十字交叉法使用
- 格式:doc
- 大小:80.00 KB
- 文档页数:4
十字交叉法解浓度问题十字交叉法是解决溶液浓度问题的一种简单有效的方法,通常用于计算不同浓度的液体或溶液的混合比例。
该方法基于比例关系,将给定的溶液容量、浓度和所需混合后的溶液浓度进行杂交,以找到所需的混合比例。
下面将介绍十字交叉法解浓度问题的具体步骤。
步骤一:确定所需的混合溶液浓度和容量首先需要确定目标混合溶液的浓度和容量。
这可以根据具体的实验要求或应用场景进行选择。
例如,如果需要制备100mL的20%浓度的溶液,那么这些信息需要在问题中明确给出。
步骤二:将浓度和容量写成比例式根据比例关系,将目标混合溶液的浓度和容量写成比例式,如下所示:目标溶液浓度/100 = X(所需体积)/与该浓度液体混合的体积例如,对于要制备100mL的20%溶液,可以写成:20/100 = X / (100 - X)其中,X代表所需体积,100-X代表与该浓度液体混合的体积。
步骤三:根据已知条件解出所需的体积将已知条件代入比例式中,解出所需的体积。
以制备100mL的20%溶液为例,可进行以下计算:20/100 = X / (100 - X)化简后得到X = 20mL通过这个比例式,可以得出制备20%浓度的溶液,需要取20mL的纯化液加入80mL的稀释液中。
步骤四:计算所需的纯化液体积根据已知条件和所需的体积,可以计算出所需的纯化液体积。
对于上面的例子,需要取20mL的纯化液体,所以所需的纯化液体积即为20mL。
步骤五:计算所需的稀释液体积最后,开始计算所需的稀释液体积。
根据上面的例子,所需的总体积为100mL,其中20mL是纯化液体,所以所需的稀释液体积为80mL。
通过上述五个步骤,就可以利用十字交叉法解决浓度问题。
需要注意的是,在计算过程中,必须确保所使用的所有单位都是相同的,并且需要对计算结果进行检查,确保其正确无误。
总结十字交叉法是解决浓度问题的一种简单而有效的方法,它可以用于计算不同浓度的液体或溶液的混合比例。
蒸发问题十字交叉法
十字交叉法是一种常用的解决蒸发问题的方法。
它通过构建一张表格,将时间和水的蒸发量作为两个变量,在表格中交叉计算,确定每个时间点的蒸发量。
具体步骤如下:
1. 确定时间段:根据实际情况确定一个时间段,如一天、一周、一个月等。
2. 绘制表格:在纸上或电子表格中绘制一个表格,表格的列是时间段的每个时间点,行是各个变量。
3. 填写已知信息:根据已知条件,填写表格中已知的蒸发量。
这些已知信息可能是某个时刻的蒸发量、起始和结束时刻的蒸发量等。
4. 计算未知信息:根据已知信息,使用十字交叉法计算表格中未知的蒸发量。
具体操作是,根据已知蒸发量的差值和未知时间点的位置,计算两个已知时间点之间的平均蒸发速率,然后将平均速率乘以未知时间段的时间长度得到未知时间点的蒸发量。
5. 检查计算结果:计算完成后,检查计算结果是否合理,比较计算得到的蒸发量与实际观测数据的接近程度。
通过十字交叉法,可以有效地计算蒸发问题中的未知蒸发量,以便进行进一步的数据分析和应用。
混合增长率十字交叉法使用条件混合增长率十字交叉法(MixedGrowthRateCross-sectionalMethod,MGRM)是以时间静态性质研究中所采用的一种方法,以定量研究两个以上行业领域并行增长情况并解释其形成原因的经济研究工具。
MGRM认为,在某一特定的时间点上,由于某种技术的应用或某种新的经济环境的影响,会对行业而言形成混合增长模式,这种混合增长模式可以运用十字交叉法来检验。
MGRM有四个主要的使用条件:(1)行业之间增长必须满足一定的平衡状态;(2)每个行业的增长必须满足相等的条件;(3)行业的增长模式必须显示出一定的稳定性;(4)行业的增长率必须一致。
MGRM的运用需要考虑行业间同构性的因素,有效的划分相同的行业类别,达到多行业的共同增长,进而把握影响市场的各个因素,从而实现经济活动的综合考量。
MGRM在经济学研究中可以用于衡量行业领域相同性和整体性,从而对经济活动的发展趋势进行客观性的分析和论证。
通过MGRM可以研究各个行业之间的关系以及各行业增长和衰退的联系,揭示经济活动发展趋势,这对我们了解经济活动变化趋势,深入分析经济活动的发展规律,加深对经济活动的理解,实现经济环境及变化的客观预判具有重要意义。
MGRM可以用于对流通股市、宏观经济增长趋势等的研究。
它可以检验在某一特定的时间点上,行业增长概率的分布情况,并可以预测出各行业在特定时间点上的增幅预期。
从所得到的结果可以说,MGRM在宏观经济研究中和流通股市研究中都具有重要意义,它能够有效地筛选出影响市场的各项因素,帮助我们分析行业的发展趋势及影响因素,同时,MGRM也能够让我们更深入的了解经济环境的变化,为经济管理者提供可靠的经济研究成果。
综上所述,MGRM是一种极为有用的经济研究工具,它能够有效地测算多行业的增长率及增幅预期,并能够筛选出影响市场的各个因素,有助于我们分析行业发展趋势及影响因素,为经济管理者提供可靠的经济研究成果。
十字交叉法求混合增长率原理混合增长率是指在一定时间内,不同项目或资产的增长率相互交叉影响后的总体增长率。
而十字交叉法是一种用于计算混合增长率的方法。
本文将介绍十字交叉法的原理及其应用。
一、十字交叉法的原理十字交叉法是一种基于时间段的计算方法,其基本原理是将不同项目或资产的增长率进行交叉计算,以得出最终的混合增长率。
具体步骤如下:1. 将要计算的时间段划分为若干个等长的子期。
2. 分别计算每个项目或资产在每个子期内的增长率。
3. 将各个项目或资产的增长率进行交叉计算,得出每个子期的混合增长率。
4. 根据每个子期的混合增长率,计算出整个时间段的混合增长率。
十字交叉法的核心是交叉计算,即将各个项目或资产的增长率相互影响,得出每个子期的混合增长率。
这种方法能够更准确地反映不同项目或资产在不同时间段内的增长情况,避免了简单地求平均或累计增长率可能导致的误差。
二、十字交叉法的应用十字交叉法广泛应用于金融和投资领域,用于计算不同投资项目的混合增长率。
以下是一些应用示例:1. 投资组合的混合增长率计算:假设某人在某段时间内同时投资了股票、债券和房地产等多个项目。
通过使用十字交叉法,可以计算出整个投资组合的混合增长率,从而评估投资的整体表现。
2. 企业业务的混合增长率计算:企业在不同业务领域可能存在增长率差异。
通过使用十字交叉法,可以计算出不同业务领域的混合增长率,从而了解企业整体的增长情况。
3. 资产配置的混合增长率计算:在资产配置中,不同类型的资产可能存在不同的增长率。
通过使用十字交叉法,可以计算出不同资产类型的混合增长率,从而指导资产配置决策。
总结:十字交叉法是一种用于计算混合增长率的方法,通过交叉计算不同项目或资产的增长率,得出最终的混合增长率。
这种方法能够更准确地反映不同项目或资产在不同时间段内的增长情况,具有广泛的应用价值。
在金融和投资领域,十字交叉法被广泛用于投资组合、企业业务和资产配置等方面的混合增长率计算。
十字交叉法的数学原理和应用
十字交叉法(Cross Multiplication)是数值计算中一种用于求解未知数的方法。
它适用于解决一些方程、比例和分数等相关的数学问题。
该方法基于等式两侧的乘法性质,如果两个有理数的比例相等,那么他们的乘积也相等。
在解决方程问题时,十字交叉法可以用于解决线性方程、二次方程和分式方程。
以线性方程为例,假设有一个线性方程a/b=c/d,其中a、b、c、d分别是已知数,而x是未知数。
利用十字交叉法,我们可以通过以下步骤求解x:
1. 计算a与d的乘积: ad;
2. 计算b与c的乘积: bc;
3. 设置等式: ad = bc;
4. 解出未知数: x = ad / b。
在解决比例和分数问题时,十字交叉法同样适用。
比例问题中,如果有两个比例a/b=c/d,其中a、b、c、d分别是已知数,而x是未知数。
通过十字交叉法,可以用如下步骤求解x:
1. 计算a与d的乘积: ad;
2. 计算b与c的乘积: bc;
3. 设置等式: ad = bc;
4. 解出未知数: x = ad / b。
十字交叉法的应用也十分广泛。
例如,在物理学中,可以利用十字交叉法解决一些力学方程和电路中的电流方程。
在商业中,也可以使用十字交叉法计算成本和利润率等比较问题。
此外,十字交叉法还可以用于解决一些几何问题,如比较线段的长短、角度的大小等等。
总的来说,十字交叉法是一种简单而实用的数值计算方法,可以用于解决各种类型的数学问题。
它通过利用乘法性质,求解未知数,提供了一种直观且易于理解的计算思路。
十字交叉法的原理及其应用一、原理介绍十字交叉法(Cross Impact Matrix)是一种定量分析方法,用于评估不同事件或因素之间的相互影响关系。
该方法通过构建矩阵模型来量化不同变量之间的交叉影响,从而帮助决策者更好地理解复杂系统中的相互作用和潜在结果。
在十字交叉法中,我们将需要考虑的因素或事件定义为行和列,通过一个交叉矩阵来展现它们之间的关系。
交叉矩阵中的每个单元格都代表着相应行和列代表的因素之间的交叉影响程度,常用数字来表示。
通过分析交叉矩阵,我们可以评估每个因素对于其他因素的影响程度,并最终得出相互作用的影响结构。
二、应用场景十字交叉法可以应用于各个领域的决策分析和预测,下面列举了几个主要应用场景:1.风险管理:在风险管理过程中,我们可以使用十字交叉法来评估不同的风险因素之间的相互影响。
通过分析交叉矩阵,我们可以了解不同风险因素之间的潜在关联,并根据这些关联来制定相应的风险管理策略。
2.市场分析:在市场分析中,我们可以利用十字交叉法来评估市场因素对于产品或服务销售的潜在影响。
通过分析交叉矩阵,我们可以了解到不同市场因素之间的交互作用,从而更好地了解市场发展趋势,并制定相应的市场推广策略。
3.项目管理:在项目管理中,我们可以使用十字交叉法来评估项目中的不同因素之间的相互关系。
通过分析交叉矩阵,我们可以了解到不同因素之间的关联,从而更好地规划和管理项目,降低风险。
4.政策制定:在政策制定过程中,我们可以使用十字交叉法来评估不同政策因素之间的相互影响。
通过分析交叉矩阵,我们可以了解到不同政策因素之间的潜在关系,并制定更有效的政策。
三、具体步骤使用十字交叉法进行分析时,可以按照以下步骤进行:1.确定需要评估的因素或事件:首先,确定需要评估的因素或事件,并明确它们之间的关系。
2.构建交叉矩阵:在纸上或电子表格中,构建一个交叉矩阵。
将需要评估的因素或事件作为行和列,并在每个单元格中留出空间。
3.评估交叉影响程度:对于每个单元格,评估行和列代表的因素之间的交叉影响程度。
“十字交叉”法的妙用 化学计算是从数量的角度研究物质的组成、结构、性质变化,涉及到的化学基本概念多,解法灵活多变,且需要跨学科的知识和思维方法,所以该知识点一直是中学化学教与学的难点,但因能较好地训练学生的逻辑思维能力和思维的敏捷性,又能考察学生的双基知识,所以是教学重点,也是各种考试的热点。
如何进行这方面知识的教学,使学生理解和掌握这些知识、发展学力,一直是各位老师研究的热门话题。
本文拟就教学中所得,粗浅地谈一谈“十字交叉法”在化学计算中的应用。
一、适用范围:“十字交叉法”适用于两组分混合物(或多组分混合物,但其中若干种有确定的物质的量比,因而可以看做两组分的混合物),求算混合物中关于组分的某个化学量(微粒数、质量、气体体积等)的比值或百分含量。
例1:实验测得乙烯与氧气的混合气体的密度是氢气的倍。
可知其中乙烯的质量分数为( ) 解析:要求混合气中乙烯的质量分数可通过十字交叉法先求出乙烯与氧气的物质的量之比(当然也可以求两组分的质量比,但较繁,不可取),再进一步求出质量分数。
这样,乙烯的质量分数是: ω(C 2H 4)=321283283⨯+⨯⨯×答案:C 。
(解毕)二、十字交叉法的解法探讨:1.十字交叉法的依据:对一个二元混合体系,可建立一个特性方程: ax+b(1-x)=c(a 、b 、c 为常数,分别表示A 组分、B 组分和混合体系的某种平均化学量,如:单位为g/mol 的摩尔质量、单位为g/g 的质量分数等) ;x 为组分A 在混合体系中某化学量的百分数(下同)。
如欲求x/(1-x)之比值,可展开上述关系式,并整理得: ax -bx=c -b 解之,得: 即:ca b c x x --=-1 2.十字交叉法的常见形式:为方便操作和应用,采用模仿数学因式分解中的十字交叉法,记为:3.解法关健和难点所在: 十字交叉法应用于解题快速简捷,一旦教给了学生,学生往往爱用,但是也往往出错。
多项式相乘十字交叉法多项式相乘十字交叉法是一种快速计算多项式乘积的方法。
该方法可以将两个多项式展开为代数式,并使用十字交叉法进行计算,以得到多项式乘积的系数。
具体步骤如下:1.将两个多项式展开为代数式,并按照幂次从高到低排列各项。
例如,两个多项式分别为A(x)和B(x),则它们展开后可能为:A(x) = a3x^3 + a2x^2 + a1x + a0B(x) = b2x^2 + b1x + b02.将两个多项式展开的每一项按照幂次组合,形成一个表格。
表格的行表示A(x)的各项,列表示B(x)的各项,交叉点处的数值表示对应项相乘的结果。
例如,对于上面的例子,表格如下所示:| | b2x^2 | b1x | b0 ||-----|-------|-------|------|| a3x^3 | ... | ... | ... || a2x^2 | ... | ... | ... || a1x | ... | ... | ... || a0 | ... | ... | ... |3.按照对角线向下的方向,将表格中所有对角线上的数值加起来,得到多项式乘积的各项系数。
例如,上面的例子中,对角线上的数值分别为:a3b2x^5, a2b1x^4 + a3b1x^3, a1b0x^3 + a2b0x^2 + a3b0x,a0b0x^2因此,多项式乘积为:A(x) * B(x) = a3b2x^5 + (a2b1 + a3b1)x^4 + (a1b0 + a2b0 + a3b0)x^3 + a0b0x^2多项式相乘十字交叉法可以大大减少多项式乘积的计算量,特别适合处理高次多项式的乘积。
“十字交叉”法的妙用 化学计算是从数量的角度研究物质的组成、结构、性质变化,涉及到的化学基本概念多,解法灵活多变,且需要跨学科的知识和思维方法,所以该知识点一直是中学化学教与学的难点,但因能较好地训练学生的逻辑思维能力和思维的敏捷性,又能考察学生的双基知识,所以是教学重点,也是各种考试的热点。
如何进行这方面知识的教学,使学生理解和掌握这些知识、发展学力,一直是各位老师研究的热门话题。
本文拟就教学中所得,粗浅地谈一谈“十字交叉法”在化学计算中的应用。
一、适用范围:“十字交叉法”适用于两组分混合物(或多组分混合物,但其中若干种有确定的物质的量比,因而可以看做两组分的混合物),求算混合物中关于组分的某个化学量(微粒数、质量、气体体积等)的比值或百分含量。
例1:实验测得乙烯与氧气的混合气体的密度是氢气的14.5倍。
可知其中乙烯的质量分数为( )解析:要求混合气中乙烯的质量分数可通过十字交叉法先求出乙烯与氧气的物质的量之比(当然也可以求两组分的质量比,但较繁,不可取),再进一步求出质量分数。
100 答案:C 。
(解毕)二、十字交叉法的解法探讨:1.十字交叉法的依据:对一个二元混合体系,可建立一个特性方程: ax+b(1-x)=c(a 、b 、c 为常数,分别表示A 组分、B 组分和混合体系的某种平均化学量,如:单位为g/mol 的摩尔质量、单位为g/g 的质量分数等) ;x 为组分A 在混合体系中某化学量的百分数(下同)。
如欲求x/(1-x)之比值,可展开上述关系式,并整理得: ax -bx=c -b 解之,得:即:ca b c x x --=-1 2.十字交叉法的常见形式:为方便操作和应用,采用模仿数学因式分解中的十字交叉法,记为:3.解法关健和难点所在: 十字交叉法应用于解题快速简捷,一旦教给了学生,学生往往爱用,但是也往往出错。
究其原因,无外乎乱用平均量(即上述a 、b 、c关于上述a 、b 、c 这些化学平均量,在这里是指其量纲为(化学量1 ÷化学量2)的一些比值,如摩尔质量(g/mol )、溶液中溶质的质量分数(溶质质量÷溶液质量)或关于物质组成、变化的其它化学量等等。
设计这些平均量时应优先考虑待求量和题给条件,一般情况下尽可能的将待求量设计为上述化学量2(分数中的分母) ,至于化学量1则依题给条件选取最容易获得的化学量(分数中的分子),这样上述第1论点中的a 、b 、c 应该是分别这样的一些化学平均量(如下图):12 量2 [如a 、b mol]的比值。
33则残留物中钙和镁两元素原子的物质的量之比是A.1:4B.1:3C.1:1D.1:2解析:上述问题是计算两组分混合物中某两个化学量之比,可用十字交叉法解题。
解题时先设计混合物的平均化学量c ,该题中要求钙和镁两元素原子的物质的量之比(即原子个数比),而平均量中分母(即上述化学量y(组分2)) c 组分1 a c -b 混合物 组分2 b a -cC与题给条件相差甚远,故以一摩尔组分质量为分母,一摩尔物质分解后残留物质量为分子而得如下的几个平均量:a=56g÷100g ; b=40g÷84g; c=1/2应用于十字交叉法:即: 所以,原混合物中两组分CaCO 3和MgCO 3Mg 的物质的量之比为:n(Ca)∶n(Mg)=(1/42)g ÷100g/mol ∶(3/50) g÷84 g/mol =1∶3 答案:B (解毕)注:熟练后或在要表达的计算题中可略去上图,而只以比例式表示,为防止出错,也可在草稿中画上述十字交叉图。
三、十字交叉法的应用与例析:1.两组分混合物中已知组分及混合体系的摩尔质量(或式量),求组分的物质的量之比(或组分气体的体积比、组分物质的微粒数之比):解答这类问题,需设计的平均化学量a 、b 、c 就直接用摩尔质量(g /mol )。
而用十字交叉法交叉相减后所得差值之比是组分的物质的量之比(或微粒数之比),或依阿伏加德罗定律,也等于(相同状态下)气态混合体系中组分气体的体积比。
例3.硼的平均相对原子质量为10.8,硼在自然界中有种同位素:105B 与115B ,则这两种同位素105B 、115B 在自然界中的原子个数比为A. 1∶2B.1∶4C.1∶6D.1∶8解析:相对原子质量与原子的摩尔质量数值上相等,故元素或原子的相对原子质量可看做十字交叉法中的平均化学量,量纲为g ?mol -1,交叉相减后所得差值之比为两同位素的物质的量(即原子数)之比。
答案:B 解毕)2.: 例30%的稀溶液,应怎么配制 a 、b 、c 1取最方便的就是溶质质量,即平均化学量a 、b 、c 就是溶液∶34 即取 (解毕)3.两可燃物组成的混合体系,已知其组分及混合物的燃烧热,求组分的物质的量之比或百分含量。
例5.在一定条件下,CO 和CH 4燃烧的热化学方程式分别为:2CO(气)+O 2(气)=2CO 2(气)+566KJ ;CH 4(气)+2O 2(气)=CO 2(气)+2H 2O(液)+890KJ现有CO 和CH 4组成的气体混合物89.6L(标准状态下测定),在上述条件下燃烧,释放的热量为2953KJ ,则CO 和CH 4的体积比为( )A. 1∶3B. 3∶1C.1∶2D.2∶1解析:可燃物的反应热以摩尔反应热来表示时,单位是:KJ/mol ,因此也可以看做是一个平均化学量,两可燃组分及混合物的反应热可当做十字交叉法基本形式中的a 、b 、c 进行十字交叉,交叉相减后所得差值之比即为两可燃组分的物质的量之 比。
解题时设计并先求算气体混合物的反应热:混合气体的物质的量:n=89.6L ÷22.4L?mol -1=4.00mol∴混合气体的平均反应热: Q (混合物)=2953KJ÷4.00mol=738.3KJ?mol -1 双两组分的反应热分别为:Q(CO)=566KJ ÷2mol=283KJ?mo -1;Q(CH 4)=890KJ?mol -1 这样,十字交叉法就记为:n(CO)∶n(CH 4)=(890-738.3)∶(738.3-283)≈1∶3答案:B 。
(解毕)4.其它有关物质组成、变化关系的两组分混合体系,依题意,设计适当的平均化学量,也可用十字交叉法求算两组分的某个化学量的比值或百分含量。
组分CaCO 3 56/100 1/42 混合物 组分MgCO 3 40/84 3/501/2 m(MgCO3)例6.在一定条件下,将25 gCO 2和CO 的混合气体通过灼热的碳粉,使之充分反应,测知所得气体在标准状态下的体积为22.4 L ,则在相同状态下原混合气体中CO 2和CO 的体积比为A.1∶4B.1∶3C.1∶2D.2∶1解析:本题所求为两组分混合气体中组分气体的体积之比(按阿伏加德罗定律,即为两组分气体的物质的量之比),依 ,CO 不与C 反应。
又从反应后的气体体积22.4 L(标态),是1 mol 纯净CO ,总质量为28 g ,即上述反应中气体质量增加了28g -25g=3g ,应用差量法可求得原混合气体的物质的量为:1mol -3 g ÷12 g/mol=0.75mol即原混合气体的摩尔质量是:25g ÷0.75mol=33.3g/mol,将两组分及混合气体的摩尔质量应用于十字交叉法(如下图):n(CO)=1∶2 值得注意的是,有时因题给条件的限制,无法将待求量设计为平均化学量的分母(即化学量2),此时就应以与已知量有关又容易换算为待求量的其它化学量做为平均量中的化学量2例7.KHCO 3和CaCO 3的混合物和等质量的NaHCO 3分别与盐酸完全反应时,所消耗的酸的量相等,则混合物中KHCO 3的质量分数是A.50%B.68%C.81%D.90%解析:根据KHCO 3和CaCO 3分别与酸反应的化学方程式:KHCO 3+HCl=KCl+H 2O+CO 2↑ CaCO 3+2HCl=CaCl 2+H 2O+CO 2↑依题意,上述混合物每消耗1摩尔HCl 需质量84 g,而组分KHCO 3和CaCO 3 每消耗1摩尔HCl 需质量分别是100g 和50g ,这样就可以把反应中消耗的HCl 设计为上述平均化学量中化学量2,而与HCl 反应消耗的固体物质质量设计为化学量1,应用于十字交叉法并记为 :即: 又从上述化学方程式可看出,每消耗1mol 酸需KHCO 3 KHCO 3和CaCO 3物质的量之比是:n(KHCO 3)∶n(CaCO 3)=17∶(8÷2)=17∶4混合物中KHCO 3的质量分数是:CO 2 3.52 g ,H 2O 1.92 g ,则该混合气体中乙烷和丙烷的物质的量之比为A.1∶2B.1∶1C.2∶3D.3∶4解析:该题已知混合气体完全燃烧后生成CO 2和H 2O 的质量,从中可以计算出这两种物质的物质的量,n(CO 2)=3.52g÷44g/mol=0.08mol 、n(H 2O)=1.92g ÷18g/mol=0.11mol ;进而求出混合气体中每含1摩C 所含H 的物质的量,0.11mol ×2÷0.08mol=11/4;而组分气体中乙烷和丙烷的同样定义的化学量分别是,乙烷C 2H 6为3,丙烷C 3H 8为8/3;将这些平均量应用于十字交叉法可得这两组分气体在混合气体中所含C 原子数之比。
) 例NiO 晶体中就存在如右图Ni 2+空缺,另有两个Ni 2+被两个Ni 3+所取代。
其结果晶体仍呈中性,但化合物中Ni 和O 的比值却发生了变化。
某氧化镍样品组成为Ni 0.97O ,试计算该晶体中Ni 3+与Ni 2+的离子数之比。
解析:这种有缺陷的晶体可看作是由NiO 和Ni 2O 3组成的混合物,现在题中要求Ni 3+和Ni 2+之比,实际上就是求混合物中NiO 和Ni 2O 3两组分的物质的量之比,因此可适用于十字交叉法:KHCO 3100 CaCO 3 50 84 34 16CO 2+C===== 2CO高温 即晶体中:NiO 1 Ni 2O 3 1.5 1/0.970.469 0.0309答案:91合物的组成计算十分方便,如果在应用中能注意平均量的设计和判断交叉相减后的差值之比,则十字交叉法应用于化学计算中不仅方便快捷、同时还能提高答案的准确率,更能训练学生思维的敏捷性,在教学中应注意引导学生逐步掌握十字交叉法。