料的性能。
选择与难加工材料特点相适应的前角、后角、切入角等刀具几何形状和对刃尖进行适当处理,对提高切削精度和延长刀具寿命有很大的影响,因此,在刀具形状方面决不能掉以轻心。
但是,随着高速铣削技术的推广应用,近来已逐渐采用小切深以减轻刀齿负荷,采用逆铣并提高进给速度,
对难加工材料进行钻削加工时,增大钻尖角,进行十字形修磨,是降低扭矩和切削热的有效途径,它可将切削与切削面的接触面积控制在最小范围之内,这对延长刀具寿命和提高切削条件十分有利。
钻头在钻孔加工时,切削热极易滞留在切削刃附近,而且排屑也很困
为了便于排屑,通常在钻头切削刃后侧设有冷却液喷出口,可供给充足的水溶性冷却液或雾状冷却剂等,使排屑变得更为顺畅,这种方式对切削刃的冷却效果也很理想。
近年来,
已开发出一些润滑性能良好的涂层物质,这些物质涂镀在钻头表面后,用其加工3~5D的浅
孔的精加工历来采用镗削方式,不过近来已逐渐由传统的连续切削方式改变为采用等高线切削这类间断切削方式,这种方式对提高排屑性能和延长工具寿命均更为有利。
因此,这种间断切削用的镗削刀具设计出来后,立即被应用于汽车零件的CNC切削加工。
在螺纹孔加工方面,目前也采用螺旋切削插补方式,切螺纹用的立铣刀已大量投放市场。
如上所述,这种由原来连续切削向间断切削的转换,是随着对CNC切削理解的加深而进行的,这是一个渐进的过程。
采用此种切削方式切削难加工材料时,可保持切削的平稳性,
难加工材料的切削条件
难加工材料的切削条件历来都设定得比较低,随着刀具性能的提高,高速高精度CNC 机床的出现,以及高速铣削方式的引进等,目前,难加工材料的切削已进入高速加工、刀具
现在,采用小切深以减轻刀具切削刃负荷,从而可提高切削速度和进给速度的加工方式,已成为切削难加工材料的最佳方式。
当然,选择适应难加工材料特有性能的刀具材料和刀具几何形状也极为重要,而且应力求刀具切削轨迹的最佳化。
例如,钻削不锈钢等材料时,由于材料热传导率很低,因此,必须防止切削热大量滞留在切削刃上,为此应尽可能采用间断切削,以避免切削刃和切削面摩擦生热,这将有助于延长工具寿命和保证切削的稳定。
用球头立铣刀对难加工材料进行粗加工时,工具形状和夹具应很好配合,这样可提高刀具切削部分的振摆精度和夹持刚性,以便在高速回转条件下,保证将每齿进给量提高到最大限度,
结束语
如前所述,难加工材料的最佳切削方法是不断发展的,新的难加工材料不断出现,对新材料的加工总是不断困扰着工程技术人员。
最近,新型加工中心、切削工具、夹具及CNC 切削等技术发展非常迅速,而且在切削加工之外,CNC磨削、CNC电加工等技术也得到空前的
当然,有关难加工材料加工信息的收集与对该技术的深入理解,还不能尽如人意,正
例如,前述车削加工由连续切削向间断切削转换,便有利于延长工具寿命,新型涂层硬质合金刀具的使用,使难加工材料切削技术水平得到进一步提高。
在难加工材料的切削加工中应特别重视工具寿命的稳定,不仅工件材料要和刀具性能妥善配伍,而且对加工尺寸、加工表面粗糙度、形状精度等的要求也极严格,因此,不仅应特别注意刀具选用,对工件的夹持方式等相关技术也不能掉以轻心。
今后,难加工材料零件的加工将采取CAD/CAM、CNC切削加工等计算机控制的生产方式,因此,数据库的建构、工具设计与制作等工具管理系统的完善,都极为重要。
难加工材料切削加工中,适用的刀具、夹具、工序安排、工具轨迹的确定等有关切削条件的数据,均应作为基础数据加以积累,使零件生产方式沿着以IT化为基础的方向发展,这样,难加工材料的切削加工技术才能较快地步入一个新的阶段。