武汉市沌口开发区2015~2016学年度第二学期期末考试卷八年级数学试卷
- 格式:docx
- 大小:244.43 KB
- 文档页数:9
E ODC BA2015-2016学年度第二学期期末质量检测八年级 数学一、选择题(本大题共10题,每题3分,共30分) 1.下列二次根式中,是最简二次根式的是A. B. 0.5 C.50 D.5下列计算正确的是 A.752=+ C. D.4. 若平行四边形中两个内角的度数比为1:2,则其中较大的内角是 A .120° B .90° C .60° D .45°5. 已知一组数据5、3、5、4、6、5、14.关于这组数据的中位数、众数、平均数, 下列说法正确的是A.中位数是4B.众数是14C.中位数和众数都是5D.中位数和平均数都是5 6.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 为BC 的中点, 则下列式子中,一定成立的是A.OE BC 2=B. OE AC 2=C.OE AD =D.OE OB = 7. 要得到y=2x-4的图象,可把直线y=2xA . 向左平移4个单位 B. 向右平移4个单位 C. 向上平移4个单位 D. 向下平移4个单位 8. 对于函数y=-3x+1,下列结论正确的是A .它的图象必经过点(-1,3)B .它的图象经过第一、二、三象限C .当x >1时,y <0D .y 的值随x 值的增大而增大9.甲、乙两班举行电脑汉字录入比赛,参加学生每分钟录入汉字的个数统计计算后填入下表:某同学根据上表分析得出如下结论:22540=÷15)15(2-=-5112题①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀); ③甲班的成绩波动情况比乙班的成绩波动大. 其中正确结论的序号是A. ①②③ B .①② C .①③ D .②③10.王老师开车从甲地到相距240千米的乙地,如果油箱剩余油量Y (升)与行驶路程X (千米)之间是一次函数关系,如图,那么到达乙地时油 箱剩余油量是A. 10升B.20升C. 30升D. 40升二.填空题(本大题共6题,每题3分, 共18分)11 .函数3X2X Y +=的自变量X 的取值范围是______________12. 四边形ABCD 是周长为20cm 的菱形,点A 的坐标是则点B 的坐标为___________13.已知样本x 1 ,x 2 , x 3 , x 4的平均数是3,则x 1+3,x 2+3, x 3+3, x 4+3的平均数为 ____14.若一次函数y =(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是____15.如图,以Rt △ABC 的三边为斜边分别向外作等 腰直角三角形,若斜边AB =3,则图中阴影部分 的面积为________.16.如图,矩形ABCD 中,AB=3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B落在点B ′处,当△AEB ′为直角三角形时,BE 的长为___三、解答题(本大题共8题,共72分,解答时要写出必要的文字说明,演算步骤或推证过程)17.计算(本题共2小题,每小题5分,共10分) (1) 32)48312123(÷+-(2) (18.(本题满分8分)已知一次函数的图象经过(-2,1)和(1,4)两点, (1)求这个一次函数的解析式; (2)当x =3时,求y 的值。
2015—2016学年度第二学期期末考试八年级数学试题(90分钟完成)一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入答题纸的相应表格中.)1x 的取值范围是 A.3x 2≥ B. 3x 2> C. 2x 3≥ D. 2x 3> 2.下列二次根式中,最简二次根式是3.下列命题的逆命题成立的是A .对顶角相等B .如果两个实数相等,那么它们的绝对值相等C .全等三角形的对应角相等D .两条直线平行,内错角相等4.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC的长为半径作弧交数轴的正半轴于M ,则点M 表示的实数为A . 2.5B .C.D.15.如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是A.平行四边形B. 菱形C.正方形D. 矩形6.在平面直角坐标系中,将正比例函数y=kx (k >0)的图象向上平移一个单位,那么平移后的图象不经过A.第一象限B. 第二象限C.第三象限D. 第四象限7.下列描述一次函数y=-2x+5图象性质错误的是A. y 随x 的增大而减小B. 直线经过第一、二、四象限C.直线从左到右是下降的D. 直线与x 轴交点坐标是(0,5)8.商场经理要了解哪种型号的洗衣机最畅销,在相关数据的统计量中,对商场经理来说最有意义的是A.平均数B.众数C.中位数D.方差9. 小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是A .1.65米是该班学生身高的平均水平B .班上比小华高的学生人数不会超过25人C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米 10.如图,已知ABCD 的面积为48,E 为AB连接DE ,则△ODE 的面积为 第4题图第10题图 B DA.8B.6C.4D.3二、填空题:11.在一次学校的演讲比赛中,从演讲内容、演讲能力、演讲效果三个方面按照5:3:2计算选手的最终演讲成绩。
2014-2015学年八年级(下)期末数学试卷一、选择题:本大题共10小题,每小题3分,共30分。
下列各题中均有四个备选答案,其中有且只有一个就是正确的,请在答题卷上将正确答案的代号涂黑。
1.在数﹣,0,1,中,最大的数就是()A. B.1 C.0 D.2.若使二次根式在实数范围内有意义,则x的取值范围就是()A.x≥3B.x>3C.x<3D.x≤33.若y=kx+2的函数值y随着x的增大而增大,则k的值可能就是()A.0B.1C.﹣30D.﹣24.下列数据就是2015年5月23日发布的武汉市五个环境监测点PM2、5空气质量指数实时数据:监测点武昌紫阳汉口江滩汉阳月湖沌口新区青山钢花PM2、5指数94 114 96 113 131则这组数据的中位数就是()A.94B.96C.113D.113、55.下列计算错误的就是()A.3+2=5B.÷2=C.×=D.=6.若Rt△ABC中,∠C=90°,且AB=10,BC=8,则AC的值就是()A.5B.6C.7D.87.一次函数y=kx﹣k(k<0)的图象大致就是()A. B. C. D.8.如图,在▱ABCD中,对角线AC、BD相交于点O,AC=10,BD=6,AD=4,则▱ABCD的面积就是()A.12B.12C.24D.309.“校园安全”受到全社会的广泛关注,某校对部分学生及家长就校园安全知识的了解程度,进行了随机抽样调查,并绘制成如图所示的两幅统计图(不完整).根据统计图中的信息,若全校有2050名学生,请您估计对“校园安全”知识达到“非常了解”与“基本了解”的学生人数为()A.1330B.1350C.1682D.185010.如图,点E就是正方形ABCD的边BC延长线一点,连接AE交CD于F,作∠AEG=∠AEB,EG交CD的延长线于G,连接AG,当CE=BC=2时,作FH⊥AG于H,连接DH,则DH的长为()A.2﹣B.C.D.二、填空题:本题共6小题,每小题3分,共18分。
八年级数学期末考试卷2016.6注意事项:1.本卷考试时间为100分钟,满分100分.2. 请把试题的答案写在答卷上,不要写在试题上。
2.卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果.一、选择题(本大题共10小题,每小题2分,共20分.)1.下列根式中,与是同类二次根式的是(▲) A . B . C . D .2.下列图标中,既是中心对称图形又是轴对称图形的是(▲)A .B .C .D .3.在代数式、、、、、a+中,分式的个数有(▲)A .2个B .3个C .4个D .5个4.为了解一批电视机的使用寿命,从中抽取100台进行试验,这个问题的样本是(▲) A .这批电视机 B .这批电视机的使用寿命 C .抽取的100台电视机的使用寿命 D .100台5.如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,AC=12,F 是DE 上一点,连接AF ,CF ,DF=1.若∠AFC=90°,则BC 的长度为(▲) A .12 B .13 C .14 D .156.函数(a 为常数)的图象上有三点(﹣4,y 1),(﹣1,y 2),(2,y 3),则函数值y 1,y 2,y 3的大小关系是(▲)A .y 3<y 1<y 2B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 3<y 1 7.下列一元二次方程没有实数根的是(▲)A .x 2+2x+1=0B .x 2+x+2=0C .x 2﹣1=0D .x 2﹣2x ﹣1=0第5题图第10题图8.若分式方程+1=有增根,则a 的值是(▲)A .4B .0或4C .0D .0或﹣49.在△ABC 中,∠C =90°,AC 、BC 的长分别是方程x 2﹣7x +12=0的两根,△ABC 内一点P 到三边的距离都相等,则PC 长为 (▲)A .1B .2C .223 D .22 10.如图,在坐标系中放置一菱形OABC ,已知∠ABC=60°,点B 在y 轴上,OA=1.将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2015次,点B 的落点依次为B 1,B 2,B 3,…,则B 2014的坐标为(▲)A .(1343,0)B .(1342,0)C .(1343.5,)D .(1342.5,)二、填空题(本大题共8小题,每空2分,共20分.)11.若二次根式5-x 在实数范围内有意义,则x 的取值范围是 ▲ ;若分式392+-x x 的值为0,则x 的取值是__▲_.12.关于x 的一元二次方程(a -1)x 2+x +||a -1=0的一个根是0,则实数a 的值是▲ . 13.某种油菜籽在相同条件下的发芽试验结果如下:由此可以估计油菜籽发芽的概率约为_▲_(精确到0.01),其依据是__▲_. 14.若实数a 、b 、c 在数轴的位置,如图所示,则化简= ▲ .15.已知点P (a ,b )是反比例函数y=图象上异于点(﹣1,﹣1)的一个动点,则ba +++1212= ▲ . 16.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为3,1,反比例函数xy 3=的图像经过A ,B 两点,则菱形ABCD 的面积为 ▲ .第17题图17.如图,直线y 1=﹣x+b 与双曲线y 2=交于A 、B 两点,点A 的横坐标为1,则不等式 ﹣x+b <的解集是 ▲ .18.在平面直角坐标系中,O 为坐标原点,B 在x 轴上,四边形OACB 为平行四边形,且 ∠AOB =60°,反比例函数ky x=(k >0)在第一象限内过点A ,且与BC 交于点F 。
2015--2016学年度第二学期八年级数学期末测试题一.选择题(共12小题,每题3分,共计36分。
)1.(2015•乐山)下列说法不一定成立的是()A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b2.(2015•甘孜州)下列图形中,是中心对称图形的是()A.B.C.D.3.(2015•永州)若不等式组恰有两个整数解,则m的取值范围是()A.﹣1≤m<0 B.﹣1<m≤0C.﹣1≤m≤0D.﹣1<m<0 4.(2015•枣庄)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B.C.D.﹣15.(2015•济南)如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<16.(2015•贵港)下列因式分解错误的是()A.2a﹣2b=2(a﹣b)B.x2﹣9=(x+3)(x﹣3)C.a2+4a﹣4=(a+2)2 D.﹣x2﹣x+2=﹣(x﹣1)(x+2)7.(2015•义乌市)化简的结果是()A.x+1 B.C.x﹣1 D.8.(2015•枣庄)关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣19.(2015•营口)若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=3 10.(2015•铁岭)如图,点D、E、F分别为△ABC各边中点,下列说法正确的是()A.DE=DF B.EF=AB C.S△ABD=S△ACD D.AD平分∠BAC11.(2015•绥化)如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A.1个B.2个C.3个D.4个12.(2015•乌鲁木齐)九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A.=﹣B.=﹣20 C.=+D.=+20二.填空题(共6小题,每题4分,共计24分。
CBA2015—2016学年第二学期初二期末试卷数 学学校 姓名 准考证号考 生 须 知1.本试卷共6页,共三道大题,26道小题.满分100分,考试时间100分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和考号.3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 4.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.在平面直角坐标系xOy 中,点P (-3,5)关于y 轴对称的点的坐标是( ) A .(-3,-5)B .(3,-5)C .(3,5)D .(5,-3)2.下列图形中,既是中心对称图形又是轴对称图形的是( )3.一个多边形的内角和为540°,则这个多边形的边数是( ) A .4B .5C .6D .74.菱形ABCD 的边长为4,有一个内角为120°,则较长的对角线的长为( ) A .43B .4C .23D .25.如图,利用平面直角坐标系画出的正方形网格中, 若A (0,2),B (1,1),则点C 的坐标为( ) A .(1,-2) C .(2,1)B .(1,-1) D .(2,-1)6.如图,D ,E 为△ABC 的边AB ,AC 上的点,DE ∥BC , 若:1:3AD DB =,AE =2,则AC 的长是( ) A .10 B.8 C .6 D .47.关于x 的一元二次方程2210mx x -+=有两个实数根,则m 的取值范围是( )A .1m ≤ C .1m <且0m ≠B .1m <D .1m ≤且0m ≠8.如图,将边长为3cm 的等边△ABC 沿着边BC 向右平移2cm ,得到△DEF ,则四边形ABFD 的周长为( ) A .15cmB .14cmC .13cmD .12cmA .B .C .D .EDA B CDAB CP第13题图第14题图第8题图第9题图9.园林队在某公园进行绿化,中间休息了一段时间.绿化面积S(单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米10.如右图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则下列图象能大致反映y与x的函数关系的是()二、填空题(本题共18分,每小题3分)11.如图,点D,E分别为△ABC的边AB,BC的中点,若DE=3cm,则AC=cm.12.已知一次函数2()y m x m=++,若y随x的增大而增大,则m的取值范围是.13.如图,在△ABC中,D是AB边上的一点,连接CD,请添加一个适当的条件,使△ACD ∽△ABC(只填一个即可).14.如图,在□ABCD中,BC=5,AB=3,BE平分∠ABC交AD于点E,交对角线AC于点F,则AEFCBFSS△△= .DAB CFE DB CAEDAB CSt/平方米/小时16060421ODAFE CB第15题图15.如图,矩形ABCD 中,AB =8,AD =10,点E 为DC 边上的一点,将△ADE 沿直线AE 折叠,点D 刚好落在 BC 边上的点F 处,则CE 的长是 .16.如图,在平面直角坐标系xOy 中,一次函数y =x +1与x 、y 轴分别交于点A 、B ,在直线 AB 上截取BB 1=AB ,过点B 1分别 作x 、y 轴的垂线,垂足分别为点A 1、C 1, 得到矩形OA 1B 1C 1;在直线 AB 上截取B 1B 2= BB 1,过点B 2分别 作x 、y 轴的垂线,垂足分别为点A 2 、C 2, 得到矩形OA 2B 2C 2;在直线AB 上截取B 2B 3= B 1B 2,过点B 3分别 作x 、y 轴的垂线,垂足分别为点A 3、C 3, 得到矩形OA 3B 3C 3;……;则点B 1的坐标是 ;第3个矩形OA 3B 3C 3的面积是 ; 第n 个矩形OA n B n C n 的面积是 (用含n 的式子表示,n 是正整数).三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分)解答应写出文字说明,演算步骤或证明过程. 17.用适当的方法解方程:2610x x --=.18.如图,在□ABCD 中,E ,F 是对角线BD上的两点且BE =DF ,联结AE ,CF . 求证:AE =CF .19.一次函数1y kx b =+的图象与正比例函数2y mx =交于点A (-1,2),与y 轴交于点B (0,3). (1)求这两个函数的表达式;(2)求这两个函数图象与x 轴所围成的三角形的面积.yxy =x+1C 3C 2A 3A 2C 1B 3B 2B 1A B A 1OFE CADBEFCD A B20.如图,在矩形ABCD 中,E 为AD 边上的一点,过C 点作CF ⊥CE 交AB 的延长线于点F .(1)求证:△CDE ∽△CBF ;(2)若B 为AF 的中点,CB =3,DE =1,求CD 的长.21.已知关于x 的一元二次方程2(32)60mx m x -++=(0)m ≠. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.22.如图,Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB上的中线,分别过点A ,C 作AE ∥DC ,CE ∥AB , 两线交于点E .(1)求证:四边形AECD 是菱形;(2)若602B BC ∠=︒=,,求四边形AECD 的面积.23.列方程解应用题:某地区2013年的快递业务量为2亿件,受益于经济的快速增长及电子商务发展等多重因素,快递业务迅猛发展,2015年的快递业务量达到3.92亿件.求该地区这两年快递业务量的年平均增长率.24.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中的240度仍按照“基础电价”计费,超过的部分按照 “提高电价”收费.设每个家庭月用电量为x 度时,应交电费为y 元.具体收费情况如折线图所示,请根据图象回答下列问题: (1)“基础电价”是_________元/度;(2)求出当x >240时,y 与x 的函数表达式; (3)小石家六月份缴纳电费132元,求小石家这个月用电量为多少度?y x (元)(度)400120240216B AOEDAFB CEDBAC图1 图225.已知正方形ABCD 中,点M 是边CB (或CB 的延长线)上任意一点,AN 平分∠MAD ,交射线DC 于点N .(1)如图1,若点M 在线段CB 上 ①依题意补全图1;②用等式表示线段AM ,BM ,DN 之间的数量关系,并证明;(2)如图2,若点M 在线段CB 的延长线上,请直接写出线段AM ,BM ,DN 之间的数量关系.ADBCM26.在平面直角坐标系xOy 中,过象限内一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等, 则这个点叫做“和谐点”.如右图,过点H (-3,6)分 别作x 轴,y 轴的垂线,与坐标轴围成的矩形OAHB 的周长与面积相等,则点H (3,6)是“和谐点”.(1)H 1(1,2), H 2(4,-4), H 3(-2,5)这三个点中的“和谐点”为 ; (2)点C (-1,4)与点P (m ,n )都在直线y x b =-+上,且点P 是“和谐点”.若m >0,求点P 的坐标.——————————————草 稿 纸——————————————ADB C MADBCM y x1A BHO2015—2016学年第二学期期末试卷 初二数学 试卷答案及评分参考阅卷须知:为便于阅卷,解答题中的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.若考生的解法与给出的解法不同,正确者可参照评分参考给分.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、 选择题(本题共30分,每小题3分) 题号 123456 7 8 9 10 答案C A B AD BDCBB二、填空题(本题共18分,每小题3分)11.6 12.2m >- 13.ACD B ∠=∠(或ADC ACB ∠=∠或AD ACAC AB=) 14.925 15.3 16.(1,2);12(1)n n +;或2n n +(每空1分) 三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分) 17.18.证明一:联结AF ,CE ,联结AC 交BD 于点O.∵四边形ABCD 是平行四边形 ∴OA =OC ,OB =OD ⋯⋯⋯⋯⋯2分 又∵BE =DF∴OE =OF ⋯⋯⋯⋯⋯3分 ∴四边形AECF 是平行四边形 ⋯⋯4分 ∴AE =CF ⋯⋯⋯⋯⋯5分证明二:∵四边形ABCD 是平行四边形∴AB =CD ,AB ∥CD ⋯⋯⋯⋯⋯1分 ∴∠1=∠2 ⋯⋯⋯⋯⋯2分OFE CADB解法一: 26919x x -+=+ ⋯⋯⋯⋯⋯1分2310x -=() ⋯⋯⋯⋯⋯3分310x -=± ⋯⋯⋯⋯⋯4分12310,310x x ∴==+-⋯⋯5分解法二:2140⨯⨯=---=Q △(6)41() ⋯⋯1分6402x ±∴=⋯⋯⋯⋯⋯3分 62102x ±∴= ⋯⋯⋯⋯⋯4分12310,310x x ∴==+- ⋯⋯5分在△ABE 和△CDF 中12 AB CD BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF (SAS ) ⋯⋯⋯⋯⋯4分∴AE CF = ⋯⋯⋯⋯⋯5分 19.解:(1)∵2y mx =过点A (-1,2)∴-m =2 ∴m =-2 ⋯⋯⋯⋯⋯1分 ∵点A (-1,2)和点B (0,3)在直线1y kx b =+上2133k b k b b -+==⎧⎧∴∴⎨⎨==⎩⎩⋯⋯⋯⋯⋯3分 ∴这两个函数的表达式为:13y x =+和2-2y x=⋯⋯⋯⋯⋯3分(2)过点A 作AD ⊥x 轴于点D ,则AD =2∵13y x =+交x 轴于点C (-3,0) ⋯⋯4分∴1=2AOC S OC AD⨯⨯△ 1=322⨯⨯ =3 ⋯⋯5分即这两个函数图象与x 轴所围成的三角形的面积是3.20.(1)证明:∵四边形ABCD 是矩形∴∠D=∠1=∠2+∠3=90° ⋯⋯⋯⋯⋯1分 ∵CF ⊥CE ∴∠4+∠3=90°∴∠2=∠4∴△CDE ∽△CBF ⋯⋯⋯⋯⋯2分(2) 解:∵四边形ABCD 是矩形∴CD =AB ∵B 为AF 的中点∴BF =AB ∴设CD=BF= x ⋯⋯⋯3分 ∵△CDE ∽△CBF21.(1)证明:∵0m ≠ ∴2(32)60mx m x -++=是关于x 的一元二次方程∵2[(32)]46m m =-+-⨯△ ⋯⋯⋯⋯⋯1分2912424m m m =++- 29-124m m =+23-20m =()≥ ⋯⋯⋯⋯⋯2分21FECADByx–11–1–2–3–41234D CBA O4321EDAFBC∴CD DE CB BF = ⋯⋯4分 ∴13x x =∵x >0 ∴3x =⋯⋯⋯5分即:3CD =∴此方程总有两个实数根. ⋯⋯⋯⋯⋯3分(2) 解:∵(3)(2)0x mx --=∴1223,x x m ==⋯⋯⋯⋯⋯4分∵方程的两个实数根都是整数,且m 是正整数∴m =1或 m =2 ⋯⋯⋯⋯⋯5分22.(1)证明:∵AE ∥DC ,CE ∥AB∴四边形AECD 是平行四边形 ⋯⋯⋯⋯⋯1分 ∵Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB 上的中线 ∴CD =AD∴四边形AECD 是菱形 ⋯⋯⋯⋯⋯2分(2) 解:联结DE .∵90ACB ∠=︒,60B ∠=︒∴30BAC ∠=︒ ∴423A ABC ==, ⋯⋯⋯⋯⋯3分∵四边形AECD 是菱形 ∴EC =AD =DB 又∵EC ∥DB ∴四边形ECBD 是平行四边形∴ED = CB =2 ⋯⋯⋯⋯⋯4分∴2322322AECD AC ED S ⨯⨯===菱形 ⋯⋯⋯⋯⋯5分23. 解:设该地区这两年快递业务量的年平均增长率为x . 根据题意,得 ⋯⋯1分 22(1) 3.92x += ⋯⋯⋯⋯⋯3分解得120.4, 2.4x x ==-(不合题意,舍去) ⋯⋯⋯⋯⋯4分 ∴0.440x ==%答:该地区这两年快递业务量的年平均增长率为40%. ⋯⋯⋯⋯⋯5分24.(1)0.5 ⋯⋯⋯⋯⋯ 1分 (2)解:当x >240时,设y =kx+b ,由图象可得:2401200.640021624k b k k b b +==⎧⎧∴⎨⎨+==-⎩⎩ ⋯⋯⋯⋯⋯2分 ∴0.624(240)y x x =-> ⋯⋯⋯⋯⋯3分(3)解:∵132120y =>∴令0.624=132x -, ⋯⋯⋯⋯⋯4分 得:=260x ⋯⋯⋯⋯⋯5分∴小石家这个月用电量为260度.EDBAC25.(1)①补全图形,如右图所示. ⋯⋯⋯⋯⋯1分 ②数量关系:AM BM DN =+ ⋯⋯⋯⋯⋯2分 证明:在CD 的延长线上截取DE =BM ,联结AE .∵四边形ABCD 是正方形∴190B ∠=∠=︒,AD AB =,AB CD ∥ ∴6BAN ∠=∠ 在△ADE 和△ABM 中1 AD AB B DE BM =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ABM (SAS ) ∴AE AM =,32∠=∠ ⋯⋯⋯⋯⋯⋯3分又∵54∠=∠ ∴EAN BAN ∠=∠ 又∵6BAN ∠=∠ ∴6EAN ∠=∠∴AE NE = ⋯⋯⋯⋯⋯4分 又∵AE AM =,NE DE DN BM DN +=+=∴AM BM DN =+ ⋯⋯⋯⋯⋯5分 (证法二:在CB 的延长线上截取BF =DN ,联结AF ) (2)数量关系:AM DN BM =- ⋯⋯⋯⋯⋯6分26.(1)H 2 ⋯⋯⋯⋯⋯1分 (2)解:∵点C (-1,4)在直线y x b =-+上∴14b += ∴3b =∴3y x =-+ ⋯⋯⋯⋯⋯2分 ∴3y x =-+与x 轴,y 轴的交点为N (3, 0),M (0,3) ∵点P (m ,n )在直线3y x =-+上 ∴点P (m ,-m +3)过点P 分别作x 轴,y 轴的垂线,垂足为D ,E ∵m >0∴点P 可能在第一象限或第四象限(解法一) ① 若点P 在第一象限,如图1,则,3OD m PD n m +=== -∴3)6PEOD C m m ++==2(-矩形654321EN AD B CMNADB CMyy = -x+33)PEOD S m m +=(-矩形∵点P 是“和谐点”∴3)6m m +(-= ⋯⋯⋯3分 260m m +-3=2(-3)460=-⨯△<∴此方程无实根∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分② 若点P 在第四象限,如图2,则,3)3OD m PD n m m -=+=-== --( ∴3)46PEOD C m m m +=-=2(-矩形3)PEOD S m m =(-矩形 ∵点P 是“和谐点”∴3)46m m m -(-= ⋯⋯5分 260m m +-7=1261m m ==,∵点P (m ,-m +3)在第四象限 ∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分综上所述,满足条件的点P 的坐标为P (6,-3).(解法二)① 若点P 在第一象限,如图1,则,3OD m PD n m +=== - ∴3)6PEOD C m m ++==2(-矩形∵133 4.52MON S ⨯⨯==△ ⋯⋯⋯3分而MONPEOD S S <△矩形 ∴PEOD PEOD C S 矩形矩形≠∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分 ② 若点P 在第四象限,如图2,则,OD m PD n == -∴)PEOD C m n =2(-矩形PEOD S mn =-矩形∵点P 是“和谐点”∴2)m n mn (-=- ⋯⋯⋯⋯⋯5分 ∴22mn m =-∵点P (m ,n )在直线3y x =-+上 ∴3n m =-+yxy = -x+3EDP (m ,-m +3)O y x 33y = -x+3E D MN OP (m ,-m +3)图1∴232m m m =-+-260m m +-7= 1261m m ==, 经检验,1261m m ==,是方程232m m m=-+-的解 ∵点P (m ,-m +3)在第四象限∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分 综上所述,满足条件的点P 的坐标为P (6,-3).yx y = -x+3E D P (m ,-m +3)O。
八年级数学试题 第 1 页 (共 3 页)2016--2017学年度数学八年级下期末模拟考试一、选择题(每题3分,共30分,)1.下列二次根式中,是最简二次根式的是( )B.2aD.32.一次函数y =2x -1的图象不经过( ) A.第一象限B.第二象限C.第三象限D.第四象限3.下列计算正确的是( )A.==3=D.24=4.如图, ABCD 中,∠C =110°,BE 平分∠ABC ,则∠AEB 等于( ) A.11 °B.35°C.55°D.70°5.下列长度的三条线段能组成直角三角形的是( )A.4,5,6B.2,3,4C.1,1D.1,2,26.下列命题中的真命题是( )A.有一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相垂直平分的四边形是正方形D.有一组邻边相等的平行四边形是菱形 7.某中学绘画兴趣小组9名成员的年龄情况如下:A.15,15B.15,16C.15,17D.16,158.若一次函数y x k =-+的图象上有两点A (-1,y 1),B (2,y 2),则下列说法正确的是( ) A.y 1>y 2B.y 1≥y 2C.y 1<y 2D.y 1≤y 29.如图,在矩形ABCD 中,有以下结论:①△AOB 是等腰三角形;②ABO ADO S S ∆∆=;③AC =BD ;④AC ⊥BD ;⑤当∠ABD =45°时,矩形ABCD 会变成正方形.其中错误结论的个数是()A.0B.1C.2D.3第9题 第10题10.如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),点C 在第一象限,对角线BD 与x 轴平行.直线y =x +4与x 轴、y 轴分别交于点E ,F .将菱形ABCD 沿x 轴向左平移k 个单位,当点C 落在△EOF 的内部时(不包括三角形的边),k 的值可能是( ) A.2B.3C.4D.5二、填空题(每题3分,共18分.请直接将答案填写在答题卷中,不写过程) 111x +x 的取值范围为 .12.下表记录了甲、乙、丙、丁四名运动员参加男子跳高选拔赛成绩的平均数x 与方差2S :根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择 .13.如图,已知平行四边形ABCD ,E 是AB 延长线上一点,连结DE 交BC 于点F ,在不添加任何辅助线的情况下,请补充一个条件,使△CDF ≌△BEF ,这个条件是 .(只需要填一个)14.如图,将△ABC 纸片折叠,使点A 落在边BC 上,记落点为点D ,且折痕EF ∥BC ,若EF =3,则BC 的长度为 .第13题 第14题 第15题 第16题15.如图,直线1l :1y x =+与直线2l :y mx n =+相交于点P (a ,2),则关于x 的不等式mx+n ≤x+1的解集为 .16.目前,我市正积极推进“五城联创”,其中扩充改造绿地是推进工作计划之一.现有一块直角三角形绿地,量得两直角边长分别为a =9(米)和b =12(米),现要将此绿地扩充改造为等腰三角形,且扩充部分含以b =12(米)为直角边的直角三角形,则扩充后等腰三角形的周长为 . 三、解答题(本大题有9个小题,共72分)八年级数学试题 第 2 页 (共 3 页)17.(8分)计算:(1(2)()(33+.18.(5分)已知:y 与2x +成正比例,且1x =时,6y =-. (1)求y 与x 之间的函数关系式;(2)若点M (m ,4)在这个函数的图象上,求m 的值.19.(6分)在如图所示的4×3网格中,每个小正方形的边长均为1,正方形顶点叫格点,连结两个网格格点的线段叫网格线段.点A 固定在格点上.(1)若a 是图中能用网格线段表示的最小无理数,b 是图中能用网格线段表示的最大无理数,则b = ,ba= ; (2的所有菱形ABCD ,你画出的菱形面积为.20.(6分)如图,在四边形ABCD 中,AB =AD =4,∠A =60°,BC =CD =8.(1)求∠ADC 的度数; (2)求四边形ABCD 的面积.21.(7分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示. (1)本次共抽查学生______人,并将条形图补充完整; (2)捐款金额的众数是______,平均数是______;(3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?22.(8分)如图,平面直角坐标系中,直线2y x m =+与y 轴交于点A ,与直线5y x =-+交于点B (4,n ),P 为直线5y x =-+上一点.(1)求m ,n 的值;(2)求线段AP 的最小值,并求此时点P 的坐标.C八年级数学试题 第 3 页 (共 3 页)23.(10分)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y (米)与时间x (时)的函数图象为线段OA ,乙队铺设完的路面长y (米)与时间x (时)的函数图象为折线BC --CD --DE ,如图所示,从甲队开始工作时计时.(1)直接写出乙队铺设完的路面长y (米)与时间x (时)的函数关系式; (2)当甲队清理完路面时,乙队还有多少米的路面没有铺设完?24.(10分)如图,E 是正方形ABCD 的BC 边上一点,BE 的垂直平分线交对角线AC 于点P ,连接PB ,PE ,PD ,DE .请判断△PED 的形状,并证明你的结论.25.(12分)已知:如图,平面直角坐标系中,A (0,8),B (0,4),点C 是x 轴上一点,点D 为OC 的中点. (1) 求证:BD ∥AC ;(2) 若点C 在x 轴正半轴上,且BD 与AC 的距离等于2,求点C 的坐标;(3)如果OE ⊥AC 于点E ,当四边形ABDE 为平行四边形时,求直线AC 的解析式.。
2015-2016学年新人教版八年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.下列式子中,属于最简二次根式的是()A.B.C.D.2.下列计算中正确的是()A.+=B.﹣=C.2+=2D.+=43.下列四点中,在函数y=2x﹣5的图象上的点是()A.(﹣1,3)B.(0,5)C.(2,﹣1)D.(1,﹣7)4.点P1(x1,y1),P2(x2,y2)是一次函数y=﹣3x+4图象上的两个点,且x1<x2,则以下正确的是()A.y1>y2 B.y1<y2C.y1=y2 D.无法比较y1和y2的大小5.某超市对员工进行三项测试:电脑、语言、商品知识,并按三项测试得分的5:3:2的比例确定测试总分,已知某员工三项得分分别为80,70,75,则这位超市员工的总分为()A.78 B.76 C.77 D.796.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34 B.26 C.8.5 D. 6.57.矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等8.给定平面上不在同一直线上的三点,以这三点为顶点的平行四边形有()A.4个B.3个C.2个D.1个9.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75° B.60° C.55° D.45°10.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2B.2C. 3 D.二、填空题(每小题3分,共24分)11.计算:=.12.使在实数范围内有意义,x的取值范围是.13.命题“对顶角相等”的逆命题是,是(填“真命题”或“假命题”).14.直线y=﹣3x﹣2经过第象限.15.若平行四边形中相邻的两个内角度数比为1:4,则其中较小的内角是.16.五名男生的数学成绩如下:84,79,81,83,83,82,则这组数据的中位数是.17.在一个广场上有两棵树,一棵高6米,另一棵高2米,两树相距5米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了米.18.2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a,较长直角边为b,那么(a+b)2的值为.三、解答题(共7小题,66分)19.(12分)(2015春•武夷山市校级期末)化简:(1)(﹣)﹣(+)(2)x=﹣1,求代数式x2+3x﹣4的值.20.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.21.如图,在四边形ABCD中,AD∥BC,AM⊥BC,垂足为M,AN⊥DC,垂足为N,若∠BAD=∠BCD,AM=AN,求证:四边形ABCD是菱形.22.(10分)(2014春•范县期末)如图,以△ABC的三边为边,在BC的同侧作三个等边△ABD、△BEC、△ACF.(1)判断四边形ADEF的形状,并证明你的结论;(2)当△ABC满足什么条件时,四边形ADEF是菱形?是矩形?23.(10分)(2014•龙岩)随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按元收取;超过5吨的部分,每吨按元收取;(2)请写出y与x的函数关系式;(3)若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月用了多少吨生活用水?24.甲、乙两名学生进行射击练习,两人在相同条件下各射靶10次,将射击结果作统计分析如下:命中环数5 6 7 8 9 10 平均数众数方差甲命中环数的次数1 4 2 1 1 1 7 6 2.2乙命中环数的次数1 2 4 2 1 0(1)请你完成上表中乙进行射击练习的相关数据;(2)根据你所学的统计知识,利用上面提供的数据评价甲、乙两人的射击水平.25.(10分)(2015春•武夷山市校级期末)梯形ABCD中,AD∥BC,∠B=90°AD=24cm,AB=8cm,BC=26cm,动点P从A点开始沿AD边以1cm/s的速度向D运动,动点Q从C 点开始,沿BC边以3cm/s的速度向B运动,P、Q分别从A、C同时出发,当其中一点到端点时,另一点也随之停止,设运动时间为ts,当t为何值时,四边形PQCD是:①平行四边形;②等腰梯形.参考答案与试题解析一、选择题(每小题3分,共30分)1.下列式子中,属于最简二次根式的是()A.B.C.D.考点:最简二次根式.分析:根据最简二次根式的定义(①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母,满足以上两个条件的二次根式叫最简二次根式)逐个判断即可.解答:解:A、=2,不是最简二次根式,故本选项错误;B、=,不是最简二次根式,故本选项错误;C、=,不是最简二次根式,故本选项错误;D、是最简二次根式,故本选项正确;故选D.点评:本题考查了最简二次根式的定义的应用,能熟记最简二次根式的定义是解此题的关键,注意:最简二次根式满足以下两个条件:①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母.2.下列计算中正确的是()A.+=B.﹣=C.2+=2D.+=4考点:二次根式的加减法;二次根式的乘除法.分析:结合选项分别进行二次根式的加减法、乘除法运算,然后选择正确选项.解答:解:A、和不是同类二次根式,不能合并,故本选项错误;B、和不是同类二次根式,不能合并,故本选项错误;C、2和不是同类二次根式,不能合并,故本选项错误;D、+=2+2=4,计算正确,故本选项正确.故选D.点评:本题考查了二次根式的加减法、乘除法等知识,掌握运算法则是解答本题的关键.3.下列四点中,在函数y=2x﹣5的图象上的点是()A.(﹣1,3)B.(0,5)C.(2,﹣1)D.(1,﹣7)考点:一次函数图象上点的坐标特征.分析:只要把点的坐标代入一次函数的解析式,若左边=右边,则点在函数的图象上,反之就不在函数的图象上,代入检验即可.解答:解:A、把(﹣1,3)代入y=2x﹣5得:左边=3,右边=2×(﹣1)﹣5=﹣7,左边≠右边,故A选项错误;B、把(0,5)代入y=2x﹣5得:左边=5,右边=2×0﹣5=﹣5,左边≠右边,故B选项错误;C、把(2,﹣1)代入y=2x﹣5得:左边=﹣1,右边=2×2﹣5=﹣1,左边=右边,故C选项正确;D、把(1,﹣7)代入y=2x﹣5得:左边=﹣7,右边=2×1﹣5=﹣3,左边≠右边,故D选项错误.故选:C.点评:本题主要考查对一次函数图象上点的坐标特征的理解和掌握,能根据点的坐标判断是否在函数的图象上是解此题的关键.4.点P1(x1,y1),P2(x2,y2)是一次函数y=﹣3x+4图象上的两个点,且x1<x2,则以下正确的是()A.y1>y2 B.y1<y2C.y1=y2 D.无法比较y1和y2的大小考点:一次函数图象上点的坐标特征.分析:根据一次函数y=kx+b(k≠0,k,b为常数),当k<0时,y随x的增大而减小解答即可.解答:解:根据题意,k=﹣3<0,y随x的增大而减小,因为x1<x2,所以y1>y2.故选A.点评:本题考查了一次函数的性质,当k<0时,y随x的增大而减小.5.某超市对员工进行三项测试:电脑、语言、商品知识,并按三项测试得分的5:3:2的比例确定测试总分,已知某员工三项得分分别为80,70,75,则这位超市员工的总分为()A.78 B.76 C.77 D.79考点:加权平均数.分析:运用加权平均数的计算公式求解.解答:解:这位员工得分=(80×5+70×3+75×2)÷10=76(分).故选:B.点评:本题考查了加权平均数的计算,注意平均数等于所有数据的和除以数据的个数.6.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34 B.26 C.8.5 D. 6.5考点:直角三角形斜边上的中线;勾股定理.分析:利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.解答:解:由勾股定理得,斜边==13,所以,斜边上的中线长=×13=6.5.故选D.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.7.矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等考点:矩形的性质;菱形的性质.分析:根据矩形与菱形的性质对各选项分析判断后利用排除法求解.解答:解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.点评:本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.8.给定平面上不在同一直线上的三点,以这三点为顶点的平行四边形有()A.4个B.3个C.2个D.1个考点:平行四边形的判定.分析:只要将三角形的三边作为平行四边形的对角线作图,就可得出结论.解答:解:如图所示:以点A,B,C为顶点能做三个平行四边形:▱ABCD,▱ABFC,▱AEBC.故选:B.点评:本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法,并能进行推理作图是解决问题的关键.9.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75° B.60° C.55° D.45°考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质.分析:由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.解答:解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.点评:本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.10.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2B.2C. 3 D.考点:轴对称-最短路线问题.专题:计算题;压轴题.分析:由于点B与D关于AC对称,所以连接BD,与AC的交点即为P点.此时PD+PE=BE 最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.解答:解:设BE与AC交于点F(P′),连接BD,∵点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度;∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故选:A.点评:此题主要考查轴对称﹣﹣最短路线问题,要灵活运用对称性解决此类问题.二、填空题(每小题3分,共24分)11.计算:=2.考点:二次根式的乘除法.分析:根据二次根式乘方的意义与二次根式乘法的运算法则,即可求得答案.解答:解:=(﹣)(﹣)=2.故答案为:2.点评:此题考查了二次根式乘法与乘方运算.此题比较简单,注意运算符号的确定.12.使在实数范围内有意义,x的取值范围是x≥2.考点:二次根式有意义的条件.专题:探究型.分析:先根据二次根式有意义的条件得出关于x的不等式,求出x的取值范围即可.解答:解:∵使在实数范围内有意义,∴x﹣2≥0,解得x≥2.故答案为:x≥2.点评:本题考查的是二次根式有意义的条件,即被开方数大于等于0.13.命题“对顶角相等”的逆命题是“相等的角是对顶角”,是“假命题”.(填“真命题”或“假命题”).考点:命题与定理.分析:把原命题的条件和结论互换就得到它的逆命题,再对逆命题进行判断即可.解答:解:命题“对顶角相等”的逆命题是“相等的角是对顶角”,是“假命题”.故答案为:“相等的角是对顶角”,“假命题”.点评:本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.14.直线y=﹣3x﹣2经过第二,三,四象限.考点:一次函数图象与系数的关系.分析:因为k=﹣3<0,b=﹣2<0,根据一次函数y=kx+b(k≠0)的性质得到图象经过第二、四象限,图象与y轴的交点在x轴下方,于是可判断一次函数y=﹣3x﹣2的图象经过第二,三,四象限.解答:解:对于一次函数y=﹣3x﹣2,∵k=﹣3<0,∴图象经过第二、四象限;又∵b=﹣2<0,∴一次函数的图象与y轴的交点在x轴下方,即函数图象还经过第三象限,∴一次函数y=﹣3x﹣2的图象经过第二,三,四象限.故答案为:二,三,四;点评:本题考查了一次函数y=kx+b(k≠0)的性质:当k<0,图象经过第二、四象限,y 随x的增大而减小;当k>0,经图象第一、三象限,y随x的增大而增大;当b>0,一次函数的图象与y轴的交点在x轴上方;当b<0,一次函数的图象与y轴的交点在x轴下方.15.若平行四边形中相邻的两个内角度数比为1:4,则其中较小的内角是36°.考点:平行四边形的性质.分析:由平行四边形的性质得出∠B+∠C=180°,由已知条件得出∠C=4∠B,得出∠B+4∠B=180°,得出∠B=36°即可.解答:解:如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠B:∠C=1:4,∴∠C=4∠B,∴∠B+4∠B=180°,解得:∠B=36°,故答案为:36°.点评:本题考查了平行四边形的性质、平行线的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.16.五名男生的数学成绩如下:84,79,81,83,83,82,则这组数据的中位数是82.5.考点:中位数.分析:根据中位数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:79,81,82,83,83,84,中位数为:=82.5.故答案为:82.5.点评:本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.17.在一个广场上有两棵树,一棵高6米,另一棵高2米,两树相距5米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了米.考点:勾股定理的应用.分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树尖进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.解答:解:两棵树的高度差为6﹣2=4m,间距为5m,根据勾股定理可得:小鸟至少飞行的距离==m.故答案为:.点评:本题主要考查了勾股定理的应用,解题的关键是将现实问题建立数学模型,运用数学知识进行求解.18.2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a,较长直角边为b,那么(a+b)2的值为25.考点:勾股定理.分析:根据大正方形的面积即可求得c2,利用勾股定理可以得到a2+b2=c2,然后求得直角三角形的面积即可求得ab的值,根据(a+b)2=a2+b2+2ab=c2+2ab即可求解.解答:解:∵大正方形的面积是13,∴c2=13,∴a2+b2=c2=13,∵直角三角形的面积是=3,又∵直角三角形的面积是ab=3,∴ab=6,∴(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=25.故答案是:25.点评:本题考查了勾股定理以及完全平方公式,正确表示出直角三角形的面积是解题的关键.三、解答题(共7小题,66分)19.(12分)(2015春•武夷山市校级期末)化简:(1)(﹣)﹣(+)(2)x=﹣1,求代数式x2+3x﹣4的值.考点:二次根式的混合运算.分析:(1)先进行二次根式的化简,然后去括号,合并同类二次根式求解;(2)先进行因式分解,然后将x的值代入求解.解答:解:(1)原式=2﹣﹣﹣=﹣;(2)x2+3x﹣4=(x+4)(x﹣1)=(+3)(﹣2)=2﹣2+3﹣6=﹣4+.点评:本题考查了二次根式的混合运算,解答本题的关键是掌握二次根式的化简以及合并.20.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.考点:勾股定理的逆定理;勾股定理.专题:几何图形问题.分析:连接BD,根据已知分别求得△ABD的面积与△BDC的面积,即可求四边形ABCD 的面积.解答:解:连接BD,∵AB=3cm,AD=4cm,∠A=90°∴BD=5cm,S△ABD=×3×4=6cm2又∵BD=5cm,BC=13cm,CD=12cm∴BD2+CD2=BC2∴∠BDC=90°∴S△BDC=×5×12=30cm2∴S四边形ABCD=S△ABD+S△BDC=6+30=36cm2.点评:此题主要考查勾股定理和逆定理的应用,还涉及了三角形的面积计算.连接BD,是关键的一步.21.如图,在四边形ABCD中,AD∥BC,AM⊥BC,垂足为M,AN⊥DC,垂足为N,若∠BAD=∠BCD,AM=AN,求证:四边形ABCD是菱形.考点:菱形的判定.专题:证明题.分析:首先证明∠B=∠D,可得四边形ABCD是平行四边形,然后再证明△ABM≌△ADN 可得AB=AD,再根据菱形的判定定理可得结论.解答:证明:∵AD∥BC,∴∠B+∠BAD=180°,∠D+∠C=180°,∵∠BAD=∠BCD,∴∠B=∠D,∴四边形ABCD是平行四边形,∵AM⊥BC,AN⊥DC,∴∠AMB=∠AND=90°,在△ABM和△ADN中,,∴△ABM≌△ADN(AAS),∴AB=AD,∴四边形ABCD是菱形.点评:此题主要考查了菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形.22.(10分)(2014春•范县期末)如图,以△ABC的三边为边,在BC的同侧作三个等边△ABD、△BEC、△ACF.(1)判断四边形ADEF的形状,并证明你的结论;(2)当△ABC满足什么条件时,四边形ADEF是菱形?是矩形?考点:平行四边形的判定;等边三角形的性质;菱形的判定;矩形的判定.专题:证明题;开放型.分析:(1)由题意易得△BDE≌△BAC,所以DE=AC=AF,同理可证,EF=AB=AD,所以四边形ADEF为平行四边形;(2)AB=AC时,可得ADEF的邻边相等,所以ADEF为菱形,AEDF要是矩形,则∠DEF=90°,由∠DEF=∠BED+∠BEC+∠CEF,可推出∠BAC=150°时为矩形.解答:(1)四边形ADEF为平行四边形,证明:∵△ABD和△EBC都是等边三角形,∴BD=AB,BE=BC;∵∠DBA=∠EBC=60°,∴∠DBA﹣∠EBA=∠EBC﹣∠EBA,∴∠DBE=∠ABC;∵在△BDE和△BAC中,∴△BDE≌△BAC,∴DE=AC=AF,同理可证:△ECF≌△BCA,∴EF=AB=AD,∴ADEF为平行四边形;(2)AB=AC时,▱ADEF为菱形,当∠BAC=150°时▱ADEF为矩形.理由是:∵AB=AC,∴AD=AF.∴▱ADEF是菱形.∴∠DEF=90°=∠BED+∠BEC+∠CEF=∠BCA+60°+∠CBA=180﹣∠BAC+60°=240°﹣∠BAC,∴∠BAC=150°,∵∠DAB=∠FAC=60°,∴∠DAF=90°,∴平行四边形ADEF是矩形.点评:此题主要考查平行四边形、矩形、菱形的判定.23.(10分)(2014•龙岩)随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按 1.6元收取;超过5吨的部分,每吨按 2.4元收取;(2)请写出y与x的函数关系式;(3)若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月用了多少吨生活用水?考点:一次函数的应用.分析:(1)由图可知,用水5吨是8元,每吨按8÷5=1.6元收取;超过5吨的部分,每吨按(20﹣8)÷(10﹣5)=2.4元收取;(2)根据图象分x≤5和x>5,分别设出y与x的函数关系式,代入对应点,得出答案即可;(3)把y=76代入x>5的y与x的函数关系式,求出x的数值即可.解答:解:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按1.6元收取;超过5吨的部分,每吨按2.4元收取;(2)当0≤x≤5时,设y=kx,代入(5,8)得8=5k,解得k=∴y=x;当x>5时,设y=kx+b,代入(5,8)、(10,20)得,解得k=,b=﹣4,∴y=x﹣4;综上所述,y=;(3)把y=代入y=x﹣4得x﹣4=,解得x=8,5×8=40(吨).答:该家庭这个月用了40吨生活用水.点评:此题考查一次函数的实际运用,结合图形,利用基本数量关系,得出函数解析式,进一步利用解析式解决问题.24.甲、乙两名学生进行射击练习,两人在相同条件下各射靶10次,将射击结果作统计分析如下:命中环数5 6 7 8 9 10 平均数众数方差甲命中环数的次数1 4 2 1 1 1 7 6 2.2乙命中环数的次数1 2 4 2 1 0 77 1.2(1)请你完成上表中乙进行射击练习的相关数据;(2)根据你所学的统计知识,利用上面提供的数据评价甲、乙两人的射击水平.考点:方差;加权平均数;众数.分析:(1)根据平均数、众数和方差的定义分别求出乙的三个量;(2)从集中趋势和稳定性两个方面来考查两人的成绩.解答:解:(1)乙学生相关的数据为:平均数为:(5×1+6×2+7×4+8×2+9×1)=7;∵7出现的次数最多,故众数为7;方差为:[(5﹣7)2+(6﹣7)2+(6﹣7)2+…+(9﹣7)2]=1.2.(2)从平均水平看,甲、乙两名学生射击的环数平均数均为7环,水平相当;从集中趋势看,乙的众数比甲大,乙的成绩比甲的好些;从稳定性看,s乙2<s甲2,所以乙的成绩比甲稳定.点评:此题主要考查了学生对平均数,众数,方差的理解及运用能力,正确求出方差是解题关键.25.(10分)(2015春•武夷山市校级期末)梯形ABCD中,AD∥BC,∠B=90°AD=24cm,AB=8cm,BC=26cm,动点P从A点开始沿AD边以1cm/s的速度向D运动,动点Q从C 点开始,沿BC边以3cm/s的速度向B运动,P、Q分别从A、C同时出发,当其中一点到端点时,另一点也随之停止,设运动时间为ts,当t为何值时,四边形PQCD是:①平行四边形;②等腰梯形.考点:等腰梯形的判定;平行四边形的判定.专题:动点型.分析:(1)当四边形PQCD是平行四边形时,必须有PQ=CD,而PQ、CD均可用含有t 的式子表示出来,所以列方程解答即可.(2)当PQ=CD,PD≠QC时,四边形PQCD为等腰梯形.过P,D分别作PE⊥BC,DF⊥BC 后,可求出CF=2,所以当等腰梯形成立时,CQ=PD+4,然后列方程解答即可.解答:解:(1)∵AD∥BC,∴当QC=PD时,四边形PQCD是平行四边形.此时有3t=24﹣t,解得t=6.∴当t=6s时,四边形PQCD是平行四边形.(2)∵AD∥BC,∴当PQ=CD,PD≠QC时,四边形PQCD为等腰梯形.过P,D分别作PE⊥BC,DF⊥BC,垂足分别为E,F.∴四边形ABFD是矩形,四边形PEFD是矩形.∴EF=PD,BF=AD.∵AD=24cm,∴BF=24cm.∵BC=26cm.∴FC=BC﹣BF=26﹣24=2(cm).由等腰梯形的性质知,QE=FC=2cm.∴QC=EF+QE+FC=PD+4=AD﹣AP+4,即3t=(24﹣t)+4,解得t=7.∴当t=7s时,四边形PQCD是等腰梯形.点评:本题主要考查了平行四边形、等腰梯形的判定,以及一元一次方程在几何图形中的应用,难度适中.。
2015-2016学年第二学期八年级数学期末测试卷(复习用,答案详解)学校 姓名 班级一、选择题(本题共10小题,满分共30分) 1.二次根式21、12 、30 、x+2 、240x 、22y x +中,最简二次根式有( )个。
A 、1 个B 、2 个C 、3 个D 、4个 2.x 的取值范围为( ).A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222C .3,4, 5D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >28、 在方差公式()()()[]2222121xx x x x x nS n -++-+-= 中,下列说法不正确的是( )A. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65M PFE CBAA D O二、填空题(本题共10小题,满分共30分)11.48-1-⎝⎭+)13(3--30-23-=12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。
2015~2016学年度武汉市沌口开发区第二学期期末考试八年级数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑。
1.实数√6的值在()A.0与1之间B. 1与2之间C. 2与3之间D. 3与4之间2.下列计算正确的是()=5√10A.√2+√5=√7B.3√2−√2=3C.√2×√5=√10D.√2√53.某中学八年级(1)班的同学举行“中国梦●我的梦”演讲比赛。
第三小组的六名同学成绩如下(单位:分):9.1,9.3,9.5,9.2,9.4,9.2,则这组数据的众数是()A.9.1B.9.2C.9.3D.9.54.a、b、c是三角形的边长,则是直角三角形的是()A.a=1,b=2,c=2B.a=√3 ,b=1 ,c=1C. a=4,b=5,c=6D. a=1,b=2,c=√35.下图分别给出了变量x与y之间的对应关系,其中y不是x的函数是()A. B. C. D.6.一次函数y=3x+2的图象不经过()A.第一象限B. 第二象限C. 第三象限D. 第四象限7.统计学校排球队队员的年龄,发现有12、13、14、15等四钟年龄,统计结果如下表:A.13B.14C.13.5D.58.如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到⊿O′A′B′,点A的对应点A′在直线y=3x上,则点B与其对应点B′之间的距离为()4C.3D.4A.2B.949.如图所示,购买一种苹果,所付款金额y(元)与购买量y(千克)之间的函数图像由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省()A.2元B. 1元C. 3元D. 1.5元10.在矩形纸片ABCD中,AB=3,AD=5,如图所示,折叠纸片,使点A落在BC边上的某点A′处,折痕交AB边于点P,交AD边于点Q,在折叠的过程中,任意两个点A′之间距离的最大值是()A.2B.3C.2√2D.√3二、填空题(共6小题,每小题3分,共18分)= 。
11.计算:2√1212.统计去年下半年的每月用电量,得到如下六个数据(单位:度):223,220,190,230,150,200,这组数据的中位数是。
13.若3x2-12=0,则x的值为。
14.如图,在□ABCD中,DB=BC,∠C+∠DAB=140°,AE⊥BD于E,则∠BAE的度数为。
15.在Rt⊿ABC中,∠ACB=90°,AE,BD是角平分线,CM⊥BD于M,CN⊥AE于N,若AC=6,BC=8,则MN= .16.在平面直角坐标系中,经过点A(0,2)的直线l与直线y=2x+1只有一个公共点,则直线l的解析式为。
三、解答题(共8小题,共72分)17.(本题8分)在平面直角坐标系中,直线y=kx+3经过点A(2,7).(1)求k的值;(2)解关于x的方程:5x+k=2(x+4).18.(本题8分)已知:如图,在菱形ABCD中,E、F分别在边AD、AB上,DE=BF,求证:EC=FC19.(本题8分)某校倡议八年级学生利用双休日在各自社区参加义务劳动,为了解同学们劳动情况,学校随机抽查了部分学生的劳动时间,并用得到的数据绘制成如图1、图2所示的统计图,请利用统计图解决下列问题(1)抽样调查的学生人数是,并将条形图补充完整;(2)扇形统计图中表示“2小时”的圆心角度数为;(3)若规定劳动时间达到1.5小时以上(含1.5小时)的学生将被授予“劳动之星”荣誉称号,求该校350名八年级学生中估计有多少人获得“劳动之星”荣誉称号?20.(本题8分)如图1,直线y1=-x+4与y2=kx+3-k(k>0)相交于点P(1,m),这两条直线与x轴分别交于点A、B.(1)直接写出m= ;(2)依图象直接写出,当y1>y2时,则x的取值范围是;(3)若⊿PAB的面积为9,则k= ;(4)如图2,连接OP,x轴正半轴上一点C,使∠CPO=45°,则点C的坐标为。
21. (本题8分)如图,在□ABCD中,E、F分别是AB、CD的中点,AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形.22.(本题10分)某学校计划在总费用为3200元的限额内,租用汽车送312名学生和8名教师集体外出活动,每辆汽车上至少要有1名教师;现有甲乙两种大客车,它们的载客量和租金如下表:)通过计算与分析后,直接写出共需租用辆汽车;(2)求出有哪几种租车方案;(3)求出最节省的租车费用是多少元。
23.(本题10分)在平面直角坐标系中,已知C(4,4),B(0,m)(其中0<m<8)点A在x轴的正半轴上,满足∠ACB=90°.(1)如图1,直接写出点A的坐标:(用含m的式子表示);(2)如图2,当0<m<4时,作矩形AOBD,连接CD、OC,求证:CD⊥OC;(3)如图3,若Q为线段AB的中点,点P的坐标为(1,0),直接写出线段PQ的最小值为。
24.(本题12分)如图,已知正方形ABCD,点E在AB上,点G在AD上,点F在射线BC上,点H在CD上.(1)如图1,若FG⊥DE,求证:BF=AE+AG;(2)如图2,DF⊥DE,点P为EF的中点,求证:BE=PC;(3)如图3,EH交FG于点O,∠GOH=45°,若CD=4,BF=DG=1,求线段EH的长。
2015---2016学年度武汉市沌口开发区第二学期期末考试八年级数学答案1.C2.C3.B4.D5.B6.D7. B8. D9.A 10.A 11.2 12. 210 13. 2或﹣2 14. 20° 15.2 16.直线x=0,或直线y=kx+2(k ≠2) (第16题第1个答案1分, 第2个答案2分)17.解:⑴∵y=kx +3经过点A(2,7),∴7=2k +3,解得:k=2;……4分⑵∵k=2, 5x +k=2(x +4),∴5x 22x 8+=+,移项,得5x 2x 82-=-, 合并同类项,得3x 6=,系数化为1,得x 2=.……8分18.证明:∵四边形ABCD 是菱形,∴∠D=∠B ,CD=CB , ……4分在△EDC 和△FBC 中,∵DE BF D B CD CB =⎧⎪∠=∠⎨⎪=⎩, ……6分∴△EDC ≌△FBC(SAS), ∴EC=FC. ……8分19. 解:⑴100;补全条形图如图所示50人. ……4分(2)28.80 ……6分 (3)508350=203100+⨯……8分答:该校350名八年级学生中估计有203人获得“劳动之星”荣誉称号.20. 解:⑴m=3;……2分 ⑵ x <1;……4分(3) k=1; ……6分 (4) 点C 的坐标为(2.5,0)……8分21. 证明:⑴∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB=CD ,∵点E 、F 分别是AB 、CD 的中点,∴BE=12AB ,DF=12CD ,∴BE=DF ,BE ∥DF , ∴四边形DFBE 是平行四边形,∴DE ∥BF. ……4分 ⑵∵四边形ABCD 是平行四边形,∴AD ∥BG ,∵AG ∥BD ,∴四边形AGBD 为平行四边形,∴∠ADB=∠G ,∵∠G=90°,∴∠ADB=90°, ∵E 为AB 的中点,∴DE=12AB=BE ,∵四边形DFBE 是平行四边形,∴四边形DEBF 是菱形. ……8分22.解:⑴8 ……3分⑵设租用x 辆甲种客车,则租用乙种客车(8﹣x)辆,则租车费用y=400x +280(8﹣x)=120x +2240 ……4分 ∵45x+30(8-x)≥320, 400x +280(8﹣x)≤3200 ……6分 解得315≤x ≤8, ∵x 为整数,∴x=6或7或8; ……8分共有3种租车方案,即:6辆甲种客车,2辆乙种客车或7辆甲种客车,1辆乙种客车或8辆甲种客车.(3)在y=120x +2240中,k=120>0,∴y 随x 的增大而增大,∴当x=6时,y 有最小值,最节省的租车费用是2960元 ……10分23. ⑴解:点A 的坐标为(8﹣m ,0) ……3分⑵方法一:由C(4,4),D(8-m ,m),计算出OC 2,OD 2,CD 2的值,用勾股定理的逆定理证明 ……7分方法二:延长CD 交x 轴于N ,作CM ⊥x 轴于M ,∵C(4,4),∴OM=CM=4,∴∠MOC= ∠MCO=45°,∵A(8﹣m ,0),B(0,m),∴OA =8﹣m ,OB=m ,∵四边形AOBD 是矩形, ∴D(8﹣m ,m),设直线CD 的解析式为y=kx +b ,则()4k b 48m k b m+=⎧⎪⎨-+=⎪⎩,解得:k 1b 8=-⎧⎨=⎩,∴直线CD 的解析式为y=﹣x +8,令y=0,得x=8,∴N(8,0),∴ON =8,∴OM =ON=4,∴CO =CN ,∴∠MCN =∠MCO =45°,∴∠OCN =90°,∴CD⊥OC;方法三:连接OD 交AB 于E ,连接CE ,∵四边形AOBD 是矩形,∴OE=AE=DE=BE ,∵∠ACB=90°,∴CE=12AB ,∴OE=CE=DE ,∴∠EOC=∠ECO ,∠ECD=∠EDC ,∵∠EOC +∠ECO +∠ECD +∠EDC=180°,∴∠ECO +∠ECD=90°,∴∠OCD=90°,∴CD ⊥OC. ⑶PQ 的最小值为322. ……10分提示:∵∠ACB=∠AOB=90°,点Q 为AB 的中点,∴OQ=12AB=CQ ,∴点Q 在线段OC 的垂直平分线MN :4y x =-+上,∴N(0,4),M(4,0),∴OM=ON=4,∴∠OMN=45°,∵P(1,0),∴PM=3,作PE ⊥MN 于E ,∴322PE=,∵PQ ≥PE ,∴PQ 的最小值为322. 24. ⑴证明:作AH ∥GF 交BC 于H ,∴∠BHA=∠BFG ,∵四边形ABCD 是正方形,∴AD=AB ,∠DAB=∠B =90°,AD∥BC,∴四边形AHFG 是平行四边形,∴AG=HF ,…2分∵FG⊥DE,∴∠BFG =180°﹣∠BED =∠AED,∴∠AED =∠BHA,∴△AED ≌△BHA ,∴AE=BH,∴BF=BH+HF=AE+AG;……4分⑵方法一:在BC上取一点Q,使BQ=BE,∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠A=∠B=∠BCD=∠ADC=90°,∴EQ=22BQ BE2BE+=, ……6分AE=QC,∵DE⊥DF,∴∠ADE=∠CDF,∴△ADE≌△CDF,∴AE=CF,∴QC=CF,……7分∵P为EF的中点,∴PC=12EQ,∴PC=22BE,即BE=2PC;……8分方法二:连接PD,PB.得PE=PB,PD=PB,可证△PCD≌△PCB,得到∠PCB=∠PCD=45°,作PH⊥BC,PM⊥BE,可得BE=2PH=2×22PC, 即BE=2PC.⑶解:作DR∥EH交AB于R,DS∥GF交BC于S,∴∠RDS=∠EOF=45°,作DT⊥DR交BC的延长线于T,∴∠RDS=∠TDS=45°,……9分由⑵的证明可知△ADR≌△CDT,∴AR=CT,DR=DT,∵DS=DS,∴△RDS≌△TDS,∴RS=ST,……10分∵AD∥BC,∴四边形GFSD是平行四边形,∴FS=GD=1,∵BF=1,∴BS=2,∵BC=CD=4,∴SC=2,设AR=CT=x,则BR=4﹣x,RS=ST=2+x,在Rt△BRS中,BR²+BS²=RS²,∴(4﹣x)²+2²=(2+x)²,解得:x=43,……11分在Rt△ARD中,DR=22AR AD+ =4103,∵AB∥CD,∴四边形EHDR为平行四边形,∴EH=DR=4103 (12)。