电气阀门定位器原理培训1
- 格式:ppt
- 大小:4.20 MB
- 文档页数:37
电气阀门定位器工作原理
电气阀门定位器是一种用于控制阀门位置的设备,它通过电气信号来控制阀门的开启和关闭,从而实现对流体的控制。
电气阀门定位器的工作原理是基于电气信号的传输和转换,下面我们来详细了解一下。
电气阀门定位器由两个主要部分组成:电气控制器和执行器。
电气控制器是一个电子设备,它接收来自控制系统的信号,并将其转换为电气信号。
执行器则是一个机械设备,它接收电气信号并将其转换为机械运动,从而控制阀门的位置。
当控制系统需要控制阀门时,它会向电气控制器发送一个信号。
这个信号可以是数字信号或模拟信号,具体取决于控制系统的类型。
电气控制器会将这个信号转换为电气信号,并将其发送到执行器。
执行器接收到电气信号后,会将其转换为机械运动。
具体来说,执行器内部有一个电动机或气动马达,它会根据电气信号的大小和方向来控制阀门的位置。
如果电气信号是正向的,执行器会将阀门打开;如果电气信号是反向的,执行器会将阀门关闭。
在整个过程中,电气阀门定位器的关键是电气信号的传输和转换。
电气信号可以通过电缆、无线电波或光纤等方式传输,具体取决于控制系统的要求。
在传输过程中,电气信号可能会受到干扰或衰减,
因此需要采取一些措施来保证信号的可靠性和稳定性。
电气阀门定位器是一种基于电气信号的控制设备,它通过电气信号来控制阀门的位置,从而实现对流体的控制。
在实际应用中,电气阀门定位器具有精度高、响应快、可靠性好等优点,因此被广泛应用于各种工业控制系统中。
《阀门培训》课件标题:《阀门培训》课件一、引言阀门是流体输送系统中的重要组成部分,起着控制、调节和切断流体流动的作用。
掌握阀门的原理、结构、类型、安装、调试和维护等知识,对于从事流体输送系统的设计、施工和维护工作的工程师和技术人员来说至关重要。
本课件旨在为阀门培训提供系统的教学内容,帮助学员掌握阀门相关知识,提高实际操作能力。
二、阀门原理与结构1. 阀门原理阀门通过改变阀门通道的截面积,实现对流体流量、压力和流向的控制。
阀门主要由阀体、阀盖、阀杆、阀瓣和密封元件等组成。
阀门的工作原理是利用执行机构(手动、电动、气动等)驱动阀杆,使阀瓣产生相应的位移,从而改变阀门通道的截面积,实现对流体流动的控制。
2. 阀门结构阀门结构主要包括阀体、阀盖、阀杆、阀瓣、密封元件、填料函、填料压盖等部件。
阀体和阀盖是阀门的主体结构,阀杆连接执行机构和阀瓣,阀瓣用于调节流体流量,密封元件和填料函用于实现阀门的密封性能。
三、阀门类型与应用1. 按结构分类(1)截止阀:主要用于切断和接通流体,适用于清洁介质。
(2)闸阀:适用于大口径、高压力的管道,具有流通能力大、阻力小等特点。
(3)球阀:具有结构紧凑、密封性能好、开关迅速等特点,广泛应用于石油、化工等领域。
(4)蝶阀:结构简单、重量轻、操作方便,适用于低压、大口径的管道。
(5)调节阀:用于调节流体流量、压力和温度,具有精确、灵敏的特点。
2. 按驱动方式分类(1)手动阀门:通过手动操作实现开关和控制。
(2)电动阀门:通过电动执行机构实现开关和控制。
(3)气动阀门:通过气动执行机构实现开关和控制。
(4)液动阀门:通过液压执行机构实现开关和控制。
四、阀门安装与调试1. 安装前准备(1)检查阀门型号、规格是否符合设计要求。
(2)检查阀门外观,确保无损坏、变形等缺陷。
(3)检查阀门密封面,确保无划痕、磨损等影响密封性能的问题。
(4)检查阀门连接法兰、螺栓等配件是否齐全、完好。
2. 安装步骤(1)将阀门安装在管道上,确保阀门与管道同轴。
阀门定位器工作原理及作用定位器技术指标电气阀门定位器是气动调整阀紧要附件之一,通常与气动调整阀配套使用,它接受调整器的输出信号,然后以它的输出信号去掌控气动调整阀,当调整阀动作后,阀杆的位移又通过机械装置反馈到阀门定位器,阀位情形通过电信号传给上位系统。
电气阀门定位器工作原理电气阀门定位器是掌控阀的紧要附件。
它将阀杆位移信号作为输入的反馈测量信号,以掌控器输出信号作为设定信号,进行比较,当两者有偏差时,更改其到执行机构的输出信号,使执行机构动作,从而建立阀杆位移与掌控器输出信号之间的对应关系。
因此,阀门定位器构成以阀杆位移为测量信号,以掌控器输出为设定信号的反馈掌控系统。
该掌控系统的操纵变量是阀门定位器去执行机构的输出信号。
电气阀门定位器作用1、用于对调整质量要求高的紧要调整系统,以提高调整阀的定位精准明确及牢靠性。
2、用于阀门两端压差大(△p》1MPa)的场合。
通过提高气源压力增大执行机构的输出力,以克服液体对阀芯产生的不平衡力,减小行程误差。
3、当被调介质为高温、高压、低温、有毒、易燃、易爆时,为了防止对外泄漏,往往将填料压得很紧,因此阀杆与填料间的摩擦力较大,此时用定位器可克服时滞。
4、被调介质为粘性流体或含有固体悬浮物时,用定位器可以克服介质对阀杆移动的阻力。
5、用于大口径(Dg》100mm)的调整阀,以增大执行机构的输出推力。
6、当调整器与执行器距离在60m以上时,用定位器可克服掌控信号的传递滞后,改善阀门的动作反应速度。
7、用来改善调整阀的流量特性。
8、一个调整器掌控两个执行器实行分程掌控时,可用两个定位器,分别接受低输入信号和高输入信号,则一个执行器低程动作,另一个高程动作,即构成了分程调整。
阀门定位器的详情介绍阀门定位器按结构分:气动阀门定位器、电气阀门定位器及智能阀门定位器,是调整阀的紧要附件,通常与气动调整阀配套使用,它接受调整器的输出信号,然后以它的输出信号去掌控气动调整阀,当调整阀动作后,阀杆的位移又通过机械装置反馈到阀门定位器,阀位情形通过电信号传给上位系统。
常见阀门定位器你必须掌握的工作原理!阀门定位器是一种用于控制阀门的自动调节装置。
它能够通过与阀门连动,实现对阀门位置的自动调节,保证阀门处于设定的位置。
一、工作原理阀门定位器的工作原理主要包括以下几个方面:1.位置传感器:阀门定位器通过安装在阀门上的位置传感器来感知阀门的位置。
常见的位置传感器有行程开关、霍尔传感器等。
位置传感器可以感知阀门的位置,并将信号传输给控制系统。
2.控制系统:阀门定位器通过控制系统对阀门位置进行控制。
控制系统可以通过接收来自位置传感器的信号来判断阀门的位置,并通过比较设定的位置与实际位置的差异来控制阀门的运动。
3.驱动装置:阀门定位器通过驱动装置来实现对阀门的控制。
常见的驱动装置有电动装置、气动装置等。
驱动装置可以根据控制系统的指令,将电力或气力转化为机械运动,从而使阀门调节到指定的位置。
4.力矩装置:阀门定位器通过力矩装置来提供足够的力矩以克服阀门的摩擦力和液体流体的压力差等因素。
力矩装置可以根据控制系统的指令调整输出的力矩,以确保阀门的调节精度和稳定性。
5.控制算法:阀门定位器通过控制算法来实现对阀门位置的精确控制。
常见的控制算法有PID控制算法、模糊控制算法等。
控制算法可以根据阀门的实际位置和设定位置之间的差异来计算出控制信号,并将信号传输给驱动装置,以实现对阀门位置的调节。
二、常见阀门定位器的工作原理1.电动定位器:电动定位器是使用电动装置作为驱动装置的阀门定位器。
当控制系统接收到位置传感器的信号后,会将信号转化为电信号,并通过控制算法计算出控制信号。
然后,控制信号会传输给驱动装置,驱动装置会将电能转化为机械运动,从而实现对阀门位置的调节。
2.气动定位器:气动定位器是使用气压作为驱动装置的阀门定位器。
当控制系统接收到位置传感器的信号后,会将信号转化为气压信号,并通过控制算法计算出控制信号。
然后,控制信号会传输给驱动装置,驱动装置会根据控制信号控制气压的大小和流向,从而实现对阀门位置的调节。
常见阀门定位器你必须掌握的工作原理!阀门定位器是一种用于自动控制阀门位置的装置,通常应用于工业控制系统中。
它主要通过检测和控制阀门的位置,以确保阀门能够准确地执行开关操作。
掌握阀门定位器的工作原理对于操作和维护阀门定位器的人员至关重要。
下面是常见的阀门定位器的工作原理:1.反馈信号:阀门定位器通过传感器获取阀门位置的反馈信号。
传感器通常是安装在阀门本体上的,它可以测量阀门的开度或者位置。
一些常见的传感器包括旋转式或线性式编码器、霍尔传感器以及压力传感器等。
这些传感器将阀门位置转换为可读取的电信号。
2.控制信号:阀门定位器接收控制信号,并根据这些信号来判断阀门应该执行的动作。
控制信号通常为电流信号,其大小和方向表示阀门应该向哪个方向运动或者停止运动。
阀门定位器将控制信号转化为驱动信号,以驱动执行器进行阀门位置的调节。
3.驱动信号:阀门定位器生成的驱动信号将传输到执行器中进行控制。
执行器通常是一个电动执行器或者气动执行器,它们根据驱动信号的大小和方向来控制阀门的开闭动作。
电动执行器通常采用伺服驱动电机,而气动执行器使用压缩空气来驱动阀门。
根据阀门类型和需求,还可能使用液压执行器进行驱动。
4.反馈控制:阀门定位器通过将执行器位置与阀门位置的反馈信号进行比较来实现闭环控制。
如果阀门的实际位置与预期位置不一致,定位器将相应调整控制信号,以改变执行器的运动方向和速度,直到阀门达到预期位置,并保持稳定。
5.系统调节:阀门定位器通常还配备了一些调节参数的功能,以满足特定控制要求。
这些参数包括调节阀门的开动时间、速度、加速度,以及闭环控制的增益和迟滞等。
通过调节这些参数,可以优化阀门控制的响应时间、稳定性和精度。
综上所述,阀门定位器主要通过接收反馈信号、控制信号和驱动信号来实现阀门位置的检测和控制。
通过调节控制信号和驱动信号,反馈控制阀门的位置,以确保阀门能够准确地执行开关操作,并按照设定的要求进行控制。
不同类型的阀门定位器在具体的实现方式和控制策略上可能会有差异,但基本的工作原理是相似的。
阀门定位器的工作原理和系统结构1.1 工作原理阀门定位器是按力矩平衡原理工作的。
如正作用的气动薄膜阀,来自调节器或输出式安全栅的4~20mA直流信号输入到转换组件中的线圈时,由于线圈两侧各有一块极性方向相同的永久磁铁,所以线圈产生的磁场与永久磁铁的恒定磁场,共同作用在线圈中间的可动铁芯即阀杆上,使杠杆产生位移。
当输入信号增加时,杠杆向下运动(作逆时针偏转),固定在杠杆上的挡板便靠近喷嘴,使放大器背压增高,经放大后输出气压也随之增高。
此输出气压作用在调节阀的膜头上,使调节阀的阀杆向下运动。
阀杆的位移通过拉杆转换为反馈轴和反馈压板的角位移,并通过调量程支点作用于反馈弹簧上,该弹簧被拉伸,产生一个反馈力矩,使杠杆作顺时针偏转,当反馈力矩和电磁力矩相平衡时,阀杆就稳定于某一位置,从而实现了阀杆位移与输入信号电流成正比例的关系。
调整调量程支点于适当位置,可以满足调节阀不同杆行程的要求。
1.2 系统结构阀门定位器与阀门配套使用,组成一个闭合控制回路的系统。
该系统主要由磁电组件、零位弹簧、挡板、气动功率放大器、调节阀、反馈杠杆、量程调节机构、反馈弹簧组成。
其系统方框图如图1所示。
I - 输入电流;H - 调零弹簧长度;M1- 输入电流所产生的电磁力矩;M o- 零位弹簧所产生的调零点力矩;M f - 反馈弹簧所产生的反馈力矩;h - 挡板微小位移;P - 气动功率放大器的输出压力;L - 调节阀的行程为了分析的方便,我们假设阀门定位器为线性的,则在一般情况下,各环节均可近似为线性环节,那么系统的方框图如图2所示。
图2 线性化的系统方框图K o - 零位弹簧的弹性系数;K4 - 反馈弹簧的弹性系数;K1,K2,K3,K5,K6,K v - 磁电组件、挡板、放大器、量程调整机构、反馈杠杆和调节阀的放大系数由图2可知,令:K c= K2K3K v(1)K F=K4K5K6(2)则L=K c(K o H+K1I)/(1+ K c K f)= [K G K1/(1+K G K f)]*I+K c K o H/(1+K c K f)(3)由(3)式可知:K c K o H/(1+K G K f)为阀门定位器的零点。
阀门定位器的工作原理与结构(很详细的介绍)阀门定位器的工作原理与结构阀门定位器是气动调节阀的关键附件之一,其作用是把调节装置输出的电信号变成驱动调节阀动作的气信号。
它具有阀门定位功能,既克服阀杆摩擦力,又可以克服因介质压力变化而引起的不平衡力,从而能够使阀门快速的跟随,并对应于调节器输出的控制信号,实现调节阀快速定位,提升其调节品质。
随着智能仪表技术的发展,微电子技术广泛应用在传统仪表中,大大提高了仪表的功能与性能。
阀门定位器(图1)阀门定位器的原理:反馈杆反馈阀门的开度位置发生变化,当输入信号产生的电磁力矩与定位器的反馈系统产生的力矩相等,定位器力平衡系统处于平衡状态,定位器处于稳定状态,此时输入信号与阀位成对应比例关系。
当输入信号变化或介质流体作用力等发生变化时,力平衡系统的平衡状态被打破,磁电组件的作用力与因阀杆位置变化引起的反馈回路产生的作用力就处于不平衡状态,由于喷嘴和挡板作用,使定位器气源输出压力发生变化,执行机构气室压力的变化推动执行机构运动,使阀杆定位到新位置,重新与输入信号相对应,达到新的平衡状态。
在使用中改变定位器的反馈杆的结构(如凸轮曲线),可以改变调节阀的正、反作用,流量特性等,实现对调节阀性能的提升。
智能阀门定位器结构如下图所示,其中虚线内为定位器部分,右侧为气动执行机构。
控制和驱动电路,以及位置反馈传感器的数据采集电路,均位于定位器内的电路板中。
控制电路主要完成控制信号和位置反馈信号的数据采集与处理工作,同时形成稳定输出电压。
驱动电路用于PWM电流滤波后的功率放大。
喷嘴挡板、喷嘴以及相应组件构成了I/P 转换器,实现电气转换。
调节喷嘴挡板和喷嘴的间距,通过气体放大器,完成对输出气体的调节。
反馈杆和位置反馈传感器,完成气动执行机构位移的检测,并组成完整的闭环控制系统。
智能阀门定位器结构图(图2)。