水动力学基础分析
- 格式:pptx
- 大小:1.42 MB
- 文档页数:79
水动力学基础第二章水动力学基础一、拉格朗日法.运动要素(水力要素)指表示液体运动的各种物理量。
运动要素不仅是空间坐标的函数,还是时间的函数,即拉格朗日(Lagrange)法就是把液体运动看作是无数质点运动的总和,以研究个别液体质点的运动为基础,通过研究足够多的液体质点的运动来掌握整个液流的运动情况。
所以,这种方法又称为质点系法。
取某一瞬时质点的位置坐标来代表该质点,则质点的运动坐标既与质点的初始坐标有关,又与时间有关,即认为运动坐标是初始坐标与时间的函数,可以表示为:拉格朗日法在概念上并无新鲜之处,和以往所习惯使用的方法一样,因此,易于掌握。
但由于液体的运动轨迹非常复杂,要寻求为数众多的单个质点的运动规律,除了较简单的情况外,将会在数学上导致难以克服的困难。
况且从实用的观点来看,实际工程中并无必要了解液体质点运动的详尽过程,因此,这种方法在水力学上很少采用,仅在个别情况下,例如研究波浪运动和射流轨迹等问题时,才考虑应用该方法。
在水力学中普遍采用的是欧拉法。
二、欧拉法欧拉法就是把液体的运动看作是各个空间点上不同液体质点运动情况的总和。
也就是说,在液体运动的空间里取许多空间点,研究某一瞬时经过这些空间点的不同质点的运动情况(如流速、压强的变化等),所有这些质点的运动情况的总和就使我们掌握了这一瞬时整个液流的运动情况;如果研究很多瞬时,就能了解某一时段液流的运动情况。
显然,这种研究方法并不注意液体质点的运动历程,即这些质点在来到该空间点以前和经过该空间点以后是如何运动的,而集中注意当质点流经该空间点时的运动情况。
根据欧拉法的思想,在不同时刻有不同的液体质点经过同一空间点,它们的运动速度一般来讲是不同的,即对固定空间点而言,速度随时间t而变;在同一时刻t,处于不同空间点上的液体质点其速度一般来讲也是不同的,即对固定瞬时而言,速度是随着空间位置坐标而变的。
综上所述,速度应该是空间位置坐标和时间的函数,即,这是一个矢性函数,在应用上常写成投影式,其中的坐标变量称为欧拉变数。