第十七届中环杯四年级试题
- 格式:docx
- 大小:873.20 KB
- 文档页数:6
流水问题有如下两个基本公式:顺水速度=船速+水速逆水速度=船速-水速这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程.另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速.因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2一艘轮船在相距300千米的两地航行,顺流而下用了15小时,逆流而上用了25小时,求轮船在静水中的速度和水的流速.一条江上有甲、乙两城,它们之间的水路长208千米.一条船从甲城顺流开往乙城,8小时到达;从乙城返回甲城,13小时到达,问此船在静水中的速度和水流速度?轮船在静水中的速度是每小时21千米,轮船自甲港逆水航行8小时,到达相距144千米的乙港,再从乙港返回甲港需要多少小时?某船在静水中的速度是每小时18千米,水速是每小时2千米,这船从甲地到乙地逆水行驶需15小时,则往返一次需要多少时间?甲船、乙船在同一条河流中,甲、乙两船分别从相距1200千米的两地同时出发相向而行,甲船在静水中的速度为每小时60千米,乙船在静水中的速度为每小时90千米,水速为每小时10千米。
问两船几小时后相遇?甲、乙两船在静水中的速度分别是每小时26千米、34千米,两船同时从相距360千米两港出发,相向而行,几小时相遇?同向而行,甲船在前,乙船在后,几小时后乙船追上甲船?一艘轮船在两个码头之间航行,顺水航行需要8小时,逆水航行需要10小时,已知水流速度是每小时3千米,求轮船在静水中的速度?一艘轮船从A地出发去B地为顺流,需10小时;从B地返回A地为逆流,需15小时。
水流速度为每小时10千米。
那么A、B两地间的路程有_______千米。
(中环杯初赛真题)轮船从A地到B地需要2天,从B地到A地需要3天,如果从A地放一个无动力的木筏,漂到B地需要几天?轮船从上游到下游航行需要3天,从下游到上游航行需要5天,如果在开船时丢下一块木板,漂到下游需要几天?一艘轮船顺流航行140千米,逆流航行80千米,共用了15小时;顺流航行60千米,逆流航行120千米,也用了15小时。
中环杯、小机灵杯试题精选【1】1.四个球,编号为1,2,3,4,将他们分放到编号为1,2,3,4的四只箱子里,每箱一个,则至少有一箱恰使球号与箱号相同的放法有几种?2. 用数码1,2,3,4.....9各恰好两次,构成不同的质数,使它们的和尽可能小,则该和最小是几?【2】一班,二班,三班各有二人作为数学竞赛优胜者, 6人站一排照相, 要求同班同学不站在一起, 有( ) 种不同的站法?【3】一版邮票有20行20列,共400张邮票,称由3张同一行或同一列相连的邮票组成的纸块为"三联".小亮想剪出尽可能多的三联,他最多能得到几块三联?【4】第一次在1,2两数之间写上3;第二次在1,3之间和3,2之间分别写上4,5;以后每一次都在已写上的两个相邻数之间,再写上这两个相邻数之和。
这样的过程共重复8次,那么所以数的和是多少?【5】一次测验共有5道试题,测试后统计如下:有81%的同学做对第1题,有85%的同学做对第2题,有91%的同学做对第3题,有74%的同学做对第4题,有79%的同学做对第5题。
如果做对3道或3道以上试题的同学为考试合格。
请问:这次考试的合格率最多达百分之几?最少达百分之几?【6】把156支铅笔分成n堆(n>等于2),要求每堆一样多且为偶数支。
有()种分法。
【7】七个相同的羽毛球,放在四个不同的盒子里, 每个盒子里至少放一个, 不同的放法有( ) 种.【8】由甲城开往乙城的汽车每隔1小时一班逢整点出发,由乙城开往甲城的汽车每隔1小时一班但逢半点(30分)出发。
从一个城市到另一个城市需要6小时,假定汽车行驶在同一高速公路上,那么一辆开往乙城的汽车最多能遇到()辆开往甲城的汽车。
【9】一群公猴、母猴和小猴共38只,每天共摘桃子266个。
已知每只公猴每天摘桃10个,每只母猴每天摘桃8个,每只小猴每天摘桃5个,并且公猴比母猴少4只,那么,这群猴子中小猴有多少只?这道题目除了设X做以外还有别的方法吗?【10】甲、乙两列车分别从A,B两站同时相向开出,已知甲车的速度与乙车速度的比为3:2,C站在A,B两站之间。
第17届中环杯七年级选拔赛试题1. 计算:32222016320162015320162015720142017-⨯⨯+⨯⨯+-=________. 2. 分解因式:333a b ab a b ++--=________.3. 若关于x 的方程34ax x b +=+有无数个解,则a b +=________.4. 已知()()623456012345652345012345254x a a x a x a x a x a x a x b b x b x b x b x b x x +++++++=++++++(4x ≠-),则0123456012345a a a a a a ab b b b b b -+-+-+=-+-+-________. 5. 费尔马猜想形如()221nF n =+的数为质数。
到目前为止,我们只知道()0F 、()1F 、()2F 、()3F 、()4F 这五个数为质数。
那么3217221++有______个不同的质因数 6. 五个正整数a b c d e 、、、、满足20a b c d e a b c d e <<<<⎧⎨++++=⎩,这样的有序数组(),,,,a b c d e 有______组。
7. 满足()()()222100100x y x y -+-=+的有序整数对(),x y 有_____对8. 如图所示,如果所有行、列、对角线的乘积都是同一个常数,则r s +=______.9. 如图,在扇形OAB 中,110AOB ∠=︒,半径18OA =。
将扇形OAB 沿着过点B 的直线折叠,点O 恰好落在AB 上的点D处,折痕交OA 于点C 。
则AD 的长等于______(答案保留π)10. 若()()()7112a b c a b b c c a abc ++=⎧⎪⎨++++=⎪⎩,则222a b c ++=________.11. 如果x 只能取整数,那么22217110x x x -+--+的最小值为________.12. 三座城市,,A B C ,每两座城市之间至少有一条道路相连。
备课说明:①教学目标:熟练掌握流水行船问题中四个速度的关系。
②教学重难点:速度的关系式以及流水行船与相遇追及的综合问题。
流水问题有如下两个基本公式:顺水速度=船速+水速逆水速度=船速-水速这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程.另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速.因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2一艘轮船在相距300千米的两地航行,顺流而下用了15小时,逆流而上用了25小时,求轮船在静水中的速度和水的流速.【答案】16,4【分析】要求在静水中的船速和水速,必须先求出顺水船速和逆水船速,再运用解决和差问题的方法来求出静水中的船速和水速.【解答】顺水船速为 300÷15=20(千米/时)逆水船速为 300÷25=12(千米/时)船速为(20+12)÷2=16(千米/时)水速为(20-12)÷2=4(千米/时)一条江上有甲、乙两城,它们之间的水路长208千米.一条船从甲城顺流开往乙城,8小时到达;从乙城返回甲城,13小时到达,问此船在静水中的速度和水流速度?【答案】21,5【解答】顺水船速为 208÷8=26(千米/时)逆水船速为 208÷13=16(千米/时)船速为(26+16)÷2=21(千米/时)水速为(26-16)÷2=5(千米/时)轮船在静水中的速度是每小时21千米,轮船自甲港逆水航行8小时,到达相距144千米的乙港,再从乙港返回甲港需要多少小时?【答案】6【分析】要求轮船从乙港返回甲港所需要的时间,即轮船顺水航行144千米所需时间,就要求出顺水航行的速度,现在知道轮船在静水中的速度,只需求出水流的速度.根据已知,可先求逆水速度,再根据逆水速度与船速、水速的关系即可求出水速.【解答】水流速度为 21-144÷8=21-18=3(千米/时)顺水速度为 21+3=24(千米/时)所求时间为 144÷24=6(小时)某船在静水中的速度是每小时18千米,水速是每小时2千米,这船从甲地到乙地逆水行驶需15小时,则往返一次需要多少时间?【答案】27【解答】甲、乙两地的路程为(18-2)×15=240(千米)从乙地到甲地所需时间为 240÷(18+2)=12(小时)往返一次所需的时间为 12+15=27(小时).甲船、乙船在同一条河流中,甲、乙两船分别从相距1200千米的两地同时出发相向而行,甲船在静水中的速度为每小时60千米,乙船在静水中的速度为每小时90千米,水速为每小时10千米。
第七届中环杯四年级决赛一、 填空题:(每题5分,共50分)1. 200620072007200620072007⨯-⨯=( )。
2. 如22a b a b =÷+⨯,且()2417x =,那么x =( )。
3. 有一车队,每辆车长都是5米,且车与车之间间隔是10米,这个车队以16米每秒的速度通过一座25米长的铁桥,用了15秒,则这个车队共有( )辆车。
4. 王大伯工作一年的报酬是8600元和一头牛,他从1月初开始工作,到8月底被辞退,辞退时获得报酬是3800元和一头牛。
一头牛的价值是( )元。
5. 四年级同学参加学校举行的运动会,参加了百米跑、跳高、跳远这三个项目。
参加百米跑的有24人,参加跳高的有28人,参加跳远的有26人;既参加百米跑又参加跳高的有12人,既参加跳高又参加跳远的有9人,既参加百米跑又参加跳远的有14人;三项都参加的有5人。
四年级同学参加运动会比赛的共有( )人。
6. 上、下册书的页码共用了个777数码,而且上册书比下册书多7页,上册有( )页。
7. 在右图的方格中填上总和为72的12个各不相等的数,使每个22⨯的正方形中的四个数字的和相等,那么这个相等的和是( )。
8. 有一队学生排成一个中空方阵,最外层人数共52人,最内层人数共28人,这队学生共有( )人。
9.客车与货车分别从甲、乙两地同时相对开出,6小时后在途中相遇,相遇后两车继续按原来的速度和方向前进,又经过4小时客车到达乙地,而货车离甲地还有200千米。
甲、乙两地相距( )千米。
10.邮局买了摩托车和自行车若干辆,共付出11700元。
已知每辆摩托车2500元,每辆自行车350元。
那么,邮局买了摩托车()辆,自行车()辆。
二、动手动脑筋:(共50分,请写出简要的解题过程及算式)1. 桌上放着63根火柴,甲、乙两人轮流每次取走1根至3根。
(每小题4分,共8分)()1规定谁取走最后一根谁就获胜。
如果甲先取,是否有必胜的方法?如有,请写出简要的方法;如没有,请说出理由。
第十届中环杯四年级初赛试题答案详解一、填空题:(每题5分,共50分。
)1、20092009×201020102010—20102010×200920092009=(0)【点评】题型:速算巧算;考点:重复数码数;此题非常典型,在学而思长期班及短期班的讲义中曾经反复出现,可以说只要是长期班的学员应该都会对这种题型了如指掌。
而更加值得一提的是这道题就是青少年科技报增期中《四年级模拟练习题(二)》的原题。
青少年科技报作为中环杯考试“风向标”的作用可见一斑。
【详解】=2009×10001×2010×100010001—2010×10001×2009×100010001=02、用0、1、2、3、4、5组成各位数字都不相同的六位数,并把这些六位数从小到大排列,第505个数是(510234)。
【点评】:题型:加乘原理;考点:正确分类与分步。
四年级秋季班第二讲《乘法原理》、第三讲《加法原理》、第四讲《加乘原理》,整整三次课都在研究关于加乘原理的问题,正是因为这个知识点是四年级杯赛的必考点也是难点和重点。
【详解】:把这些数按照从小到大排列。
当最高位是1时,共有5×4×3×2×1=120个;当最高位是2、3、4的时候都各有120个,所以共有120×4=480个。
505—480=25个。
剩下的25个都是最高为5的数,当十万位上是5,万位是0的时候,其他数位共有4×3×2×1=24个。
所以第505个是510234。
3、有编号1~30的30枚硬币正面朝上放在桌子上,先将编号为3的倍数的硬币翻个身,再将编号为4的倍数的硬币翻个身,最后仍有()个硬币正面朝上。
【点评】题型:数论;考点:貌似普通的充斥原理,但其中暗藏玄机,因为还有考虑的奇偶性的问题。
在考前不久的四年级长期班我们学习了《整除》,当中的一道例题和这道考题及其相似,就是求1~300所有正整数中,不是3的倍数也不是5的倍数的数有多少个?这是这道题需要考虑的问题多了一个。
第十三届“中环杯”小学生思想能力训练活动四年级决赛题一、填空题(每题 5 分,共 50 分)1、计算: 999999÷185185×20=( ) 。
2、从 1 开始做乘法: 1×2×3,当乘到( ) 时,乘积的最后100 个数字第一次所有是 0。
3、以下图网格中,要从 A 到 B,方向只好向右或向上,不可以经过C以及 D,有( ) 条不一样的路径。
4、一个介于500-800 之间的三位自然数,正好等于它各位数字和的36 倍,则这个自然数是() 。
5、以下图,有A、B、C、D、E、F 共 6 家商铺位于某一条街的两边,商铺 A 位于街上的阴影部分,其余商铺的地点关系以下:a、 A 店的右侧是书店;b、书店的对面是花店;c、花店的旁边是面包店;d、 E 店在 D 店的对面;e、酒店在 E 店的旁边;f、 E 店和文具店在街道的同一侧。
那么, A 店是 () 店。
文档来自于网络搜寻6、123123 123(2013个123)÷13的余数是() 。
7、李老师要在下午 3 时出门去看望朋友。
他预计时间快到了,一看家里的时钟,发现时钟早在正午 12 时 10 分就已经停了。
他给钟换好电池没有拨针就走开家了(换电池时间不计)。
到朋友家时,得悉当不时间隔 3 时还差 10 分。
夜晚 11 时,李老师从朋友家出来,回到家看见家中的时钟才 9 时。
假如李老师往返路上用时相同,他家的钟停了()小时()分钟。
8、某商场在春节有促销抽奖活动,规则以下:在暗箱内有四种颜色的小球若干个,购物每满 100 元可摸一次球,假如花费者能凑齐相同颜色的小球两个就能够参加一次抽奖,若参加抽奖五次都没有中奖可获取宽慰奖一份,假如花费者想百分之百获奖,起码需要在该商场购置()元的商品。
9、两个正方形如图搁置,图中的每个三角形都是等腰直角三角形,若此中较小正方形的边长为 12CM,那么较大正方形的面积是()平房厘米。
第十五届“中环杯”小学生思维能力训练活动四年级选拔赛填空题:1、计算:()()()20.120.360.50.120.360.120.36++⨯+-+=___________。
【考点】小数计算,提取公因数 【答案】 分析: ()()0.120.36?0.120.360.50.120.360.480.50.24=+⨯++--=⨯=原式2、定义新运算:22A B A B A B A B ⊕=+⊗=,除以的余数,则()2013201410______⊕⊗=。
【考点】定义新运算,余数性质 【答案】5分析: ()2220132014+除以10的余数,2013÷10余数是 3,2014÷10余数是 4,即()2220132014+除以10的余数等同于()2234+除以10的余数,则为5。
3、两个正整数的乘积为 100,这两个正整数都不含有数字 0,则这两个正整数之和为________。
【考点】数的拆分,分解质因数 【答案】29分析:2 和 5 不能同时分给一个数,100=2×2×5×5=4×25,则 4+25=294、一位搬运工要将 200 个馒头从厨房运到工地去(他现在在厨房里),他每次可以携带 40 个馒头。
但是由于他很贪吃,无论从厨房走到工地还是从工地走到厨房,他都会吃掉 1 个馒头。
那么这位搬运工最多能将______个馒头运到工地。
【考点】逻辑推理 【答案】191分析:200÷40=5 次,但最后一次不需要回厨房,所以吃掉 2×5-1=9 个馒头,剩余 200-9=191 个馒头5、中环杯的某个考场中一共有 45 个学生,其中英语好的有 35 人,语文好的有 31 人,两门功课都好的有 24 人,那么两门功课都不好的学生有______人。
【考点】容斥原理 【答案】3分析: 45 35 31 24 =45 42=3人6、 2022221⨯⨯⨯-个…的结果个位数为_______。