平稳时间序列的统计性质
- 格式:ppt
- 大小:833.50 KB
- 文档页数:38
《时间序列分析》课程教学大纲课程编号:33330775课程名称:时间序列分析课程基本情况:1.学分:3 学时:51学时(课内学时:45 课内实验:6)2.课程性质:专业必修课3.适用专业:统计学适用对象:本科4.先修课程:概率论、数理统计、随机过程5.首选教材:王燕:《应用时间序列分析》,中国人民大学出版社,2008出版。
备选教材:王振龙等编著:《时间序列分析》,中国统计出版社,2000年。
6.考核形式:闭卷考试7.教学环境:多媒体教室及实验室一、教学目的与要求本课程是数理统计学的一个重要分支,先期需完成的课程有概率论、随机过程。
通过本课程的学习,使学生掌握时间序列数据的分析方法,包括时间序列简介、平稳时间序列分析、时间序列分解、非平稳序列的随机分析、多元时间序列分析。
利用Eviews软件进行本课程的实验教学。
二、教学内容及学时分配课程内容及学时分配表三、教学内容安排第一章时间序列分析简介【教学目的】1、了解时间序列的定义及常用分析方法;2、掌握时间序列的几个基本概念:随机过程、平稳随机过程、非平稳随机过程、自相关、记忆性。
【教学重点】时间序列的相关概念。
【教学难点】随机过程、系统自相关性。
【教学方法】课堂讲授【教学内容】第一节时间序列的定义第二节时间序列分析方法第三节时间序列分析软件EVIEWS简介第二章时间序列的预处理【教学目的】1、掌握平稳性检验的原理和方法;2、掌握纯随机性检验的原理和方法。
【教学重点】平稳时间序列的定义及统计性质。
【教学难点】时间序列的相关统计量。
【教学方法】课堂讲授【教学内容】第一节平稳性检验一、特征统计量二、平稳时间序列的定义三、平稳时间序列的统计性质四、平稳时间序列的意义五、平稳时间序列的检验第二节纯随机性检验一、纯随机序列的定义二、白噪声序列的定义三、纯随机性检验第三章平稳时间序列序列分析【教学目的】1、理解ARMA模型的定义及性质。
2、掌握平稳序列建模方法。
3、掌握平稳时间序列的预测【教学重点】平稳时间序列建模【教学难点】模型识别,参数估计,序列预测【教学方法】课堂讲授与上机实验【教学内容】第一节方法性工具一、差分运算二、延迟算子三、线性差分方程第二节 ARMA模型的性质一、AR模型二、MA模型三、ARMA模型第三节平稳序列建模一、建模步骤二、样本自相关系数与偏相关系数三、模型识别四、参数估计五、模型检验六、模型优化第四节序列预测一、线性预测函数二、预测方差最小原则三、线性最小方差预测的性质四、修正预测第四章非平稳序列的确定性分析【教学目的】1、理解时间序列的分解原理。
1.统计预测的概念: 预测就是根据过去和现在估计未来,预测未来。
2.三要素:实际资料是预测的依据,经济理论是预测的基础,数学建模是预测的手段3.统计预测、经济预测的联系和区别:主要联系它们都以经济现象的数值作为其研究的对象:它们都直接或间接地为宏观和微观的市场预测、管理决策、制定政策和检查政策等提供信息;统计预测为经济定量预测提供所需的统计方法论;主要区别:从研究的角度看,统计预测和经济预测都以经济现象的数值作为其研究对象,但着眼点不同。
前者属于方法论研究,其研究的结果表现为预测方法的完善程度;后者则是对实际经济现象进行预测,是一种实质性预测,其结果表现为对某种经济现象的未来发展做出判断。
从研究的领域来看,经济预测是研究经济领域中的问题,而统计预测则被广泛地应用于人类活动的各个领域。
4统计预测的分类:定性预测和定量预测两类,其中定量预测法又可大致分为回归预测和时间序列预测;按预测时间长短,分为近期预测、短期预测、中期预测和长期预测;按预测是否重复,分为一次性预测和反复预测5.预测方法考虑三个问题:合适性,费用,精确性6.统计预测的原则:连贯原则,类推原则7.统计预测的步骤:确定预测目的,搜索和审核资料选择预测类型和方法,分析误差改进模型,提出预测报告 8.德尔菲法:是根据有专门知识的人的直接经验,对研究的问题进行判断、预测的一种方法,也称专家调查法。
它是美国兰德公司于1964年首先用于预测领域的。
特点:反馈性,匿名性,统计性;优点:加快预测速度节约预测费用,获得不同的价值观点和意见,适用长期预测和对新产品的预测,历史资料不足或不可预测因素多时尤为适用;缺点:分地区的顾客群或产品的预测可能不可靠,责任分散,专家的意见未必完整9.主观概率法步骤:1准备相关资料2编制主观概率调查表3汇总整理4判断预测 10.情景预测法特点:1使用范围广不受假设条件限制2考虑问题全面应用灵活3定性和定量分析结合4能及时发现可能出现的难题减轻影响。
时间序列分析是一种统计方法,专门用于研究有序时间点上观测到的数值数据。
这些数据点按照时间顺序排列,形成了一条时间序列。
时间序列分析旨在揭示这些数据随时间变化的模式、趋势和周期性,并预测未来的走势。
这一方法广泛应用于各个领域,包括但不限于金融、经济、气象、生物学、医学、社会科学和工程等。
**一、时间序列分析的基本概念**1. **时间序列的定义**:时间序列是一组按时间顺序排列的数据点,通常用于反映某个或多个变量随时间的变化情况。
这些数据点可以是连续的(如每秒的气温),也可以是离散的(如每天的股票价格)。
2. **时间序列的构成**:时间序列通常由四个部分组成:趋势(Trend)、季节性(Seasonality)、周期性(Cyclicality)和随机性(Randomness)。
* **趋势**:长期变化的方向,可以是上升、下降或平稳的。
* **季节性**:由外部因素(如季节变化)引起的周期性变化。
* **周期性**:由内部因素(如经济周期)引起的周期性变化。
* **随机性**:无法预测的随机波动。
3. **时间序列的类型**:根据数据的性质和分析目标,时间序列可以分为平稳时间序列和非平稳时间序列。
平稳时间序列的统计特性(如均值和方差)不随时间变化,而非平稳时间序列则可能存在长期趋势或其他非恒定特性。
**二、时间序列分析方法**1. **描述性统计**:通过计算时间序列的均值、方差、标准差等指标,初步了解数据的分布情况。
2. **时间序列图**:通过绘制时间序列图,可以直观地观察数据的趋势、季节性和周期性。
3. **时间序列模型**:常用的时间序列模型包括自回归模型(AR)、移动平均模型(MA)和自回归移动平均模型(ARMA)等。
这些模型通过拟合历史数据来预测未来的趋势。
**三、时间序列分析的应用场景**1. **金融市场分析**:时间序列分析在金融市场分析中具有重要意义。
股票价格、汇率、债券收益率等金融数据都是典型的时间序列数据。
平稳时间序列模型概述平稳时间序列模型是一种常见的时间序列分析方法,用于对事物在一定时间范围内的变化进行建模和预测。
平稳时间序列模型假设时间序列的均值和方差在任意时刻都保持不变,即不受时间的影响。
平稳时间序列模型有许多不同的形式,其中最常见的是自回归移动平均模型(ARMA)和季节性自回归移动平均模型(SARMA)。
ARMA模型由自回归(AR)部分和移动平均(MA)部分组成,描述了时间序列的自相关和滞后误差,可以用来预测未来的观测值。
SARMA模型在ARMA模型的基础上加入了季节性因素,适用于存在明显季节性变化的时间序列。
ARMA模型的一般形式为:\[ X_t = c + \phi_1X_{t-1} + \dots + \phi_pX_{t-p} + \epsilon_t -\theta_1\epsilon_{t-1} - \dots - \theta_q\epsilon_{t-q} \]其中,\( X_t \)是时间序列在时刻\( t \)的观测值,\( c \)是常数,\( \phi_1, \dots, \phi_p \)是自回归系数,\( X_{t-1}, \dots, X_{t-p} \)是过去的观测值,\( \epsilon_t \)是误差项,\( \theta_1, \dots,\theta_q \)是移动平均系数,\( \epsilon_{t-1}, \dots, \epsilon_{t-q} \)是过去的误差项。
SARMA模型的一般形式为:\[ X_t = c + \phi_1X_{t-1} + \dots + \phi_pX_{t-p} -\theta_1\epsilon_{t-1} - \dots - \theta_q\epsilon_{t-q} + \gammaX_{t-m} + \phi_1\gamma X_{t-m-1} + \dots + \phi_p\gammaX_{t-m-p} + \epsilon_t \]其中,\( X_t \)是时间序列在时刻\( t \)的观测值,\( c \)是常数,\( \phi_1, \dots, \phi_p \)是自回归系数,\( X_{t-1}, \dots, X_{t-p} \)是过去的观测值,\( \epsilon_t \)是误差项,\( \theta_1, \dots,\theta_q \)是移动平均系数,\( \epsilon_{t-1}, \dots, \epsilon_{t-q} \)是过去的误差项,\( \gamma \)是季节性系数,\( X_{t-m},\dots, X_{t-m-p} \)是过去的季节性观测值。
第3章平稳时间序列分析本章教学内容与要求:了解时间序列分析的方法性工具;理解并掌握ARMA 模型的性质;掌握时间序列建模的方法步骤及预测;能够利用软件进行模型的识别、参数的估计以及序列的建模与预测。
本章教学重点与难点:利用软件进行模型的识别、参数的估计以及序列的建模与预测。
型来息。
t x 为t x 的1阶差分: ▽1t t t x x x --=对1阶差分后的序列再进行一次1阶差分运算称为2阶差分,记▽2tx 为t x 的2阶差分:▽2t x =▽t x -▽1-t x以此类推,对p-1阶差分厚序列再进行一次1阶差分运算称为p 阶差分。
记▽p t x 为t x 的p 阶差分:▽p t x =▽p-1t x -▽p-11-t x (二)k 步差分kt x 为t x 的10,,1t = 10,,2 = 即2阶差分序列▽2t x :3,22,-63,-54,-6,16,-52,-40,10,,3t = 2步差分:▽29x x x 133=-= ▽234x x x 244=-=……▽2-28x x x 81010=-=即2步差分序列:9,34,-7,-26,12,21,-16,-28 二、延迟算子(滞后算子) (一)定义延迟算子类似于一个时间指针,当前序列值乘以一个延迟算子,就相x因此,15-18+6=343-30+9=222.k 步差分▽k =t k t k t k t t x )B 1(x B x x x -=-=--三、线性差分方程在实践序列的时域分析中,线性差分方程是非常重要的,也是极为有效的工具,事实上,任何一个ARMA模型都是一个现象差分方程。
因此,ARMA模型的性质往往取决于差分方程的性质。
为了更好地讨论ARMA 模型的性质,先简单介绍差分方程的一般性质。
设,,方程两边同除以,得特征方程(这是一个一元p次方程,应该至少有p个非零实根,称这p个实根为特征方程(3)的特征根,不防记作.特征根的取值情况不同,齐次线性差分方程的解会有不同的表达形式。
平稳时间序列模型的性质概述平稳时间序列模型是一种描述时间序列数据的统计模型,它的核心假设是数据在时间上的统计特性不发生变化。
具体而言,平稳时间序列模型具有以下性质:1. 均值稳定性:平稳时间序列的均值不随时间变化而变化,即序列的均值是恒定的。
这意味着序列的长期趋势是稳定的,不存在明显的上升或下降趋势。
2. 方差稳定性:平稳时间序列的方差不随时间变化而变化,即序列的方差是恒定的。
这意味着序列的波动性是稳定的,不存在明显的波动增长或缩减。
3. 自协方差稳定性:平稳时间序列的自协方差(序列任意两个时间点之间的协方差)仅依赖于时间点之间的间隔,而不依赖于特定的时间点。
这意味着序列的相关性结构是稳定的,不存在明显的季节性或周期性变化。
4. 纯随机性:平稳时间序列被认为是纯随机的,没有系统性的模式或规律可寻。
这意味着序列的未来值无法通过过去的观察值来准确预测。
根据这些性质,我们可以使用平稳时间序列模型来进行时间序列的建模和预测。
常见的平稳时间序列模型包括自回归移动平均模型(ARMA模型)、自回归积分移动平均模型(ARIMA 模型)以及季节性模型等。
总而言之,平稳时间序列模型具有均值稳定性、方差稳定性、自协方差稳定性和纯随机性等性质,这使得它们成为分析和预测时间序列数据的常用工具。
通过运用这些模型,我们可以揭示序列的短期和长期特征,提供数据的统计属性并进行未来值的预测。
平稳时间序列模型是时间序列分析中非常重要的方法之一,它能够帮助我们理解和预测一系列观测值之间的关系。
在实际应用中,平稳时间序列模型常被用于金融市场分析、经济学研究、气象预测等领域。
首先,均值稳定性是平稳时间序列模型的一个重要性质。
这意味着序列的长期平均水平是恒定的,不随时间变化而变化。
例如,在金融市场中,股票价格的均值稳定性意味着股票价格的长期趋势是稳定的,不存在明显的上升或下降趋势。
通过建立平稳时间序列模型,我们可以更好地理解价格的平均水平,并预测未来的价格走势。
t Pp t tt tt x B x x B x Bx x===---221第3章 平稳时刻序列分析一个序列通过预处理被识不为平稳非白噪声序列,那就讲明该序列是一个蕴含着相关信息的平稳序列。
3.1方法性工具 3.1.1差分运算 一、p 阶差分记t x ∇为t x 的1阶差分:1--=∇t t t x x x记t x 2∇为t x 的2阶差分:21122---+-=∇-∇=∇t t t t t t x x x x x x以此类推:记t p x ∇为t x 的p 阶差分:111---∇-∇=∇t p t p t p x x x 二、k 步差分记t k x ∇为t x 的k 步差分:k t t t k x x x --=∇3.1.2延迟算子 一、定义延迟算子相当与一个时刻指针,当前序列值乘以一个延迟算子,就相当于把当前序列值的时刻向过往拨了一个时刻。
记B 为延迟算子,有 延迟算子的性质:1.10=B 2.假设c 为任一常数,有1)()(-⋅=⋅=⋅t t t x c x B c x c B3.对任意俩个序列{t x }和{t y },有11)(--±=±t t t t y x y x B 4.n t t n x x B -= 5.)!(!!,)1()1(0i n i n C B C B i n i i n ni i n-=-=-∑=其中二、用延迟算子表示差分运算 1、p 阶差分 2、k 步差分3.2ARMA 模型的性质 3.2.1AR 模型定义具有如下结构的模型称为p 阶自回回模型,简记为AR(p):ts Ex t s E Var E x x x x t s t s t t p tp t p t t t ∀=≠===≠+++++=---,0,0)(,)(,0)(,0222110εεεσεεφεφφφφε(3.4)AR(p)模型有三个限制条件:条件一:0≠p φ。
那个限制条件保证了模型的最高阶数为p 。