神经元兴奋和传导
- 格式:pptx
- 大小:491.77 KB
- 文档页数:32
神经元兴奋和传导教案。
一、神经元的结构和功能神经元是由细胞体、树突和轴突三部分组成,其中细胞体包含细胞核和细胞质,是神经元的主体。
树突和轴突是神经元主要的信息输入和输出通道,其长度和形态不同,可以影响神经元的功能。
在神经元中,树突主要接收来自其他神经元的信息,而轴突则将信息传递给其他神经元,并与肌肉或腺体细胞相连传递运动信息。
神经元的功能是传递和处理信息,包括感受来自环境的刺激、处理多种感觉信息、负责思考和思维、控制肌肉的收缩和放松等。
因此,神经元可以说整个神经系统中最重要的功能单元,其兴奋和传导机制是神经系统稳定运转的关键。
二、神经元的兴奋和传导机制神经元的运作涉及到神经元内部的离子流动和神经元间的信息传递。
其中,神经元内部的兴奋可以看做是离子流动的结果,而神经元之间的传导则需要通过神经递质完成。
下面我们将重点介绍神经元的兴奋和传导机制。
1.神经元的兴奋神经元内部的兴奋是由电位差引起的,神经元内外存在着不同的离子浓度和电位。
神经元内部电压相对于外部电压的值称为膜电位,通常情况下,膜电位为-70mv。
当神经元受到刺激时,离子通道将发生变化,导致离子向内流动或外流动,从而改变神经元内部的电位。
当膜电位达到一定值时,神经元会产生兴奋并传递信息。
神经元内部兴奋的过程如下:刺激—>离子通道打开—>内部离子流入或流出—>膜电位改变—>兴奋产生2.神经元的传导神经元之间的信息传递需要通过神经递质完成。
神经递质是一种化学物质,存在于神经元轴突末端的小泡中。
神经元内部的兴奋可以促使小泡释放神经递质,而神经递质则可以通过受体与接受信息的神经元连接起来,从而实现信息传递。
神经元间信息传导的过程如下:神经元兴奋—>小泡释放神经递质—>神经递质与受体结合—>信息传递三、神经元兴奋和传导教案1.教学目标掌握神经元的结构、功能以及神经元内部的兴奋和传导机制。
2.教学重点和难点重点:神经元的结构和功能、神经元内部兴奋和传导机制。
高三生物——兴奋的产生、传导与传递知识梳理
1.兴奋在神经纤维上的传导
(1)传导形式:电信号,也称神经冲动、局部电流。
(2)传导过程
(3)传导特点:双向传导,即图中a←b→c。
(4)兴奋在神经纤维上的传导方向与局部电流方向的关系(如图)
①在膜外,局部电流方向与兴奋传导方向相反。
②在膜内,局部电流方向与兴奋传导方向相同。
2.兴奋在神经元之间的传递
(1)突触结构与类型
①结构:由突触前膜、突触间隙和突触后膜组成。
②主要类型
(2)突触处兴奋传递过程
(3)兴奋在突触处的传递特点:单向。
原因如下:
①递质存在:神经递质只存在于突触小体内的突触小泡中。
②递质释放:神经递质只能由突触前膜释放,作用于突触后膜。
■助学巧记
巧记神经递质“一·二·二”。
神经元兴奋传导机制神经元是构成神经系统的基本功能单位,它们负责接收、处理和传递神经信号。
神经元的兴奋传导机制是神经信号从一个神经元传递到另一个神经元的过程,它涉及到离子通道的打开和关闭,并涉及离子的流动。
神经元的兴奋传导机制主要涉及到细胞膜的电位变化。
在正常状态下,细胞膜内外的离子分布有一定的差异,内部为负电位,外部为正电位。
当神经元受到外部刺激时,细胞膜上的离子通道会打开,使离子开始流动。
在神经元的兴奋传导过程中,关键的离子通道包括钠离子通道和钾离子通道。
当神经元受到刺激时,刺激引起细胞膜上的钠离子通道打开,使细胞内的钠离子流入细胞内。
这导致细胞内的电位发生变化,从而形成兴奋电位。
兴奋电位的形成使得细胞膜电位逐渐变得更加正电位,直至达到临界点。
一旦达到临界点,发生“全或无”的现象,即产生动作电位。
动作电位是一个瞬时的、自我传导的电位变化,它以高速传播沿着神经元的轴突。
动作电位的传导过程涉及到离子通道的打开和关闭。
在动作电位的传导过程中,钠离子通道在刺激后迅速打开,并且大量的钠离子进入细胞内部,使得电位迅速变正。
随后,钾离子通道打开,使得大量钾离子从细胞内外流出,电位再次变负。
这个过程称为复极化,使得电位恢复到正常状态。
在兴奋传导过程中,神经元之间的联系主要是通过化学递质来实现的。
当动作电位到达神经元的末端部位,它会刺激细胞内的突触小泡释放化学递质到突触间隙。
化学递质与相应的受体结合后,触发下一个神经元的兴奋传导过程。
总结起来,神经元的兴奋传导机制是一个复杂而精密的过程。
它涉及到多个离子通道的打开和关闭,离子的流动以及化学递质的释放。
这个过程的正常进行对于神经系统的功能正常发挥至关重要。
对于理解神经系统的工作原理以及研究神经相关疾病,我们需要深入了解神经元的兴奋传导机制。
兴奋传导原理
兴奋传导原理是神经系统中重要的机制之一。
它描述了神经元之间信息传递的过程,即兴奋信号从一个神经元传递到另一个神经元的过程。
在神经系统中,神经元是构成神经网络的基本单位。
每个神经元由细胞体、树突、轴突和突触等部分组成。
当神经元受到外界刺激或来自其他神经元的信息时,会产生电化学信号,即兴奋。
这个过程称为神经元的兴奋。
当神经元兴奋时,电信号从细胞体沿着轴突传播并释放化学物质到突触间隙。
这些化学物质称为神经递质,它们可以激活接受信号的下一个神经元。
这种传递兴奋信号的过程称为兴奋传导。
兴奋传导依赖于神经元表面的离子通道。
在静息状态下,细胞内外的离子浓度存在差异,导致细胞膜上存在静息电位。
当兴奋到达,离子通道打开,离子进出细胞,导致膜电位发生变化。
如果膜电位超过了一个阈值,就会引发动作电位的产生。
动作电位是一种特殊的电信号,它具有一定的幅度和持续时间。
一旦动作电位形成,它沿着轴突向前传播。
在传播过程中,动作电位会引发相邻的离子通道的打开和关闭,导致电位变化的继续传播。
这样,兴奋信号就可以从一个神经元传递到另一个神经元,完成信息传递的过程。
总的来说,兴奋传导原理描述了神经系统中兴奋信号的传递过
程。
它涉及离子通道的打开和关闭、动作电位的形成和传播等关键步骤。
深入理解兴奋传导原理对于研究神经系统的功能和疾病具有重要意义。
神经元的结构与兴奋传导例题和知识点总结在我们的神经系统中,神经元扮演着至关重要的角色,它们就像信息的传递者,负责将各种信号在身体内迅速传播。
为了更好地理解神经元的工作原理,让我们深入探讨一下神经元的结构以及兴奋传导的过程,并通过一些例题来加深我们的理解。
一、神经元的结构神经元由细胞体、树突和轴突三部分组成。
细胞体是神经元的核心部分,包含了细胞核和各种细胞器,是细胞进行代谢和维持生命活动的中心。
树突通常短而多分支,像树枝一样从细胞体向外延伸。
它们的作用是接收来自其他神经元的信号。
轴突则是一条较长的纤维,其末端通常会分成许多分支,与其他神经元的树突或细胞体形成突触连接。
轴突的主要功能是将神经元产生的兴奋信号传递出去。
二、兴奋传导(一)神经元内的兴奋传导在神经元内部,兴奋是以电信号的形式传导的。
当神经元受到刺激时,细胞膜的通透性会发生改变,导致钠离子内流,产生动作电位。
这个动作电位会沿着轴突迅速传播,就像电流在导线中快速传递一样。
(二)神经元间的兴奋传导神经元之间的兴奋传导是通过突触来实现的。
突触分为化学突触和电突触两种。
在化学突触中,当兴奋传递到轴突末梢时,会促使突触小泡释放神经递质。
神经递质通过突触间隙扩散到突触后膜,与相应的受体结合,从而引起突触后神经元的兴奋或抑制。
三、例题解析例题 1:当刺激神经元的某一点时,下列哪项描述是正确的?A 所产生的兴奋会同时向细胞体和轴突末梢传导B 所产生的兴奋只会向轴突末梢传导C 所产生的兴奋只会向细胞体传导D 所产生的兴奋不会传导答案:A解析:当神经元受到刺激时,产生的兴奋会向两个方向传导,即同时向细胞体和轴突末梢传导。
例题 2:以下关于突触的描述,错误的是?A 突触由突触前膜、突触间隙和突触后膜组成B 突触前膜释放的神经递质都能引起突触后膜的兴奋C 突触间隙中的液体属于组织液D 突触后膜上有与神经递质特异性结合的受体答案:B解析:突触前膜释放的神经递质有的能引起突触后膜兴奋,有的能引起突触后膜抑制。
第三章神经元的兴奋和传导1、静息电位:细胞在没有受到外来刺激时,即处于静息状态下的细胞膜内、外侧所存在的电位差称为静息膜电位。
静息电位的基础:离子在膜内外的不均等分布和选择性通透2、极化:大多数细胞只要处于静息状态,维持正常的新陈代谢,其膜电位总是稳定在一定的水平,细胞膜内外存在电位差的现象称为极化。
细胞膜外电位定为零电位(内负外正)3、平衡电位:当膜两侧的电势梯度和某离子的浓度梯度相等时,离子的跨膜净移动停止,此时在膜两侧建立的电位称为该离子的平衡电位4、细胞膜电位:由于细胞膜内外存在的带电离子不均等分布在膜的两侧,细胞膜内、外存在一定的电位差,称为细胞膜电位5、兴奋:可兴奋组织或细胞接受刺激后产生动作电位的过程,称为兴奋6、兴奋性:可兴奋组织或细胞具有发生兴奋即产生动作电位的能力,称为兴奋性7、反应:由刺激而引起的机体活动状态的改变,称为反应8、阈强度:刚能引起组织兴奋的临界刺激强度称为阈强度9、阈刺激:达到阈强度的刺激是引起细胞产生动作电位的有效刺激,称为阈刺激10、阈上刺激:高于阈强度的刺激当然也是有效的,称为阈上刺激(产生动作电位)11、阈下刺激:低于阈强度的刺激则不能引起兴奋,称为阈下刺激(产生分级电位)12、去极化(除极化):膜极化状态变小的变化过程称为除极化13、超极化:膜极化状态变大的变化过程称为超极化14、分级电位(局部电位):给予细胞膜一个较小的刺激,膜将产生一个较小的电位变化,不断增加刺激强度,则电位的幅值也逐渐增大,这种具有不同幅值的电位称为分级电位15、动作电位:给细胞膜一个较强的刺激,细胞膜将产生一个短暂、快速而连续的膜电位的变化,称为动作电位。
每一次电位波动称为一次动作电位,传导幅度不随距离的增加而衰减16、细胞膜的生物电现象:细胞对不同刺激的特异性反应,在反应的初始阶段,表现为细胞膜的电学性质发生变化,细胞膜受刺激后产生的这种电的变化称为细胞膜的生物电变化17、细胞膜电位:由于细胞膜内外存在的带电离子不均等分布在膜的两侧,导致膜内外存在电位差,即细胞膜电位。
神经传导速度和神经元兴奋性的关系神经传导速度和神经元兴奋性之间存在着紧密的关联。
神经元是构成神经系统的基本单元,而神经传导速度是指神经信号在神经元之间传递的速度。
神经元的兴奋性则决定了神经传导速度的快慢。
本文将探讨神经传导速度和神经元兴奋性之间的关系,并探讨一些影响因素以及其对神经系统功能的影响。
神经元兴奋性指的是神经元在受到刺激后被激活的能力。
神经元兴奋性的高低直接影响着神经传导速度。
一般来说,神经元兴奋性越高,神经传导速度就越快。
这是因为在神经元内部,当兴奋性较高时,细胞膜上的离子通道开放程度增加,使得离子在神经元内部迅速传播。
这种快速传播促使神经信号快速传达给下一个神经元,从而提高神经传导速度。
然而,神经元兴奋性的高低不仅受到内源性因素的调节,也受到外源性因素的影响。
一些外部刺激可以改变神经元的兴奋性水平,从而影响神经传导速度。
例如,一些神经递质如多巴胺和去甲肾上腺素可以增加神经元的兴奋性,从而加速神经传导速度。
相反,一些药物或毒素如镁离子可以减少神经元的兴奋性,导致神经传导速度变慢。
除了神经元兴奋性外,神经传导速度还受到神经髓鞘的影响。
神经髓鞘是由多层胶质细胞包裹的神经纤维,可以提高神经信号的传导速度。
神经髓鞘的存在减少了神经信号跳跃传导的过程,使得信号传递更为迅速。
因此,神经髓鞘的形成对于神经传导速度的提高至关重要。
除了神经元兴奋性和神经髓鞘的影响外,神经传导速度还受到温度、离子浓度和神经纤维直径等因素的影响。
例如,较高的温度和适当的离子浓度可以减少电阻,促进神经信号的传导速度。
此外,神经纤维的直径越大,电信号的传导速度就越快。
这是因为较大的纤维直径意味着更多的神经元和细胞膜可以参与信号传导,从而提高传导速度。
总之,神经传导速度和神经元兴奋性密切相关。
神经元兴奋性的高低直接影响着神经传导速度的快慢。
不仅神经元兴奋性本身,还有神经髓鞘的存在,温度、离子浓度和神经纤维直径等因素都对神经传导速度有一定影响。