2017年广东省广州市越秀区八年级下学期数学期末试卷及解析答案
- 格式:doc
- 大小:1.19 MB
- 文档页数:24
2017年广州市初中毕业生学业考试
数学 答案
第一部分 选择题(共30分)
一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.B
2.A
3. C
4. D
5.A
6. B
7. A
8.C
9.D
10. D
第二部分 非选择题(共120分)
二、填空题:本大题共6小题 ,每小题3分,满分18分
11.70°
12.(3)(3)x y y +-
13.1 , 5
14.17 15.35
16.①③
三、解答题 (本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤.)
17. 解析:(1)×3,得:3x+3y =15,减去(2),得x =4
解得:41x y =⎧⎨
=⎩
18. 证明:因为AE =BF ,所以,AE +EF =BF +EF ,即AF =BE ,
在△ADF 和△BCE 中,
AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩
所以,ADF BCE ∆≅∆
19.解析:(1)E 类:50-2-3-22-18=5(人),统计图略
(2)D 类:18÷50×100%=
36%
20. 解析:(1)如下图所示:
21.解析:(1)乙队筑路的总公里数:
4
60
3
=80(公里);
22.解析:
23.解析:
24.解析:
解析:。
2017-2018越秀区初二上期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分) 1.下面有四个图案,其中不是轴对称图形的是()A B. C. D.2.若分式21x x --的值为零,则x 的值为( ) A.2-B.2±C.2D.23.下列运算正确的是() A.3223()()0a a -+-= B.246()()b b b --=- C.32236()()a a a --=-D.248x x x ⋅=4.下列各因式分解中,结论正确的是() A.256(1)(6)x x x x ++=-+B.26(2)(3)x x x x -+=+-C.2221(1)(1)a ab b a b a b -+-=+++-C.2()223(3)(1)a b a b a b a b +++-=+++-5. 到三角形三条边的距离都相等的点是这个三角形的( ) A. 三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点6.用剪刀将一个四边形沿直线剪去一部分,剩下部分的图形的内角和将() A.增加180° B.减少180°C.不变D.以上三种情况都有可能7.在下列四个轴对称图形中,对称轴条数最多的是() A.正方形B.正五边形C.正六边形D.正七边形8如图1,已知AB AC =,AE AF =,BE 与CF 交于点D ,则对于下列结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③D 在∠BAC 的平分线上.其中正确的是() A.①和2 B.②和③ C.①和③D.①、②和③9.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所 需的时间少用了20分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平 均速度的3倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( ) A88203x x+=B.88133x x =+ C.88203x x=+ D.81833x x+= 10.如图2,已知△ABC 中,AB=3,AC=5,BC=7,在△ABC 所在平面内一条直线,将△ABC 分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画( ) A.2条B.3条C.4条D.5条二、填空题(本题共有6小题,每小题3分,共18分) 11. 要使分式1x x+有意义,那么x 必须满足 . 12. 已知一个n 边形的内角和是其外角和的4倍多180度,则n = .13. 如图3,在△ABC ,36,=AB AC A =∠,BD 是AC 边上的高,则=DBC ∠ .14. 如图4,在△ABC 中,AB 的垂直平分线交AB 于E ,交BC 于D ,连结AD.若AC=4cm ,△ADC 的周长为11cm ,则BC 的长为 cm.15. 如图5,在△ABC 中,BF ⊥AC 于F ,AD ⊥BC 于D ,BF 与AD 相交于E.若AD=BD ,BC=8cm ,DC=3cm 则AE= cm.16. 化简:2991(1)(1)...(1)a a a a a a a ++++++++= . 三、解答题(本题共有7小题,共72分)17.完成下列运算(本题共2小题,每小题5分,共10分) (1)计算(21)(21)(41)(1)x x x x -+-+-(2)计算2()(2)2xx x y x y+÷-+18.解下列分式方程(本题共2小题,每小题5分,共10分) (1)21424x x =-- (2)1513162x x -=--19.(本题共2小题,每小题6分,共12分)(1)先化简,再求值:22(2)(2)()5x y x y x y x +-++-,其中35,x y ==.(2)先化简,再求值:211()11a a a a -⋅--,其中12a =-.20. (本题满分8分)如图6,在ABC ∆中,AD 是BC 边上的高,AE 是BAC ∠的平分线,4218,B DAE ∠=∠=,求C ∠的度数。
2017-2018学年广东省广州市越秀区八年级(上)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分)1.(3分)下面有四个图案,其中不是轴对称图形的是()A.B.C.D.2.(3分)若分式的值为零,则的值为()A.﹣2 B.±2 C.2 D.13.(3分)下列运算正确的是()A.(﹣a3)2+(﹣a2)3=0 B.(﹣b)2•(﹣b)4=﹣b6C.(﹣a3)2(﹣a2)3=﹣a6D.2•4=8 4.(3分)下列各因式分解中,结论正确的是()A.2+5+6=(﹣1)(+6)B.2﹣+6=(+2)(﹣3)C.a2﹣2ab+b2﹣1=(a+b+1)(a+b﹣1)D.(a+b)2+2a+2b﹣3=(a+b+3)(a+b﹣1)5.(3分)到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点6.(3分)用剪刀将一个四边形沿直线剪去一部分,剩下部分的图形的内角和将()A.增加180°B.减少180°C.不变D.以上三种情况都有可能7.(3分)在下列四个轴对称图形中,对称轴条数最多的是()A.正方形B.正五边形C.正六边形D.正七边形8.(3分)如图,已知AB=AC,AE=AF,BE与CP交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是()A.①和2 B.②和③C.①和③D.①、②和③9.(3分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了20分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的3倍,若设乘公交车平均每小时走千米,根据题意可列方程为()A. +20= B.=+C.=+20 D. +=10.(3分)如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条 C.4条 D.5条二、填空题(本题共有6小题,每小题3分,共18分)11.(3分)要使分式有意义,那么必须满足.12.(3分)已知一个n边形的内角和是其外角和的4倍多180度,则n=.13.(3分)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是.14.(3分)如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连结AD.若AC=4cm,△ADC的周长为11cm,则BC的长为cm.15.(3分)如图,在△ABC中,BF⊥AC于F,AD⊥BC于D,BF与AD相交于E.若AD=BD,BC=8cm,DC=3cm,则AE=cm.16.(3分)化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=.三、解答题(本题共有7小题,共72分)17.(10分)完成下列运算:(1)(2﹣1)(2+1)﹣(4+1)(﹣1)(2)(2+)﹣y(+2)18.(10分)解下列分式方程:(1)=(2)1﹣=19.(12分)(1)先化简,再求值:(2+y)(2﹣y)+(+y)2﹣52,其中=3,y=5.(2)先化简,再求值:(﹣),其中a=﹣.20.(8分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE=18°,求∠C的度数.21.(8分)如图,△ABC和△CDE都是等边三角形,且B,C,D三点共线,连接AD,BE 相交于点P,求证:BE=AD.22.(12分)山地自行车越越受到大众的喜爱,某车行经销了某品牌的A、B两型车,其经销的A型车去年销售总额为5万元,今年每辆车的销售价将比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.其中A,B两种型号车的进货和销售价格如下表:(1)今年A型车每辆售价多少元?(2)该车行计划新进一批A型车和B型车共60辆(见上表),要使这批车获利不少于33000元,A型车至多进多少辆?23.(12分)在△ABC中,AB=AC,点D在底边BC上,AE=AD,连结DE.(1)如图①,已知∠BAC=90°,∠BAD=60°,求∠CDE的度数.(2)如图①,已知∠BAC=90°,当点D在BC(点B、C除外)上运动时,试探究∠BAD与∠CDE的数量关系;(3)如图②,若∠BAC≠90°,试探究∠BAD与∠CDE的数量关系.2017-2018学年广东省广州市越秀区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共有10小题,每小题3分,共30分)1.(3分)下面有四个图案,其中不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选A.2.(3分)若分式的值为零,则的值为()A.﹣2 B.±2 C.2 D.1【解答】解:∵分式的值为零,∴||﹣2=0,解得:=±2.故选:B.3.(3分)下列运算正确的是()A.(﹣a3)2+(﹣a2)3=0 B.(﹣b)2•(﹣b)4=﹣b6C.(﹣a3)2(﹣a2)3=﹣a6D.2•4=8【解答】解:A、原式=a6﹣a6=0,符合题意;B、原式=b2•b4=b6,不符合题意;C、原式=a6•(﹣a6)=﹣a12,不符合题意;D、原式=6,不符合题意.故选:A.4.(3分)下列各因式分解中,结论正确的是()A.2+5+6=(﹣1)(+6)B.2﹣+6=(+2)(﹣3)C.a2﹣2ab+b2﹣1=(a+b+1)(a+b﹣1)D.(a+b)2+2a+2b﹣3=(a+b+3)(a+b﹣1)【解答】解:A、原式=(+2)(+3),错误;B、原式不能分解,错误;C、原式=(a﹣b+1)(a﹣b﹣1),错误;D、原式═(a+b+3)(a+b﹣1),正确,故选D5.(3分)到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:C.6.(3分)用剪刀将一个四边形沿直线剪去一部分,剩下部分的图形的内角和将()A.增加180°B.减少180°C.不变D.以上三种情况都有可能【解答】解:如下图所示:观察图形可知,四边形剪掉一个角后,剩下的图形可能是五边形,也可能是四边形,还可能是三角形.则剩下的纸片图形是三角形或四边形或五边形.内角和是:180°或360°或540°.故选:D.7.(3分)在下列四个轴对称图形中,对称轴条数最多的是()A.正方形B.正五边形C.正六边形D.正七边形【解答】解:A、正方形,有4条对称轴;B、正五边形,有5条对称轴;C、正六边形,有6条对称轴;D、正七边形,有7条对称轴.故选:D.8.(3分)如图,已知AB=AC,AE=AF,BE与CP交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是()A.①和2 B.②和③C.①和③D.①、②和③【解答】解:如图,连接AD;在△ABE与△ACF中,,∴△ABE≌△ACF(SAS);∴∠B=∠C;∵AB=AC,AE=AF,∴BF=CE;在△CDE与△BDF中,,∴△CDE≌△BDF(AAS),∴DC=DB;在△ADC与△ADB中,,∴△ADC≌△ADB(SAS),∴∠CAD=∠BAD;综上所述,①②③均正确,故选D9.(3分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了20分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的3倍,若设乘公交车平均每小时走千米,根据题意可列方程为()A. +20= B.=+C.=+20 D. +=【解答】解:设乘公交车平均每小时走千米,根据题意可列方程为:=+.故选:B.10.(3分)如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条 C.4条 D.5条【解答】解:如图所示,当CA=CF=3,BC=BD=3,BC=CE=3,BG=CG,都能得到符合题意的等腰三角形.故选C.二、填空题(本题共有6小题,每小题3分,共18分)11.(3分)要使分式有意义,那么必须满足≠0.【解答】解:要使分式有意义,那么必须满足≠0,故答案为:≠012.(3分)已知一个n边形的内角和是其外角和的4倍多180度,则n=11.【解答】解:(n﹣2)•180°﹣4×360°=180°,解得n=11,故答案为:11.13.(3分)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是18°.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°∵BD是AC边上的高,∴BD⊥AC,∴∠DBC=90°﹣72°=18°.故答案为:18°.14.(3分)如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连结AD.若AC=4cm,△ADC的周长为11cm,则BC的长为7cm.【解答】解:∵AB的垂直平分线交AB于E,交BC于D,∴AD=BD,∵△ADC的周长为11cm,∴AC+CD+AD=AC+CD+BD=AC+BC=11cm,∵AC=4cm,∴BC=7cm.故答案为:7.15.(3分)如图,在△ABC中,BF⊥AC于F,AD⊥BC于D,BF与AD相交于E.若AD=BD,BC=8cm,DC=3cm,则AE=2cm.【解答】解:∵BF⊥AC于F,AD⊥BC于D,∴∠CAD+∠C=90°,∠CBF+∠C=90°,∴∠CAD=∠CBF,∵在△ACD和△BED中,,∴△ACD≌△BED,(ASA)∴DE=CD,∴AE=AD﹣DE=BD﹣CD=BC﹣CD﹣CD=2;故答案为2.16.(3分)化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=(a+1)100.【解答】解:原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98]=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97]=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96]=…=(a+1)100.故答案为:(a+1)100.三、解答题(本题共有7小题,共72分)17.(10分)完成下列运算:(1)(2﹣1)(2+1)﹣(4+1)(﹣1)(2)(2+)﹣y(+2)【解答】解:(1)原式=42﹣1﹣(42﹣4+﹣1)=42﹣1﹣42+4﹣+1=3;(2)原式=(2+)•﹣y﹣2y=2y+2y﹣y﹣2y=y.18.(10分)解下列分式方程:(1)=(2)1﹣=【解答】解:(1)化为整式方程为:+2=4解得:=2,检验:把=2代入2﹣4=0,所以原方程无解;(2)化为整式方程为:(6﹣2)﹣2=5解得:=1.5,检验=1.5是原方程的解,所以原方程的解是=1.5.19.(12分)(1)先化简,再求值:(2+y)(2﹣y)+(+y)2﹣52,其中=3,y=5.(2)先化简,再求值:(﹣),其中a=﹣.【解答】解:(1)原式=42﹣y2+2+2y+y2﹣52=2y,当=3,y=5时,原式=30;(2)原式=•=,当a=﹣时,原式=﹣1.20.(8分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE=18°,求∠C的度数.【解答】解:∵AD是BC边上的高,∠B=42°,∴∠BAD=48°,∵∠DAE=18°,∴∠BAE=∠BAD﹣∠DAE=30°,∵AE是∠BAC的平分线,∴∠BAC=2∠BAE=60°,∴∠C=180°﹣∠B﹣∠BAC=78°.21.(8分)如图,△ABC和△CDE都是等边三角形,且B,C,D三点共线,连接AD,BE 相交于点P,求证:BE=AD.【解答】证明:∵△ABC和△CDE都是等边三角形,∴CA=CB,CD=CE,∠ACB=60°,∠DCE=60°,∴∠ACE=60°,∴∠ACD=∠BCE=120°,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE.22.(12分)山地自行车越越受到大众的喜爱,某车行经销了某品牌的A、B两型车,其经销的A型车去年销售总额为5万元,今年每辆车的销售价将比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.其中A,B两种型号车的进货和销售价格如下表:(1)今年A型车每辆售价多少元?(2)该车行计划新进一批A型车和B型车共60辆(见上表),要使这批车获利不少于33000元,A型车至多进多少辆?【解答】解:(1)设今年A型车每辆售价元,则去年售价每辆为(+400)元,由题意,得:=,解得:=1600.经检验,=1600是原方程的根.答:今年A型车每辆售价1600元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,由题意,得(1600﹣1100)a+(2000﹣1400)(60﹣a)≥33000,解得:a≤30,故要使这批车获利不少于33000元,A型车至多进30辆.23.(12分)在△ABC中,AB=AC,点D在底边BC上,AE=AD,连结DE.(1)如图①,已知∠BAC=90°,∠BAD=60°,求∠CDE的度数.(2)如图①,已知∠BAC=90°,当点D在BC(点B、C除外)上运动时,试探究∠BAD与∠CDE的数量关系;(3)如图②,若∠BAC≠90°,试探究∠BAD与∠CDE的数量关系.【解答】解:(1)∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵∠BAD=60°,∴∠DAE=30°,∵AD=AE,∴∠AED=75°,∴∠CDE=∠AED=∠C=30°;(2)设∠BAD=,∴∠CAD=90°﹣,∵AE=AD,∴∠AED=45°+,∴∠CDE=,即;(3)设∠BAD=,∠C=y,∵AB=AC,∠C=y,∴∠BAC=180°﹣2y,∵∠BAD=,∴∠AED=y+,∴.即.。
2016-2017学年广东省广州市越秀区八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列式子没有意义的是()A.B. C. D.2.下列计算中,正确的是()A.÷=B.(4)2=8 C. =2 D.2×2=23.刻画一组数据波动大小的统计量是()A.平均数B.方差 C.众数 D.中位数4.在暑假到来之前,某机构向八年级学生推荐了A,B,C三条游学线路,现对全级学生喜欢哪一条游学线路作调查,以决定最终的游学线路,下面的统计量中最值得关注的是()A.方差 B.平均数C.中位数D.众数5.关于正比例函数y=﹣2x,下列结论中正确的是()A.函数图象经过点(﹣2,1) B.y随x的增大而减小C.函数图象经过第一、三象限 D.不论x取何值,总有y<06.以下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.2,3,4 B.,,C.1,,2 D.7,8,97.若一个直角三角形的一条直角边长是5cm,另一条直角边比斜边短1cm,则斜边长为()cm.A.10 B.11 C.12 D.138.如图,在菱形ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,则菱形ABCD的面积是()A.24 B.26 C.30 D.489.在下列命题中,是假命题的是()A.有一个角是直角的平行四边形是矩形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.有两组邻边相等的四边形是菱形10.已知平面上四点A(0,0),B(10,0),C(12,6),D(2,6),直线y=mx﹣3m+6将四边形ABCD分成面积相等的两部分,则m的值为()A.B.﹣1 C.2 D.二、填空题:本大题共6小题,每小题3分,满分18分.11.已知a=+2,b=﹣2,则ab= .12.一次函数y=kx+b(k≠0)中,x与y的部分对应值如下表:x ﹣2 ﹣1 0 1 2y ﹣6 ﹣4 ﹣2 0 2那么,一元一次方程kx+b=0的解是x= .13.如图是一次函数y=mx+n的图象,则关于x的不等式mx+n>2的解集是.14.一组数据:2017、2017、2017、2017、2017,它的方差是.15.考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端垂直滑下6个单位时,请问其下端离开墙角有多远?”,这个问题的答案是:其下端离开墙角个单位.16.如图所示,在Rt△ABC中,∠A=90°,DE∥BC,F,G,H,I分别是DE,BE,BC,CD 的中点,连接FG,GH,HI,IF,FH,GI.对于下列结论:①∠GFI=90°;②GH=GI;③GI=(BC﹣DE);④四边形FGHI是正方形.其中正确的是(请写出所有正确结论的序号).三、解答题:本大题共9小题,满分72分.解答须写出文字说明、推理过程和演算步骤.17.计算:( +﹣)×.18.如图,在△ABC中,AD⊥BC,AB=5,BD=4,CD=.(1)求AD的长.(2)求△ABC的周长.19.如图在平行四边形ABCD中,AC交BD于点O,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:四边形AECF为平行四边形.20.下表是某校八年级(1)班43名学生右眼视力的检查结果.视力 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0人数 1 2 5 4 3 5 1 1 5 10 6(1)该班学生右眼视力的平均数是(结果保留1位小数).(2)该班学生右眼视力的中位数是.(3)该班小鸣同学右眼视力是4.5,能不能说小鸣同学的右眼视力处于全班同学的中上水平?试说明理由.21.如图,正方形ABCD的对角线相交于点O,BC=6,延长BC至点E,使得CE=8,点F是DE的中点,连接CF、OF.(1)求OF的长.(2)求CF的长.22.如图,在平面直角坐标系中,直线y=kx+b经过点A(﹣30,0)和点B(0,15),直线y=x+5与直线y=kx+b相交于点P,与y轴交于点C.(1)求直线y=kx+b的解析式.(2)求△PBC的面积.23.2016年下半年开始,不同品牌的共享单车出现在城市的大街小巷.现已知A品牌共享单车计费方式为:初始骑行单价为1元/半小时,不足半小时按半小时计算.内设邀请机制,每邀请一位好友注册认证并充值押金成功,双方骑行单价均降价0.1元/半小时,骑行单价最低可降至0.1元/半小时(比如,某用户邀请了3位好友,则骑行单价为0.7元/半小时).B 品牌共享单车计费方式为:0.5元/半小时,不足半小时按半小时计算.(1)某用户准备选择A品牌共享单车使用,设该用户邀请好友x名(x为整数,x≥0),该用户的骑行单价为y元/半小时.请写出y关于x的函数解析式.(2)若有A,B两种品牌的共享单车各一辆供某用户一人选择使用,请你根据该用户已邀请好友的人数,给出经济实惠的选择建议.24.下面我们做一次折叠活动:第一步,在一张宽为2的矩形纸片的一端,利用图(1)的方法折出一个正方形,然后把纸片展平,折痕为MC;第二步,如图(2),把这个正方形折成两个相等的矩形,再把纸片展平,折痕为FA;第三步,折出内侧矩形FACB的对角线AB,并将AB折到图(3)中所示的AD处,折痕为AQ.根据以上的操作过程,完成下列问题:(1)求CD的长.(2)请判断四边形ABQD的形状,并说明你的理由.25.如图,正方形ABCD中,AB=4,P是CD边上的动点(P点不与C、D重合),过点P作直线与BC的延长线交于点E,与AD交于点F,且CP=CE,连接DE、BP、BF,设CP═x,△PBF 的面积为S1,△PDE的面积为S2.(1)求证:BP⊥DE.(2)求S1﹣S2关于x的函数解析式,并写出x的取值范围.(3)分别求当∠PBF=30°和∠PBF=45°时,S1﹣S2的值.2016-2017学年广东省广州市越秀区八年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列式子没有意义的是()A.B. C. D.【考点】72:二次根式有意义的条件.【分析】根据二次根式中的被开方数是非负数进行分析即可.【解答】解:A、有意义,故此选项不合题意;B、没有意义,故此选项符合题意;C、有意义,故此选项不合题意;D、有意义,故此选项不合题意;故选:B.2.下列计算中,正确的是()A.÷=B.(4)2=8 C. =2 D.2×2=2【考点】75:二次根式的乘除法;73:二次根式的性质与化简.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式===3,不符合题意;B、原式=32,不符合题意;C、原式=|﹣2|=2,符合题意;D、原式=4,不符合题意;故选C.3.刻画一组数据波动大小的统计量是()A.平均数B.方差 C.众数 D.中位数【考点】WA:统计量的选择.【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.【解答】解:由于方差反映数据的波动情况,衡量一组数据波动大小的统计量是方差.故选B.4.在暑假到来之前,某机构向八年级学生推荐了A,B,C三条游学线路,现对全级学生喜欢哪一条游学线路作调查,以决定最终的游学线路,下面的统计量中最值得关注的是()A.方差 B.平均数C.中位数D.众数【考点】WA:统计量的选择.【分析】全级学生喜欢哪一条游学线路最值得关注的应该是喜欢哪条线路的人数最多,即众数.【解答】解:由于众数是数据中出现次数最多的数,故全级学生喜欢的游学线路最值得关注的应该是统计调查数据的众数.故选:D.5.关于正比例函数y=﹣2x,下列结论中正确的是()A.函数图象经过点(﹣2,1) B.y随x的增大而减小C.函数图象经过第一、三象限 D.不论x取何值,总有y<0【考点】F6:正比例函数的性质.【分析】根据正比例函数图象上的坐标特征,正比例函数图象的性质对各选项分析判断后利用排除法求解.【解答】解:A、当x=﹣2时,y=﹣2×(﹣2)=4,即图象经过点(﹣2,4),不经过点(﹣2,1),故本选项错误;B、由于k=﹣2<0,所以y随x的增大而减小,故本选项正确;C、由于k=﹣2<0,所以图象经过二、四象限,故本选项错误;D、∵x>0时,y<0,x<0时,y>0,∴不论x为何值,总有y<0错误,故本选项错误.故选:B.6.以下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.2,3,4 B.,,C.1,,2 D.7,8,9【考点】KS:勾股定理的逆定理.【分析】欲判断是否是直角三角形,则需满足较小两边平方的和等于最大边的平方.【解答】解:A、22+32≠42,故不是直角三角形;B、()2+()2≠()2,故不是直角三角形;C、12+()2=22,故是直角三角形;D、72+82≠92,故不是直角三角形;故选C.7.若一个直角三角形的一条直角边长是5cm,另一条直角边比斜边短1cm,则斜边长为()cm.A.10 B.11 C.12 D.13【考点】KQ:勾股定理.【分析】设斜边长为xcm,根据勾股定理列出方程,解方程即可.【解答】解:设斜边长为xcm,则另一条直角边为(x﹣1)cm,由勾股定理得,x2=52+(x﹣1)2,解得,x=13,则斜边长为13cm,故选:D.8.如图,在菱形ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,则菱形ABCD的面积是()A.24 B.26 C.30 D.48【考点】L8:菱形的性质.【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出OB,再根据菱形的对角线互相平分求出AC、BD,然后利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.【解答】解:∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB=,=,=4,∴BD=2OB=8,∴S菱形ABCD=×AC×BD=×6×8=24.故选A.9.在下列命题中,是假命题的是()A.有一个角是直角的平行四边形是矩形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.有两组邻边相等的四边形是菱形【考点】O1:命题与定理.【分析】利用矩形、正方形、平行四边形、菱形的判定等知识分别判断后即可确定正确的选项.【解答】解:A、有一个角是直角的平行四边形是矩形,正确;B、一组邻边相等的矩形是正方形,正确;C、一组对边平行且相等的四边形是平行四边形,正确;D、有两组邻边相等且平行的四边形是菱形,错误;故选D.10.已知平面上四点A(0,0),B(10,0),C(12,6),D(2,6),直线y=mx﹣3m+6将四边形ABCD分成面积相等的两部分,则m的值为()A.B.﹣1 C.2 D.【考点】FI:一次函数综合题.【分析】根据点的坐标先判定出四边形ABCD是平行四边形,再根据过平行四边形中心的直线把平行四边形分成面积相等的两部分,求出中心点的坐标,然后代入直线解析式进行计算即可求解.【解答】解:如图,∵A(0,0),B(10,0),C(12,6),D(2,6),∴AB=10﹣0=10,CD=12﹣2=10,又点C、D的纵坐标相同,∴AB∥CD且AB=CD,∴四边形ABCD是平行四边形,∵12÷2=6,6÷2=3,∴对角线交点P的坐标是(6,3),∵直线y=mx﹣3m+6将四边形ABCD分成面积相等的两部分,∴直线y=mx﹣3m+6经过点P,∴6m﹣3m+6=3,解得m=﹣1.故选B.二、填空题:本大题共6小题,每小题3分,满分18分.11.已知a=+2,b=﹣2,则ab= 1 .【考点】76:分母有理化.【分析】将a与b的值代入原式计算即可得到结果.【解答】解:∵a=+2,b=﹣2,∴ab=(+2)(﹣2)=5﹣4=1,故答案为:112.一次函数y=kx+b(k≠0)中,x与y的部分对应值如下表:x ﹣2 ﹣1 0 1 2y ﹣6 ﹣4 ﹣2 0 2那么,一元一次方程kx+b=0的解是x= 1 .【考点】FC:一次函数与一元一次方程.【分析】此题实际上是求当y=0时,所对应的x的值.根据表格求解即可.【解答】解:根据上表中的数据值,当y=0时,x=1,即一元一次方程kx+b=0的解是x=1.故答案是:1.13.如图是一次函数y=mx+n的图象,则关于x的不等式mx+n>2的解集是x>0 .【考点】FD:一次函数与一元一次不等式.【分析】根据一次函数y=mx+n的图象经过点(0,2)以及函数的增减性,即可求出关于x 的不等式mx+n>2的解集.【解答】解:由题意,可知一次函数y=mx+n的图象经过点(0,2),且y随x的增大而增大,所以关于x的不等式mx+n>2的解集是x>0.故答案为x>0.14.一组数据:2017、2017、2017、2017、2017,它的方差是0 .【考点】W7:方差.【分析】根据方差的意义解答.【解答】解:该组数据一样,没有波动,方差为0,故答案为0.15.考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端垂直滑下6个单位时,请问其下端离开墙角有多远?”,这个问题的答案是:其下端离开墙角18 个单位.【考点】KU:勾股定理的应用.【分析】如图,根据题意PC=AC=30,AC=24,再利用勾股定理求出CB的值即可求出其下端离开墙角有多远.【解答】解:∵PC=AB=30,PA=6,∴AC=24,∴BC===18,∴下端离开墙角18个单位.故答案为18.16.如图所示,在Rt△ABC中,∠A=90°,DE∥BC,F,G,H,I分别是DE,BE,BC,CD 的中点,连接FG,GH,HI,IF,FH,GI.对于下列结论:①∠GFI=90°;②GH=GI;③GI=(BC﹣DE);④四边形FGHI是正方形.其中正确的是①③(请写出所有正确结论的序号).【考点】LN:中点四边形.【分析】①正确.延长IF交AB于K,利用两直线平行同位角相等即可解决问题;②④错误.只要证明四边形FGHI是矩形,即可判断;③正确.延长EI交BC于N,则△DEI≌△CNI,推出DE=CN,EJ=JN,由EG=GB,EI=IN,推出GI=BHN=(BC﹣DE),故③正确;【解答】解:延长IF交AB于K,∵DF=EF,BG=GE,∴FG=BD,GF∥AB,同理IF∥AC,HI=BD,HI∥BD,∴∠BKI=∠A=90°,∴∠GFI=∠BKI=90°,∴GF⊥FI,故①正确,∴FG=HI,FG∥HI,∴四边形FGHI是平行四边形,∵∠GFI=90°,∴四边形FGHI是矩形,故②④错误,延长EI交BC于N,则△DEI≌△CNI,∴DE=CN,EJ=JN,∵EG=GB,EI=IN,∴GI=BHN=(BC﹣DE),故③正确,故答案为①③.三、解答题:本大题共9小题,满分72分.解答须写出文字说明、推理过程和演算步骤.17.计算:( +﹣)×.【考点】79:二次根式的混合运算.【分析】先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的乘法运算.【解答】解:原式=(6+﹣﹣3)×=×=7.18.如图,在△ABC中,AD⊥BC,AB=5,BD=4,CD=.(1)求AD的长.(2)求△ABC的周长.【考点】KQ:勾股定理.【分析】(1)根据勾股定理求出AD;(2)根据勾股定理求出AC,计算即可.【解答】解:(1)在Rt△ABD中,AD==3;(2)在Rt△ACD中,AC==2,则△ABC的周长=AB+AC+BC=5+4++2=9+3.19.如图在平行四边形ABCD中,AC交BD于点O,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:四边形AECF为平行四边形.【考点】L7:平行四边形的判定与性质.【分析】由四边形ABCD是平行四边形,可得AB=CD,AB∥CD,又由AE⊥BD,CF⊥BD,即可得AE∥CF,∠AEB=∠CFD=90°,然后利用AAS证得△AEB≌△CFD,即可得AE=CF,由有一组对边相等且平行的四边形是平行四边形,即可证得四边形AECF是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴AE∥CF,∠AEB=∠CFD=90°,在△AEB和△CFD中,∵,∴△AEB≌△CFD(AAS),∴AE=CF,∴四边形AECF是平行四边形.20.下表是某校八年级(1)班43名学生右眼视力的检查结果.视力 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0人数 1 2 5 4 3 5 1 1 5 10 6(1)该班学生右眼视力的平均数是 4.6 (结果保留1位小数).(2)该班学生右眼视力的中位数是 4.7 .(3)该班小鸣同学右眼视力是4.5,能不能说小鸣同学的右眼视力处于全班同学的中上水平?试说明理由.【考点】W4:中位数;W2:加权平均数.【分析】(1)根据加权平均数的定义求解可得;(2)由中位数的定义知中位数为第22个数据,据此可得;(3)根据小鸣同学右眼视力是4.5,小于中位数4.7,解答可得.【解答】解:(1)该班学生右眼视力的平均数是×(4.0+4.1×2+4.2×5+4.3×4+4.4×3+4.5×5+4.6+4.7+4.8×5+4.9×10+5.0×6)≈4.6,故答案为:4.6;(2)由于共有43个数据,其中位数为第22个数据,即中位数为4.7,故答案为:4.7;(3)不能,∵小鸣同学右眼视力是4.5,小于中位数4.7,∴不能说小鸣同学的右眼视力处于全班同学的中上水平.21.如图,正方形ABCD的对角线相交于点O,BC=6,延长BC至点E,使得CE=8,点F是DE的中点,连接CF、OF.(1)求OF的长.(2)求CF的长.【考点】LE:正方形的性质.【分析】(1)只要证明OF是△DBE的中位线即可解决问题;(2)在Rt△DCE中,利用勾股定理求出DE,再利用斜边中线的性质即可解决问题;【解答】解:(1)∵四边形ABCD是正方形,∴BC=CD=6,∠BCD=∠ECD=90°,OB=OD,∵CE=8,∴BE=14,∵OB=OD,DF=FE,∴OF=BE=7.(2)在Rt△DCE中,DE===10,∵DF=FE,∴CF=DE=5.22.如图,在平面直角坐标系中,直线y=kx+b经过点A(﹣30,0)和点B(0,15),直线y=x+5与直线y=kx+b相交于点P,与y轴交于点C.(1)求直线y=kx+b的解析式.(2)求△PBC的面积.【考点】FF:两条直线相交或平行问题.【分析】(1)根据点A、B的坐标,利用待定系数法求出直线AB的解析式即可;(2)联立两直线解析式成方程组,通过解方程组可得出点P的坐标,由一次函数图象上点的坐标特征可求出点C的坐标,进而可得出线段BC的长度,再利用三角形的面积公式,即可求出△PBC的面积.【解答】解:(1)将点A(﹣30,0)、B(0,15)代入y=kx+b,,解得:,∴直线y=kx+b的解析式为y=x+15.(2)联立两直线解析式成方程组,,解得:,∴点P的坐标为(20,25).当x=0时,y=x+5=5,∴点C的坐标为(0,5),∴BC=15﹣5=10,∴S△PBC=BC•x P=×10×20=100.23.2016年下半年开始,不同品牌的共享单车出现在城市的大街小巷.现已知A品牌共享单车计费方式为:初始骑行单价为1元/半小时,不足半小时按半小时计算.内设邀请机制,每邀请一位好友注册认证并充值押金成功,双方骑行单价均降价0.1元/半小时,骑行单价最低可降至0.1元/半小时(比如,某用户邀请了3位好友,则骑行单价为0.7元/半小时).B 品牌共享单车计费方式为:0.5元/半小时,不足半小时按半小时计算.(1)某用户准备选择A品牌共享单车使用,设该用户邀请好友x名(x为整数,x≥0),该用户的骑行单价为y元/半小时.请写出y关于x的函数解析式.(2)若有A,B两种品牌的共享单车各一辆供某用户一人选择使用,请你根据该用户已邀请好友的人数,给出经济实惠的选择建议.【考点】FH:一次函数的应用;9A:二元一次方程组的应用.【分析】(1)根据题意可以分段求出y关于x的函数解析式;(2)根据题意可以分段写出相应的不等式,从而可以解答本题.【解答】解:(1)由题意可得,当0≤x≤9且x为正整数时,y=1﹣0.1x,当x≥10且x为正整数时,y=0.1,即y关于x的函数解析式是y=;(2)由题意可得,当0≤x≤9时,1﹣0.1x>0.5,可得,x<5,则当x≤x<5且x为正整数时,选择B品牌的共享单车;当0≤x≤9时,1﹣0.1x=0.5,得x=5,则x=5时,选择A或B品牌的共享单车消费一样;当0≤x≤9时,1﹣0.1x<0.5,得x>5,则x>5且x为正整数,选择A品牌的共享单车;当x≥10且x为正整数时,0.1<0.5,故选项A品牌的共享单车.24.下面我们做一次折叠活动:第一步,在一张宽为2的矩形纸片的一端,利用图(1)的方法折出一个正方形,然后把纸片展平,折痕为MC;第二步,如图(2),把这个正方形折成两个相等的矩形,再把纸片展平,折痕为FA;第三步,折出内侧矩形FACB的对角线AB,并将AB折到图(3)中所示的AD处,折痕为AQ.根据以上的操作过程,完成下列问题:(1)求CD的长.(2)请判断四边形ABQD的形状,并说明你的理由.【考点】LO:四边形综合题.【分析】(1)先证明四边形MNCB为正方形,再利用折叠得:CA=1,AB=AD,所以CD=AD﹣AC,可得结论;(2)根据平行线的性质得折叠得:∠BAQ=∠BQA,由等角对等边得:AB=BQ,由一组对边平行且相等可得:四边形ABQD是平行四边形,再由AB=AD,可得四边形ABQD是菱形.【解答】解:(1)∵∠M=∠N=∠MBC=90°,∴四边形MNCB是矩形,∵MB=MN=2,∴矩形MNCB是正方形,∴NC=CB=2,由折叠得:AN=AC=NC=1,Rt△ACB中,由勾股定理得:AB==,∴AD=AB=,∴CD=AD﹣AC=﹣1;(2)四边形ABQD是菱形,理由是:由折叠得:AB=AD,∠BAQ=∠QAD,∵BQ∥AD,∴∠BQA=∠QAD,∴∠BAQ=∠BQA,∴AB=BQ,∴BQ=AD,BQ∥AD,∴四边形ABQD是平行四边形,∵AB=AD,∴四边形ABQD是菱形.25.如图,正方形ABCD中,AB=4,P是CD边上的动点(P点不与C、D重合),过点P作直线与BC的延长线交于点E,与AD交于点F,且CP=CE,连接DE、BP、BF,设CP═x,△PBF 的面积为S1,△PDE的面积为S2.(1)求证:BP⊥DE.(2)求S1﹣S2关于x的函数解析式,并写出x的取值范围.(3)分别求当∠PBF=30°和∠PBF=45°时,S1﹣S2的值.【考点】LO:四边形综合题.【分析】(1)如图1中,延长BP交DE于M.只要证明△BCP≌△DCE,推出∠BCP=∠CDE,由∠CBP+∠CPB=90°,∠CPB=∠DPM,即可推出∠CDE+∠DPM=90°,延长即可解决问题;(2)根据S1﹣S2=S△PBE﹣S△PDE计算即可解决问题;(3)分两种情形分别求出PC的长,利用(2)中结论计算即可;【解答】解:(1)如图1中,延长BP交DE于M.∵四边形ABCD是正方形,∴CB=CD,∠BCP=∠DCE=90°,∵CP=CE,∴△BCP≌△DCE,∴∠BCP=∠CDE,∵∠CBP+∠CPB=90°,∠CPB=∠DPM,∴∠CDE+∠DPM=90°,∴∠DMP=90°,∴BP⊥DE.(2)由题意S1﹣S2=(4+x)•x﹣•(4﹣x)•x=x2(0<x<4).(3)①如图2中,当∠PBF=30°时,∵∠CPE=∠CEP=∠DPF=45°,∠FDP=90°,∴∠PFD=∠DPF=45°,∴DF=DP,∵AD=CD,∴AF=PC,∵AB=BC,∠A=∠BCP=90°,∴△BAF≌△BCP,∴∠ABF=∠CBP=30°,∴x=PC=BC•tan30°=,∴S1﹣S2=x2=.②如图3中,当∠PBF=45°时,在CB上截取CN=CP,理解PN.由①可知△ABF≌△BCP,∴∠ABF=∠CBP,∵∠PBF=45°,∴∠CBP=22.5°,∵∠CNP=∠NBP+∠NPB=45°,∴∠NBP=∠NPB=22.5°,∴BN=PN=x,∴x+x=4,∴x=4﹣4,∴S1﹣S2=(4﹣4)2=48﹣32.。
2016-2017学年广东省广州市越秀区八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列式子没有意义的是()A.B.C.D.2.(3分)下列计算中,正确的是()A.÷=B.(4)2=8C.=2D.2×2=2 3.(3分)刻画一组数据波动大小的统计量是()A.平均数B.方差C.众数D.中位数4.(3分)在暑假到来之前,某机构向八年级学生推荐了A,B,C三条游学线路,现对全级学生喜欢哪一条游学线路作调查,以决定最终的游学线路,下面的统计量中最值得关注的是()A.方差B.平均数C.中位数D.众数5.(3分)关于正比例函数y=﹣2x,下列结论中正确的是()A.函数图象经过点(﹣2,1)B.y随x的增大而减小C.函数图象经过第一、三象限D.不论x取何值,总有y<06.(3分)以下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.2,3,4B.,,C.1,,2D.7,8,97.(3分)若一个直角三角形的一条直角边长是5cm,另一条直角边比斜边短1cm,则斜边长为()cm.A.10B.11C.12D.138.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,则菱形ABCD的面积是()A.24B.26C.30D.489.(3分)在下列命题中,是假命题的是()A.有一个角是直角的平行四边形是矩形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.有两组邻边相等的四边形是菱形10.(3分)已知平面上四点A(0,0),B(10,0),C(12,6),D(2,6),直线y=mx ﹣3m+6将四边形ABCD分成面积相等的两部分,则m的值为()A.B.﹣1C.2D.二、填空题:本大题共6小题,每小题3分,满分18分.11.(3分)已知a=+2,b=﹣2,则ab=.12.(3分)一次函数y=kx+b(k≠0)中,x与y的部分对应值如下表:那么,一元一次方程kx+b=0的解是x=.13.(3分)如图是一次函数y=mx+n的图象,则关于x的不等式mx+n>2的解集是.14.(3分)一组数据:2017、2017、2017、2017、2017,它的方差是.15.(3分)考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端垂直滑下6个单位时,请问其下端离开墙角有多远?”,这个问题的答案是:其下端离开墙角个单位.16.(3分)如图所示,在Rt△ABC中,∠A=90°,DE∥BC,F,G,H,I分别是DE,BE,BC,CD的中点,连接FG,GH,HI,IF,FH,GI.对于下列结论:①∠GFI=90°;②GH=GI;③GI=(BC﹣DE);④四边形FGHI是正方形.其中正确的是(请写出所有正确结论的序号).三、解答题:本大题共9小题,满分72分.解答须写出文字说明、推理过程和演算步骤.17.(6分)计算:(+﹣)×.18.(8分)如图,在△ABC中,AD⊥BC,AB=5,BD=4,CD=.(1)求AD的长.(2)求△ABC的周长.19.(8分)如图在平行四边形ABCD中,AC交BD于点O,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:四边形AECF为平行四边形.20.(8分)下表是某校八年级(1)班43名学生右眼视力的检查结果.(1)该班学生右眼视力的平均数是(结果保留1位小数).(2)该班学生右眼视力的中位数是.(3)该班小鸣同学右眼视力是4.5,能不能说小鸣同学的右眼视力处于全班同学的中上水平?试说明理由.21.(8分)如图,正方形ABCD的对角线相交于点O,BC=6,延长BC至点E,使得CE =8,点F是DE的中点,连接CF、OF.(1)求OF的长.(2)求CF的长.22.(8分)如图,在平面直角坐标系中,直线y=kx+b经过点A(﹣30,0)和点B(0,15),直线y=x+5与直线y=kx+b相交于点P,与y轴交于点C.(1)求直线y=kx+b的解析式.(2)求△PBC的面积.23.(8分)2016年下半年开始,不同品牌的共享单车出现在城市的大街小巷.现已知A品牌共享单车计费方式为:初始骑行单价为1元/半小时,不足半小时按半小时计算.内设邀请机制,每邀请一位好友注册认证并充值押金成功,双方骑行单价均降价0.1元/半小时,骑行单价最低可降至0.1元/半小时(比如,某用户邀请了3位好友,则骑行单价为0.7元/半小时).B品牌共享单车计费方式为:0.5元/半小时,不足半小时按半小时计算.(1)某用户准备选择A品牌共享单车使用,设该用户邀请好友x名(x为整数,x≥0),该用户的骑行单价为y元/半小时.请写出y关于x的函数解析式.(2)若有A,B两种品牌的共享单车各一辆供某用户一人选择使用,请你根据该用户已邀请好友的人数,给出经济实惠的选择建议.24.(8分)下面我们做一次折叠活动:第一步,在一张宽为2的矩形纸片的一端,利用图(1)的方法折出一个正方形,然后把纸片展平,折痕为MC;第二步,如图(2),把这个正方形折成两个相等的矩形,再把纸片展平,折痕为F A;第三步,折出内侧矩形F ACB的对角线AB,并将AB折到图(3)中所示的AD处,折痕为AQ.根据以上的操作过程,完成下列问题:(1)求CD的长.(2)请判断四边形ABQD的形状,并说明你的理由.25.(10分)如图,正方形ABCD中,AB=4,P是CD边上的动点(P点不与C、D重合),过点P作直线与BC的延长线交于点E,与AD交于点F,且CP=CE,连接DE、BP、BF,设CP═x,△PBF的面积为S1,△PDE的面积为S2.(1)求证:BP⊥DE.(2)求S1﹣S2关于x的函数解析式,并写出x的取值范围.(3)分别求当∠PBF=30°和∠PBF=45°时,S1﹣S2的值.2016-2017学年广东省广州市越秀区八年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.【解答】解:A、有意义,故此选项不合题意;B、没有意义,故此选项符合题意;C、有意义,故此选项不合题意;D、有意义,故此选项不合题意;故选:B.2.【解答】解:A、原式===3,不符合题意;B、原式=32,不符合题意;C、原式=|﹣2|=2,符合题意;D、原式=4,不符合题意;故选:C.3.【解答】解:由于方差反映数据的波动情况,衡量一组数据波动大小的统计量是方差.故选:B.4.【解答】解:由于众数是数据中出现次数最多的数,故全级学生喜欢的游学线路最值得关注的应该是统计调查数据的众数.故选:D.5.【解答】解:A、当x=﹣2时,y=﹣2×(﹣2)=4,即图象经过点(﹣2,4),不经过点(﹣2,1),故本选项错误;B、由于k=﹣2<0,所以y随x的增大而减小,故本选项正确;C、由于k=﹣2<0,所以图象经过二、四象限,故本选项错误;D、∵x>0时,y<0,x<0时,y>0,∴不论x为何值,总有y<0错误,故本选项错误.故选:B.6.【解答】解:A、22+32≠42,故不是直角三角形;B、()2+()2≠()2,故不是直角三角形;C、12+()2=22,故是直角三角形;D、72+82≠92,故不是直角三角形;故选:C.7.【解答】解:设斜边长为xcm,则另一条直角边为(x﹣1)cm,由勾股定理得,x2=52+(x﹣1)2,解得,x=13,则斜边长为13cm,故选:D.8.【解答】解:∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB=,=,=4,∴BD=2OB=8,∴S菱形ABCD=×AC×BD=×6×8=24.故选:A.9.【解答】解:A、有一个角是直角的平行四边形是矩形,正确;B、一组邻边相等的矩形是正方形,正确;C、一组对边平行且相等的四边形是平行四边形,正确;D、有两组邻边相等且平行的四边形是菱形,错误;故选:D.10.【解答】解:如图,∵A(0,0),B(10,0),C(12,6),D(2,6),∴AB=10﹣0=10,CD=12﹣2=10,又点C、D的纵坐标相同,∴AB∥CD且AB=CD,∴四边形ABCD是平行四边形,∵12÷2=6,6÷2=3,∴对角线交点P的坐标是(6,3),∵直线y=mx﹣3m+6将四边形ABCD分成面积相等的两部分,∴直线y=mx﹣3m+6经过点P,∴6m﹣3m+6=3,解得m=﹣1.故选:B.二、填空题:本大题共6小题,每小题3分,满分18分.11.【解答】解:∵a=+2,b=﹣2,∴ab=(+2)(﹣2)=5﹣4=1,故答案为:112.【解答】解:根据上表中的数据值,当y=0时,x=1,即一元一次方程kx+b=0的解是x=1.故答案是:1.13.【解答】解:由题意,可知一次函数y=mx+n的图象经过点(0,2),且y随x的增大而增大,所以关于x的不等式mx+n>2的解集是x>0.故答案为x>0.14.【解答】解:该组数据一样,没有波动,方差为0,故答案为0.15.【解答】解:∵PC=AB=30,P A=6,∴AC=24,∴BC===18,∴下端离开墙角18个单位.故答案为18.16.【解答】解:延长IF交AB于K,∵DF=EF,BG=GE,∴FG=BD,GF∥AB,同理IF∥AC,HI=BD,HI∥BD,∴∠BKI=∠A=90°,∴∠GFI=∠BKI=90°,∴GF⊥FI,故①正确,∴FG=HI,FG∥HI,∴四边形FGHI是平行四边形,∵∠GFI=90°,∴四边形FGHI是矩形,故②④错误,延长EI交BC于N,则△DEI≌△CNI,∴DE=CN,EJ=JN,∵EG=GB,EI=IN,∴GI=BHN=(BC﹣DE),故③正确,故答案为①③.三、解答题:本大题共9小题,满分72分.解答须写出文字说明、推理过程和演算步骤.17.【解答】解:原式=(6+﹣﹣3)×=×=7.18.【解答】解:(1)在Rt△ABD中,AD==3;(2)在Rt△ACD中,AC==2,则△ABC的周长=AB+AC+BC=5+4++2=9+3.19.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴AE∥CF,∠AEB=∠CFD=90°,在△AEB和△CFD中,∵,∴△AEB≌△CFD(AAS),∴AE=CF,∴四边形AECF是平行四边形.20.【解答】解:(1)该班学生右眼视力的平均数是×(4.0+4.1×2+4.2×5+4.3×4+4.4×3+4.5×5+4.6+4.7+4.8×5+4.9×10+5.0×6)≈4.6,故答案为:4.6;(2)由于共有43个数据,其中位数为第22个数据,即中位数为4.7,故答案为:4.7;(3)不能,∵小鸣同学右眼视力是4.5,小于中位数4.7,∴不能说小鸣同学的右眼视力处于全班同学的中上水平.21.【解答】解:(1)∵四边形ABCD是正方形,∴BC=CD=6,∠BCD=∠ECD=90°,OB=OD,∵CE=8,∴BE=14,∵OB=OD,DF=FE,∴OF=BE=7.(2)在Rt△DCE中,DE===10,∵DF=FE,∴CF=DE=5.22.【解答】解:(1)将点A(﹣30,0)、B(0,15)代入y=kx+b,,解得:,∴直线y=kx+b的解析式为y=x+15.(2)联立两直线解析式成方程组,,解得:,∴点P的坐标为(20,25).当x=0时,y=x+5=5,∴点C的坐标为(0,5),∴BC=15﹣5=10,∴S△PBC=BC•x P=×10×20=100.23.【解答】解:(1)由题意可得,当0≤x≤9且x为正整数时,y=1﹣0.1x,当x≥10且x为正整数时,y=0.1,即y关于x的函数解析式是y=;(2)由题意可得,当0≤x≤9时,1﹣0.1x>0.5,可得,x<5,则当x≤x<5且x为正整数时,选择B品牌的共享单车;当0≤x≤9时,1﹣0.1x=0.5,得x=5,则x=5时,选择A或B品牌的共享单车消费一样;当0≤x≤9时,1﹣0.1x<0.5,得x>5,则x>5且x为正整数,选择A品牌的共享单车;当x≥10且x为正整数时,0.1<0.5,故选项A品牌的共享单车.24.【解答】解:(1)∵∠M=∠N=∠MBC=90°,∴四边形MNCB是矩形,∵MB=MN=2,∴矩形MNCB是正方形,∴NC=CB=2,由折叠得:AN=AC=NC=1,Rt△ACB中,由勾股定理得:AB==,∴AD=AB=,∴CD=AD﹣AC=﹣1;(2)四边形ABQD是菱形,理由是:由折叠得:AB=AD,∠BAQ=∠QAD,∵BQ∥AD,∴∠BQA=∠QAD,∴∠BAQ=∠BQA,∴AB=BQ,∴BQ=AD,BQ∥AD,∴四边形ABQD是平行四边形,∵AB=AD,∴四边形ABQD是菱形.25.【解答】解:(1)如图1中,延长BP交DE于M.∵四边形ABCD是正方形,∴CB=CD,∠BCP=∠DCE=90°,∵CP=CE,∴△BCP≌△DCE,∴∠BCP=∠CDE,∵∠CBP+∠CPB=90°,∠CPB=∠DPM,∴∠CDE+∠DPM=90°,∴∠DMP=90°,∴BP⊥DE.(2)由题意S1﹣S2=[16﹣2x﹣2x﹣(4﹣x)2]﹣•(4﹣x)•x=8﹣2x(0<x<4).(3)①如图2中,当∠PBF=30°时,∵∠CPE=∠CEP=∠DPF=45°,∠FDP=90°,∴∠PFD=∠DPF=45°,∴DF=DP,∵AD=CD,∴AF=PC,∵AB=BC,∠A=∠BCP=90°,∴△BAF≌△BCP,∴∠ABF=∠CBP=30°,∴x=PC=BC•tan30°=,∴S1﹣S2=8﹣2x=8﹣.②如图3中,当∠PBF=45°时,在CB上截取CN=CP,理解PN.由①可知△ABF≌△BCP,∴∠ABF=∠CBP,∵∠PBF=45°,∴∠CBP=22.5°,∵∠CNP=∠NBP+∠NPB=45°,∴∠NBP=∠NPB=22.5°,∴BN=PN=x,∴x+x=4,∴x=4﹣4,∴S1﹣S2=8﹣2x=16﹣8.。
广东省广州市越秀区2016-2017学年八年级下册数学期末考试试卷(解析版)一、选择题1.下列式子没有意义的是()A. B.C.D.2.下列计算中,正确的是()A.÷ =B.(4 )2=8 C.=2 D. 2 ×2 =23.刻画一组数据波动大小的统计量是()A.平均数B.方差 C.众数 D.中位数4.在暑假到来之前,某机构向八年级学生推荐了A,B,C三条游学线路,现对全级学生喜欢哪一条游学线路作调查,以决定最终的游学线路,下面的统计量中最值得关注的是()A.方差B.平均数 C.中位数 D.众数5.关于正比例函数y=﹣2x,下列结论中正确的是()A.函数图象经过点(﹣2,1) B.y随x的增大而减小C.函数图象经过第一、三象限 D.不论x取何值,总有y <06.以下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.2,3,4B.,,C.1,,2 D.7,8,97.若一个直角三角形的一条直角边长是5cm,另一条直角边比斜边短1cm,则斜边长为()cm.A.10B.11 C.12 D.13 8.如图,在菱形ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,则菱形ABCD的面积是()A.24B.26 C.30 D.489.在下列命题中,是假命题的是()A.有一个角是直角的平行四边形是矩形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.有两组邻边相等的四边形是菱形10.已知平面上四点A(0,0),B(10,0),C(12,6),D(2,6),直线y=mx﹣3m+6将四边形ABCD 分成面积相等的两部分,则m的值为()A. B.﹣1 C.2D.二、填空题11.已知a= +2,b= ﹣2,则ab=________.12.一次函数y=kx+b(k≠0)中,x与y的部分对应值如下表:那么,一元一次方程kx+b=0的解是x=________.13.如图是一次函数y=mx+n的图象,则关于x的不等式mx+n>2的解集是________.14.一组数据:2017、2017、2017、2017、2017,它的方差是________.15.考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端垂直滑下6个单位时,请问其下端离开墙角有多远?”,这个问题的答案是:其下端离开墙角________个单位.16.如图所示,在Rt△ABC中,∠A=90°,DE∥BC,F,G,H,I分别是DE,BE,BC,CD的中点,连接FG,GH,HI,IF,FH,GI.对于下列结论:①∠GFI=90°;②GH=GI;③GI= (BC﹣DE);④四边形FGHI是正方形.其中正确的是________(请写出所有正确结论的序号).三、解答题17.计算:(+ ﹣)× .18.如图,在△ABC中,AD⊥BC,AB=5,BD=4,CD= .(1)求AD的长.(2)求△ABC的周长.19.如图在平行四边形ABCD中,AC交BD于点O,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:四边形AECF 为平行四边形.20.下表是某校八年级(1)班43名学生右眼视力的检查结果.(1)该班学生右眼视力的平均数是________(结果保留1位小数).(2)该班学生右眼视力的中位数是________.(3)该班小鸣同学右眼视力是4.5,能不能说小鸣同学的右眼视力处于全班同学的中上水平?试说明理由.21.如图,正方形ABCD的对角线相交于点O,BC=6,延长BC至点E,使得CE=8,点F是DE的中点,连接CF、OF.(1)求OF的长.(2)求CF的长.22.如图,在平面直角坐标系中,直线y=kx+b经过点A(﹣30,0)和点B(0,15),直线y=x+5与直线y=kx+b相交于点P,与y轴交于点C.(1)求直线y=kx+b的解析式.(2)求△PBC的面积.23.2016年下半年开始,不同品牌的共享单车出现在城市的大街小巷.现已知A品牌共享单车计费方式为:初始骑行单价为1元/半小时,不足半小时按半小时计算.内设邀请机制,每邀请一位好友注册认证并充值押金成功,双方骑行单价均降价0.1元/半小时,骑行单价最低可降至0.1元/半小时(比如,某用户邀请了3位好友,则骑行单价为0.7元/半小时).B品牌共享单车计费方式为:0.5元/半小时,不足半小时按半小时计算.(1)某用户准备选择A品牌共享单车使用,设该用户邀请好友x名(x为整数,x≥0),该用户的骑行单价为y元/半小时.请写出y关于x的函数解析式.(2)若有A,B两种品牌的共享单车各一辆供某用户一人选择使用,请你根据该用户已邀请好友的人数,给出经济实惠的选择建议.24.下面我们做一次折叠活动:第一步,在一张宽为2的矩形纸片的一端,利用图(1)的方法折出一个正方形,然后把纸片展平,折痕为MC;第二步,如图(2),把这个正方形折成两个相等的矩形,再把纸片展平,折痕为FA;第三步,折出内侧矩形FACB的对角线AB,并将AB折到图(3)中所示的AD处,折痕为AQ.根据以上的操作过程,完成下列问题:(1)求CD的长.(2)请判断四边形ABQD的形状,并说明你的理由.25.如图,正方形ABCD中,AB=4,P是CD边上的动点(P点不与C、D重合),过点P作直线与BC的延长线交于点E,与AD交于点F,且CP=CE,连接DE、BP、BF,设CP═x,△PBF的面积为S1,△PDE的面积为S2.(1)求证:BP⊥DE.(2)求S1﹣S2关于x的函数解析式,并写出x的取值范围.(3)分别求当∠PBF=30°和∠PBF=45°时,S1﹣S2的值.答案解析部分一、<b >选择题</b>1.【答案】B【考点】二次根式有意义的条件【解析】【解答】A、有意义,A不合题意;B、没有意义,B符合题意;C、有意义,C不合题意;D、有意义,D不合题意;故答案为:B.【分析】依据二次根式被开放数为非负数求解即可.2.【答案】C【考点】二次根式的性质与化简,二次根式的乘除法【解析】【解答】解:A、原式= = =3,A不符合题意;B、原式=32,B不符合题意;C、原式=|﹣2|=2,C符合题意;D、原式=4 ,D不符合题意;故答案为:C.【分析】依据二次根式的除法法则可对A作出判断;依据二次根式的性质可对B、C作出判断,依据二次根式的乘法法则可对D作出判断.3.【答案】B【考点】统计量的选择【解析】【解答】由于方差反映数据的波动情况,衡量一组数据波动大小的统计量是方差.故答案为:B.【分析】方差是反应一组数据波动大小的量.4.【答案】D【考点】统计量的选择【解析】【解答】由于众数是数据中出现次数最多的数,故全级学生喜欢的游学线路最值得关注的应该是统计调查数据的众数.故答案为:D.【分析】决定最终的线路应改由多数人员的意见决定,故此可得到问题的答案.5.【答案】B【考点】正比例函数的图象和性质【解析】【解答】解:A、当x=﹣2时,y=﹣2×(﹣2)=4,即图象经过点(﹣2,4),不经过点(﹣2,1),故本选项错误;B、由于k=﹣2<0,所以y随x的增大而减小,故本选项正确;C、由于k=﹣2<0,所以图象经过二、四象限,故本选项错误;D、∵x>0时,y<0,x<0时,y>0,∴不论x为何值,总有y<0错误,故本选项错误.故答案为:B.【分析】依据正比例函数的图像和性质可对B、C、D作出判断,将x=-2代入函数解析式可求得y的值,从而可对A作出判断.6.【答案】C【考点】勾股定理的逆定理【解析】【解答】A、22+32≠42,故不是直角三角形,A不符合题意;B、()2+()2≠()2,故不是直角三角形,B不符合题意;C、12+()2=22,故是直角三角形,C符合题意;D、72+82≠92,故不是直角三角形,D不符合题意;故答案为:C.【分析】依据勾股定理的逆定理进行判断即可.7.【答案】D【考点】勾股定理【解析】【解答】设斜边长为xcm,则另一条直角边为(x﹣1)cm,由勾股定理得,x2=52+(x﹣1)2,解得,x=13,则斜边长为13cm,故答案为:D.【分析】设斜边长为xcm,则另一条直角边为(x-1)cm,然后依据勾股定理列方程求解即可.8.【答案】A【考点】菱形的性质【解析】【解答】∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB= ,= ,=4,∴BD=2OB=8,∴S菱形ABCD= ×AC×BD= ×6×8=24.故答案为:A.【分析】根据菱形的对角线互相垂直且互相平分可得到AC⊥BD,且AO=OC=3,然后依据勾股定理可求得BO 的长,从而可得到BD的长,最后依据菱形的面积等于对角线乘积的一半求解即可.9.【答案】D【考点】命题与定理【解析】【解答】A、有一个角是直角的平行四边形是矩形,正确,A不符合题意;B、一组邻边相等的矩形是正方形,正确,B不符合题意;;C、一组对边平行且相等的四边形是平行四边形,正确,C不符合题意;D、有两组邻边相等且平行的四边形是菱形,错误,D不符合题意.故答案为:D.【分析】首先依据矩形的定义、正方形的判定定理、平行四边形的判定定理、菱形的判定定理判定命题的对错,从而可做出判断.10.【答案】B【考点】待定系数法求一次函数解析式【解析】【解答】解:如图,∵A(0,0),B(10,0),C(12,6),D(2,6),∴AB=10﹣0=10,CD=12﹣2=10,又点C、D的纵坐标相同,∴AB∥CD且AB=CD,∴四边形ABCD是平行四边形,∵12÷2=6,6÷2=3,∴对角线交点P的坐标是(6,3),∵直线y=mx﹣3m+6将四边形ABCD分成面积相等的两部分,∴直线y=mx﹣3m+6经过点P,∴6m﹣3m+6=3,解得m=﹣1.故答案为:B.【分析】首先依据各点的坐标可确定出四边形ABCD为平行四边形,然后可求得两对角线交点的坐标,然后由直线平分线四边形的面积可知直线经过点(6,3),最后将点(6,3)代入直线解析式求解即可.二、<b >填空题</b>11.【答案】1【考点】分母有理化【解析】【解答】解:∵a= +2,b= ﹣2,∴ab=(+2)(﹣2)=5﹣4=1,故答案为:1【分析】依据平方差公式和二次根式的性质进行计算即可.12.【答案】1【考点】一次函数与一元一次方程【解析】【解答】解:根据上表中的数据值,当y=0时,x=1,即一元一次方程kx+b=0的解是x=1.故答案是:1.【分析】依据表格找出当y=0时,对应的x的取值即可.13.【答案】x>0【考点】一次函数与一元一次不等式【解析】【解答】解:由题意,可知一次函数y=mx+n的图象经过点(0,2),且y随x的增大而增大,所以关于x的不等式mx+n>2的解集是x>0.故答案为:x>0.【分析】不等式的解集为当y>2时,函数自变量的取值范围.14.【答案】0【考点】方差【解析】【解答】解:该组数据一样,没有波动,方差为0,故答案为:0.【分析】方差的意义或利用方差公式进行解答即可.15.【答案】18【考点】勾股定理的应用【解析】【解答】解:∵PC=AB=30,PA=6,∴AC=24,∴BC= = =18,∴下端离开墙角18个单位.故答案为:18.【分析】根据题意可得到PC=AB=30,AC=24,然后在Rt△ABC中利用勾股定理求出CB的长即可.16.【答案】①③【考点】中点四边形【解析】【解答】解:延长IF交AB于K,∵DF=EF,BG=GE,∴FG= BD,GF∥AB,同理IF∥AC,HI= BD,HI∥BD,∴∠BKI=∠A=90°,∴∠GFI=∠BKI=90°,∴GF⊥FI,故①正确,∴FG=HI,FG∥HI,∴四边形FGHI是平行四边形,∵∠GFI=90°,∴四边形FGHI是矩形,故②④错误,延长EI交BC于N,则△DEI≌△CNI,∴DE=CN,EJ=JN,∵EG=GB,EI=IN,∴GI= BHN= (BC﹣DE),故③正确,故答案为①③.【分析】对于①,延长IF交AB于K,然后根据两直线平行同位角相等进行解答即可;对于②和④.只要证明四边形FGHI是矩形即可判断;对于③,先延长EI交BC于N,然后再证明△DEI≌△CNI,依据全等三角形的性质可得到DE=CN,EJ=JN,然后再结合中点的定义可推出GI=HN=(BC-DE).三、<b >解答题</b>17.【答案】解:原式=(6 + ﹣3 )×= ×=7.【考点】二次根式的混合运算【解析】【分析】先将各二次根式化简为最简二次根式,然后再合并同类二次根式,最后,在依据二次根式的乘法法则进行计算即可.18.【答案】(1)解:在Rt△ABD中,AD= =3(2)解:在Rt△ACD中,AC= =2 ,则△ABC的周长=AB+AC+BC=5+4+ +2 =9+3【考点】勾股定理【解析】【分析】(1)在Rt△ABD中,依据勾股定理可求得AD的长;(2)在Rt△ACD中,依据勾股定理可求得AC的长,然后再依据三角形的周长等于三边长度之和求解即可.19.【答案】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴AE∥CF,∠AEB=∠CFD=90°,在△AEB和△CFD中,∵,∴△AEB≌△CFD(AAS),∴AE=CF,∴四边形AECF是平行四边形.【考点】平行四边形的判定与性质【解析】【分析】首先依据四边形的性质可得AB=CD,AB∥CD,然后再证明AE∥CF,接下来,利用AAS证得△AEB≌△CFD,依据全等三角形的性质可得到AE=CF,最后依据一组对边相等且平行的四边形是平行四边形进行证明即可.20.【答案】(1)4.6(2)4.7(3)解:不能,∵小鸣同学右眼视力是4.5,小于中位数4.7,∴不能说小鸣同学的右眼视力处于全班同学的中上水平.【考点】中位数、众数【解析】【解答】解:(1)该班学生右眼视力的平均数是×(4.0+4.1×2+4.2×5+4.3×4+4.4×3+4.5×5+4.6+4.7+4.8×5+4.9×10+5.0×6)≈4.6,故答案为:4.6;(2)由于共有43个数据,其中位数为第22个数据,即中位数为4.7,(3)不能,∵小鸣同学右眼视力是4.5,小于中位数4.7,∴不能说小鸣同学的右眼视力处于全班同学的中上水平.故答案为:(1)4.6;(2)4.7;(3)不能.【分析】(1)根据加权平均数公式求解即可;(2)首先将这组数据按照从小到大的顺序排列,中位数为第22个数据;(3)根据小鸣同学右眼视力是4.5,小于中位数4.7,故此可得到问题的答案.21.【答案】(1)解:∵四边形ABCD是正方形,∴BC=CD=6,∠BCD=∠ECD=90°,OB=OD,∵CE=8,∴BE=14,∵OB=OD,DF=FE,∴OF= BE=7.(2)解:在Rt△DCE中,DE= = =10,∵DF=FE,∴CF= DE=5.【考点】正方形的性质【解析】【分析】(1)由正方形的性质可知O为BD的中点,故此OF是△DBE的中位线,然后依据三角形中位线的性质解答即可;(2)在Rt△DCE中,利用勾股定理求出DE,再利用直角三角形斜边上中线等于斜边的一半求解即可. 22.【答案】(1)解:将点A(﹣30,0)、B(0,15)代入y=kx+b,,解得:,∴直线y=kx+b的解析式为y= x+15.(2)解:联立两直线解析式成方程组,,解得:,∴点P的坐标为(20,25).当x=0时,y=x+5=5,∴点C的坐标为(0,5),∴BC=15﹣5=10,∴S△PBC= BC•x P= ×10×20=100.【考点】两条直线相交或平行问题【解析】【分析】(1)将点A和点B的坐标代入直线的解析式得到关于k、b的方程组,从而可求得k、b 的值,于是可得到直线AB的解析式;(2)联立两直线解析式成方程组,通过解方程组可得出点P的坐标,由一次函数图象上点的坐标特征可求出点C的坐标,进而可得出线段BC的长度,最后利用三角形的面积公式求解即可.23.【答案】(1)解:由题意可得,当0≤x≤9且x为正整数时,y=1﹣0.1x,当x≥10且x为正整数时,y=0.1,即y关于x的函数解析式是y=(2)解:由题意可得,当0≤x≤9时,1﹣0.1x>0.5,可得,x<5,则当x≤x<5且x为正整数时,选择B品牌的共享单车;当0≤x≤9时,1﹣0.1x=0.5,得x=5,则x=5时,选择A或B品牌的共享单车消费一样;当0≤x≤9时,1﹣0.1x<0.5,得x>5,则x>5且x为正整数,选择A品牌的共享单车;当x≥10且x为正整数时,0.1<0.5,故答案为:项A品牌的共享单车.【考点】二元一次方程组的应用,一次函数的应用【解析】【分析】(1)可分为0≤x≤9且x为正整数或x≥10且x为正整数两种情况列出y与x的函数关系式;(2)分为0≤x≤9;0≤x≤9;0≤x≤9;当x≥10四种情况列出关于x的方程或不等式,然后再进行求解即可.24.【答案】(1)解:∵∠M=∠N=∠MBC=90°,∴四边形MNCB是矩形,∵MB=MN=2,∴矩形MNCB是正方形,∴NC=CB=2,由折叠得:AN=AC= NC=1,Rt△ACB中,由勾股定理得:AB= = ,∴AD=AB= ,∴CD=AD﹣AC= ﹣1;(2)解:四边形ABQD是菱形,理由是:由折叠得:AB=AD,∠BAQ=∠QAD,∵BQ∥AD,∴∠BQA=∠QAD,∴∠BAQ=∠BQA,∴AB=BQ,∴BQ=AD,BQ∥AD,∴四边形ABQD是平行四边形,∵AB=AD,∴四边形ABQD是菱形.【考点】正方形的判定与性质【解析】【分析】(1)首先证明四边形MNCB为正方形,然后再依据折叠的性质得到:CA=1,AB=AD,最后再依据CD=AD-AC求解即可;(2)根据平行线的性质和折叠的性质可得到∠BAQ=∠BQA,然后依据等角对等边的性质得到AB=BQ,接下来,依据一组对边平行且相等的四边形为平行四边形可证明四边形ABQD是平行四边形,再由AB=AD,可得四边形ABQD是菱形.25.【答案】(1)解:如图1中,延长BP交DE于M.∵四边形ABCD是正方形,∴CB=CD,∠BCP=∠DCE=90°,∵CP=CE,∴△BCP≌△DCE,∴∠BCP=∠CDE,∵∠CBP+∠CPB=90°,∠CPB=∠DPM,∴∠CDE+∠DPM=90°,∴∠DMP=90°,∴BP⊥DE.(2)解:由题意S1﹣S2= (4+x)•x﹣•(4﹣x)•x=x2(0<x<4).(3)解:①如图2中,当∠PBF=30°时,∵∠CPE=∠CEP=∠DPF=45°,∠FDP=90°,∴∠PFD=∠DPF=45°,∴DF=DP,∵AD=CD,∴AF=PC,∵AB=BC,∠A=∠BCP=90°,∴△BAF≌△BCP,∴∠ABF=∠CBP=30°,∴x=PC=BC•tan30°= ,∴S1﹣S2=x2= .②如图3中,当∠PBF=45°时,在CB上截取CN=CP,理解PN.由①可知△ABF≌△BCP,∴∠ABF=∠CBP,∵∠PBF=45°,∴∠CBP=22.5°,∵∠CNP=∠NBP+∠NPB=45°,∴∠NBP=∠NPB=22.5°,∴BN=PN= x,∴x+x=4,∴x=4 ﹣4,∴S1﹣S2=(4 ﹣4)2=48﹣32 .【考点】正方形的性质【解析】【分析】(1)首先延长BP交DE于M.然后依据SAS可证明△BCP≌△DCE,依据全等三角形的性质可得到∠BCP=∠CDE,由∠CBP+∠CPB=90°,∠CPB=∠DPM,即可推出∠CDE+∠DPM=90°;(2)根据题意可得到S1-S2=S△PBE-S△PDE,然后依据三角形的面积公式列出函数关系式即可;(3)分当∠PBF=30°和∠PBF=45°两种情形分别求出PC的长,最后再利用(2)中结论进行计算即可.。
广东省广州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2017八下·临洮期中) 要使式子有意义,则x的取值范围是()A . x>0B . x≥﹣2C . x≥2D . x≤22. (2分) (2017七下·濮阳期中) 已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分)(2018·岳池模拟) 若一组数据2,4,,5,7的平均数为5,则这组数据中的和中位数分别为()A . 5,7B . 5,5C . 7,5D . 7,74. (2分)在平面直角坐标系中,直线y=﹣x+2与反比例函数的图象有唯一公共点,若直线y=﹣x+b 与反比例函数的图象有2个公共点,则b的取值范围是()A . b>2B . ﹣2<b<2C . b>2或b<﹣2D . b<﹣25. (2分)在平行四边形ABCD中,∠A∶∠B∶∠C∶∠D的值可以是().A . 1∶2∶3∶4B . 1∶2∶2∶1C . 1∶1∶2∶2D . 2∶1∶2∶16. (2分)(2017·宁波模拟) 如图,四个全等的直角三角形纸片既可以拼成(内角不是直角)的菱形ABCD,也可以拼成正方形EFGH,则菱形ABCD面积和正方形EFGH面积之比为()A . 1B .C .D .7. (2分) (2017八下·邵阳期末) 矩形具有平行四边形不一定具有的性质是()A . 对角相等B . 对角线互相平分C . 一组对边平行另一组对边相等D . 对角线相等8. (2分)已知点A(k , 4)在双曲线y=−上,则k的值是()A . -4B . 4C . 1D . -1二、填空题 (共6题;共6分)9. (1分) (2019九下·建湖期中) 已知组数据4,x,6,y,9,12的平均数为7,众数为6,则这组数据的方差为________.10. (1分)(2017·思茅模拟) 如果 +(y﹣2017)2=0,则xy________.11. (1分)(2017·芜湖模拟) 如图,一次函数与反比例的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是________.12. (1分) (2020八上·邳州期末) 如图,正方形的边长为4,则图中的阴影部分面积为________.13. (1分)如图12,把一张矩形纸片ABCD沿BD对折,使C点落在E处,BE与AD相交于点O,写出一组相等的线段________ (不包括AB=CD和AD=BC).14. (1分) (2020八上·大东期末) 李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是________升.三、解答题 (共10题;共72分)15. (5分) (2017八下·洪山期中) 计算(7+4 )(2﹣)2﹣(2+ )(2﹣)+ 的值.16. (5分)如图,反比例函数的图象与一次函的图象交于两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.17. (5分) (2015九下·南昌期中) 如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D、均在小正方形的顶点上,请用无刻度直尺作出以下图形:①在方格纸中画以AB为一边的菱形ABEF,点E、F在小正方形的顶点上,且菱形ABEF的面积为3;②在方格纸中画以CD为一边的等腰△CDG,点G在小正方形的顶点上,连接EG,使∠BEG=90°.18. (12分)省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10898109乙107101098(1)根据表格中的数据,计算出甲的平均成绩是________环,乙的平均成绩是________环;(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.(计算方差的公式:s2=[]19. (5分)已知,如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.20. (8分) (2017九上·镇雄期末) 中考体育测试满分为40分,某校九年级进行了中考体育模拟测试,随机抽取了部分学生的考试成绩进行统计分析,并把分析结果绘制成如下两幅统计图.试根据统计图中提供的数据,回答下列问题:(1)抽取的样本中,成绩为39分的人数有________人;(2)抽取的样本中,考试成绩的中位数是________分,众数是________分;(3)若该校九年级共有500名学生,试根据这次模拟测试成绩估计该校九年级将有多少名学生能得到满分?21. (6分) (2017八下·蒙阴期末) 综合题(1)如图,纸片□ABCD中,AD=5,S□ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为________A平行四边形 B菱形 C矩形 D正方形(2)如图,在(1)中的四边形纸片AEE'D中,在EE'上取一点F,使EF=4,剪下△AEF,剪下△AEF,将它平移至△DE'F'的位置,拼成四边形AFF'D.①求证:四边形AFF'D是菱形;②求四边形AFF'D的两条对角线的长.22. (10分) (2017八下·官渡期末) 已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系,现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm) 4.0…8.09.6体温计的度数y(℃)35.0…40.042.0(1)求y关于x的函数关系式(不需要写出函数自变量x的取值范围);(2)用该体温计测体温时,水银柱的长度为6.0cm,求此时体温计的读数.23. (1分)在正方形ABCD中,点E为对角线BD上一点,EF⊥AE交BC于点F,且F为BC的中点,若AB=4,则EF=________.24. (15分)(2018·无锡模拟) 九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共10题;共72分)15-1、16-1、17-1、18-1、18-2、18-3、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、24-1、24-2、24-3、第11 页共11 页。
2015-2016学年广东省广州市越秀区八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)式子在实数范围内有意义,则x的取值范围()A.x≤2B.x<2 C.x>2 D.x≥22.(2分)下列计算正确的是()A.B.C.D.3.(2分)一次函数y=x+1不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.(2分)16位参加歌咏比赛的同学的成绩各不相同,按成绩取前8名进入决赛,如果小丽知道了自己成绩后,要判断自己能否进入决赛,小丽需要知道这16位同学成绩的()A.中位数B.众数 C.平均数D.方差5.(2分)在△ABC中,∠C=90°,∠B=60°,BC=2,则AC=()A.1 B.4 C. D.6.(2分)若函数y=kx+b的图象经过原点,且y随x的增大而减小,则()A.k>0 B.k<0 C.b>0 D.b<07.(2分)下列条件中,能判定四边形ABCD是平行四边形的是()A.AB∥CD,∠B=∠D B.AB∥CD,AD=BC C.AB=BC,CD=DA D.∠A=∠B,∠C=∠D8.(2分)下列命题的逆命题是真命题的是()A.若两个实数相等,则这两个实数的平方相等B.若两个角是直角,则这两个角相等C.若AB=5,BC=4,CA=3,则△ABC是直角三角形D.若一个四边形的对角线互相垂直且平分,则这个四边形是菱形9.(2分)若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是()A.矩形 B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形10.(2分)如图,在直线MN上有三个正方形A、B、C,若正方形A和正方形C的面积分别为16和20,则正方形B的面积为()A.24 B.36 C.40 D.48二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)在△ABC中,D、E分别是AB、AC的中点,DE=4,则BC=.12.(3分)某校规定学生的体育成绩由三部分组成;体育技能测试占50%,体育理论测试占20%,体育课外活动表现30%,甲同学的上述三部分成绩依次为96分,85分,90分,则甲同学的体育成绩为分.13.(3分)某商店出售一种品牌运动鞋20双,各种尺码鞋的销售量如表所示:鞋的尺码40 41 42 43 45销售量 2 3 7 6 2则这20双鞋尺码的众数是.14.(3分)小明家、公交车站、学校在同一条直线上,小明从家步行到公交车站,等公交车去学校,图中的折线表示小明的行程y与所花时间x之间的关系,根据图象可以计算得出,公交车的平均速度是km/min.15.(3分)实数a、b在数轴上的位置如图所示,则化简=.16.(3分)如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点A落在BC边上A′点处,点D的对应点为点D′,若A′B=3,则DM的长为.三、解答题(本大题共9小题,解答应写出文字说明、推理过程或演算步骤)17.计算:.18.如图,正方形网络中的每个小正方形边长都为1,每个小正方形的顶点叫格点,在图中画出符合下列条件的一个图形.(1)在左图中画一个直角△ABC,使它的顶点都在格点上,且斜边长AB为;(2)在右图中画一个菱形ABCD,使它的顶点都在格点上,且边长AB为.19.为了考查甲、乙两种小麦的长势,分别从中随机抽取10株麦苗,测得苗高(单位:cm)如表:甲16 18 18 19 20 20 21 21 23 24 乙13 15 17 18 20 21 23 23 24 26 (1)分别计算两种小麦的平均苗高;(2)哪种小麦的长势比较整齐?并说明理由.20.如图在平行四边形ABCD中,E、F是对角线AC上的两点,且∠ABE=∠CDF.求证:四边形BFDE是平行四边形.21.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,BD=CD.(1)若AD=2,AB=1,求四边形ABCD的面积;(2)若BC=6,∠DBC=30°,求四边形ABCD的周长.22.如图,在平面直角坐标系xOy中,已知A(3,3),B(9,0),若有一动点M从原点出发,沿x轴正半轴向点B运动,过点M作直线l⊥x轴.(1)如图①,若直线l与线段OA相交于点N,且M(2,0),求此时MN的长;(2)如图②,若直线l与线段AB相交于点N,且MN=2,求此时点M的坐标.23.某文具店计划购进A,B两种计算器共60个,若购进A种计算器的数量不少于B种计算器数量的2倍,且不超过B种计算器数量的3倍.(1)该文具店共有几种进货方案?(2)若销售每个A种计算器可获利润20元,销售每个B种计算器可获利润35元,则哪一种方案获得利润最大?最大的总利润是多少?24.如图,正方形ABCD中,E、F分别是CD、DA的中点.BE与CF相交于点P.(1)求证:BE⊥CF;(2)判断PA与AB的数量关系,并说明理由.25.如图,在▱ABCD中,对角线AC与BD相交于点O,AB=4,AC=4,BD=12,点,P是线段AD上的动点(不包含端点A、D),过点P作PE⊥AC,PF⊥BD,垂足分别为点E,F(1)求△AOB的面积;(2)设PE=x,PF=y,求y关于x的函数解析式,并写出x的取值范围;(3)AP=AD,求PF的长.2015-2016学年广东省广州市越秀区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)(2016春•越秀区期末)式子在实数范围内有意义,则x的取值范围()A.x≤2B.x<2 C.x>2 D.x≥2【解答】解:∵式子在实数范围内有意义,∴x﹣2>0.解得:x>2.故选:C.2.(2分)(2016春•越秀区期末)下列计算正确的是()A.B.C.D.【解答】解:A、和不是同类二次根式,不能合并,故原题计算错误;B、=,故原题计算正确;C、=3,故原题计算错误;D、=3,故原题计算错误;故选:B.3.(2分)(2016春•越秀区期末)一次函数y=x+1不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【解答】解:∵一次函数y=x+1中,k=1>0,b=1>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故选D.4.(2分)(2016春•越秀区期末)16位参加歌咏比赛的同学的成绩各不相同,按成绩取前8名进入决赛,如果小丽知道了自己成绩后,要判断自己能否进入决赛,小丽需要知道这16位同学成绩的()A.中位数B.众数 C.平均数D.方差【解答】解:由于总共有16个人,且他们的分数互不相同,要判断是否进入前8名,只要把自己的成绩与中位数进行大小比较.故应知道中位数的多少.故选A.5.(2分)(2016春•越秀区期末)在△ABC中,∠C=90°,∠B=60°,BC=2,则AC=()A.1 B.4 C. D.【解答】解:∵∠C=90°,∠B=60°,∴∠A=90°﹣60°=30°,∴AB=2BC=4,由勾股定理得,AC2=AB2﹣BC2,∴AC=2.故选C.6.(2分)(2016春•越秀区期末)若函数y=kx+b的图象经过原点,且y随x的增大而减小,则()A.k>0 B.k<0 C.b>0 D.b<0【解答】解:因为k<0,y随x的增大而减小,经过原点,b=0,故选B7.(2分)(2016春•越秀区期末)下列条件中,能判定四边形ABCD是平行四边形的是()A.AB∥CD,∠B=∠D B.AB∥CD,AD=BC C.AB=BC,CD=DA D.∠A=∠B,∠C=∠D【解答】解:A、∵AB∥CD,∴∠B+∠C=180°,∵∠B=∠D,∴∠C+∠D=180°,∴AD∥BC,∴四边形ABCD是平行四边形,故此选项正确;B、AB∥CD,AD=BC不能判定四边形ABCD是平行四边形,故此选项错误;C、AB=BC,CD=DA,不能判定四边形ABCD是平行四边形,故此选项错误;D、∠A=∠B,∠C=∠D不能判定四边形ABCD是平行四边形,故此选项错误.故选:A.8.(2分)(2016春•越秀区期末)下列命题的逆命题是真命题的是()A.若两个实数相等,则这两个实数的平方相等B.若两个角是直角,则这两个角相等C.若AB=5,BC=4,CA=3,则△ABC是直角三角形D.若一个四边形的对角线互相垂直且平分,则这个四边形是菱形【解答】解:A、逆命题为:若两个实数的平方相等,则这两个数相等,此逆命题为假命题;B、逆命题为:若两个角相等,则这两个角都是直角,此逆命题为假命题;C、逆命题为:若△ABC是直角三角形,则AB=5,BC=4,CA=3,此逆命题为假命题;D、逆命题为:菱形的对角线互相垂直且平分,此逆命题为真命题.故选D.9.(2分)(2015•资阳)若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形 B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形【解答】已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD 的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:D.10.(2分)(2016春•越秀区期末)如图,在直线MN上有三个正方形A、B、C,若正方形A和正方形C的面积分别为16和20,则正方形B的面积为()A.24 B.36 C.40 D.48【解答】解:由于A、B、C都是正方形,所以QF=EF,∠QFE=90°,∠QWF=∠FDE=90°,∵∠WQF+∠QFW=∠QFW+∠EFD=90°,即∠WQF=∠EFD,在△QWF和△FDE中,,∴△QWF≌△FDE(AAS),∴QW=FD,WF=DE,∵正方形A和正方形C的面积分别为16和20,∴QW2=16,DE2=20,∴WF2=DE2=20,在Rt△QWF中,由勾股定理得:QF2=QW2+WF2=16+20=36,∴正方形B的面积为36,故选B.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2010•泸州)在△ABC中,D、E分别是AB、AC的中点,DE=4,则BC=8.【解答】解:如图所示,∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵DE=4,∴BC=2DE=2×4=8.故答案为:8.12.(3分)(2016秋•临清市期末)某校规定学生的体育成绩由三部分组成;体育技能测试占50%,体育理论测试占20%,体育课外活动表现30%,甲同学的上述三部分成绩依次为96分,85分,90分,则甲同学的体育成绩为92分.【解答】解:由题意知,甲同学的体育成绩是:96×50%+85×20%+90×30%=92(分).则甲同学的体育成绩是92分.故答案为:92.13.(3分)(2016春•越秀区期末)某商店出售一种品牌运动鞋20双,各种尺码鞋的销售量如表所示:鞋的尺码40 41 42 43 45销售量 2 3 7 6 2则这20双鞋尺码的众数是42.【解答】解:由表可得,尺码为42的运动鞋销售量最高,故这20双鞋尺码的众数是42.故答案为:42.14.(3分)(2016春•越秀区期末)小明家、公交车站、学校在同一条直线上,小明从家步行到公交车站,等公交车去学校,图中的折线表示小明的行程y与所花时间x之间的关系,根据图象可以计算得出,公交车的平均速度是0.5km/min.【解答】解:利用图象得出:公交车行驶的距离为:11﹣1=10(km),公交车行驶的时间为:35﹣15=20(mint),从图中可以看出公交车的速度是:10000÷20=500(m/min)=0.5km/min.故答案为:0.5.15.(3分)(2016春•越秀区期末)实数a、b在数轴上的位置如图所示,则化简=﹣2a.【解答】解:依题意得:a<0<b,|a|<|b|,∴=﹣a﹣b+b﹣a=﹣2a.故答案为:﹣2a.16.(3分)(2016春•越秀区期末)如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点A落在BC边上A′点处,点D的对应点为点D′,若A′B=3,则DM的长为2.【解答】解:如图所示:连结AM、A′M.由翻折的性质可知:DM=D′M,AM=A′M.设MD=x,则MC=9﹣x.∵A′B=3,BC=9,∴A′C=6.在Rt△MCA′中,MA′2=A′C2+MC2=36+(9﹣x)2,在Rt△ADM中,AM2=AD2+DM2=81+x2.∴36+(9﹣x)2=81+x2,解得x=2,即DM=2.故答案为:2三、解答题(本大题共9小题,解答应写出文字说明、推理过程或演算步骤)17.(2016春•越秀区期末)计算:.【解答】解:原式=7﹣5+(﹣),=7﹣5+3﹣2,=3.18.(2016春•越秀区期末)如图,正方形网络中的每个小正方形边长都为1,每个小正方形的顶点叫格点,在图中画出符合下列条件的一个图形.(1)在左图中画一个直角△ABC,使它的顶点都在格点上,且斜边长AB为;(2)在右图中画一个菱形ABCD,使它的顶点都在格点上,且边长AB为.【解答】解:(1)如图所示:△ABC中,AC=3,BC=1,∠ACB=90°,由勾股定理得:AB==,直角△ABC即为所求;(2)如图所示:∵AC⊥BD,∴AB=BC=CD=DA==,∴四边形ABCD是菱形,∴菱形ABCD即为所求.19.(2016春•越秀区期末)为了考查甲、乙两种小麦的长势,分别从中随机抽取10株麦苗,测得苗高(单位:cm)如表:甲16 18 18 19 20 20 21 21 23 24 乙13 15 17 18 20 21 23 23 24 26 (1)分别计算两种小麦的平均苗高;(2)哪种小麦的长势比较整齐?并说明理由.【解答】解:(1)甲的平均数是:(16+18+18+19+20+20+21+21+23+24)÷10=20(cm),乙的平均数是:(13+15+17+18+20+21+23+23+24+26)÷10=20(cm);(2)=[(16﹣20)2+(18﹣20)2+(18﹣20)2+(19﹣20)2+(20﹣20)2+(20﹣20)2+(21﹣20)2+(21﹣20)2+(23﹣20)2+(24﹣20)2]=5.2(cm2);=[(13﹣20)2+(15﹣20)2+(17﹣20)2+(18﹣20)2+(20﹣20)2+(21﹣20)2+(23﹣20)2+(23﹣20)2+(24﹣20)2+(26﹣20)2]=15.8(cm2);因为<,所以甲种小麦长得比较整齐.20.(2016春•越秀区期末)如图在平行四边形ABCD中,E、F是对角线AC上的两点,且∠ABE=∠CDF.求证:四边形BFDE是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴BE=DF,∠AEB=∠CFD,∴∠BEF=∠DFE,∴BE∥DF,∴四边形BFDE是平行四边形.21.(2016春•越秀区期末)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,BD=CD.(1)若AD=2,AB=1,求四边形ABCD的面积;(2)若BC=6,∠DBC=30°,求四边形ABCD的周长.【解答】解:(1)过D作DE⊥BC于E,则∠DEB=90°,∵AD∥BC,∠ABC=90°,∴∠A=∠ABE=∠DEB=90°,∴四边形ABED是矩形,∴AD=BE=2,AB=DE=1,∵BD=DC,DE⊥BC,∴BE=CE=2,∴BC=2+2=4,∴四边形ABCD的面积为:×(AD+BC)×AB=×(2+4)×1=3;(2)∵在Rt△DEB中,∠DEB=90°,∠DBC=30°,BE=CE=BC==3,∴CD=BD==2,DE=AB=BD=,AD=BE=3,∴四边形ABCD的周长为AB+BC+CD+AD=+6+2+3=9+3.22.(2016春•越秀区期末)如图,在平面直角坐标系xOy中,已知A(3,3),B(9,0),若有一动点M从原点出发,沿x轴正半轴向点B运动,过点M作直线l⊥x轴.(1)如图①,若直线l与线段OA相交于点N,且M(2,0),求此时MN的长;(2)如图②,若直线l与线段AB相交于点N,且MN=2,求此时点M的坐标.【解答】解:(1)如图①所示:作AC⊥x轴,垂足为C∵直线l⊥x轴,∴△OMN∽△OCA,∴,其中,AC=3,OM=2,OC=3∴MN=2即:MN的长为2(2)如图②所示:做AD⊥x轴,垂足为点D,设M的坐标为(a,0)同(1)可知:△BAD∽△BNM,∴,其中AD=3,MN=2,BD=9﹣3=6,BM=9﹣a,∴a=5,∴点M的坐标为(5,0)23.(2016春•越秀区期末)某文具店计划购进A,B两种计算器共60个,若购进A种计算器的数量不少于B种计算器数量的2倍,且不超过B种计算器数量的3倍.(1)该文具店共有几种进货方案?(2)若销售每个A种计算器可获利润20元,销售每个B种计算器可获利润35元,则哪一种方案获得利润最大?最大的总利润是多少?【解答】解:(1)设;购进A种计算机x个,则购进B种计算机(60﹣x)个.由题意得,,解得:40≤x≤45,根据题意可知x为整数,所以x可以取40、41、42、43、44、45,故该文具店共有6种进货方案;(2)设总利润为W元,W=20x+35(60﹣x)=﹣15x+2100,∵﹣15<0,∴W随x的增大而减小,∴当x=40时,W有最大值,60﹣x=60﹣40=20,W最大值=﹣15×40+2100=1500,答:当购进A种计算器40个,B种计算器60个时,有最大利润为1500元.24.(2016春•越秀区期末)如图,正方形ABCD中,E、F分别是CD、DA的中点.BE与CF相交于点P.(1)求证:BE⊥CF;(2)判断PA与AB的数量关系,并说明理由.【解答】证明:(1)∵点E、F分别是正方形ABCD的边CD和AD的中点,∴EC=DF.在△BCE和△CDF中,,∴△BCE≌△CDF.∴∠CBE=∠DCF.∵∠DCF+∠BCP=90°,∴∠CBE+∠BCP=90°,∴BE⊥FC.(2)延长CF、BA交于点M.∵FC⊥EB,∴∠BPM=90°.∵在△CDF和△AMF中,,∴△CDF≌△AMF,∴CD=AM.∵CD=AB,∴AB=AM.∴PA是直角△BPM斜边BM上的中线,∴AP=MB.∴AP=AB.25.(2016春•越秀区期末)如图,在▱ABCD中,对角线AC与BD相交于点O,AB=4,AC=4,BD=12,点,P是线段AD上的动点(不包含端点A、D),过点P作PE⊥AC,PF ⊥BD,垂足分别为点E,F(1)求△AOB的面积;(2)设PE=x,PF=y,求y关于x的函数解析式,并写出x的取值范围;(3)AP=AD,求PF的长.【解答】解:(1)在▱ABCD中,AC=4,BD=12,∴OA=AC=2,OB=BD=6,∵AB2+OA2=32+4=36,OB2=36,∴AB2+OA2=OB2,∴△AOB是直角三角形,∴∠BAC=90°,∴S△AOB=AB×OA=×4×2=4.∵AC,BD是平行四边形ABCD的对角线,∴S△AOD=S△AOB=4,∵点P作PE⊥AC,PF⊥BD,∴S△AOD=S△AOP+S△DOP=OA×PE+OD×PF=×2x+×6y=4,∴y=﹣x+,(3)∵AB⊥AC,PE⊥AC,∴PE∥AB∥CD,∴,∴,∴x=PE=,由(2)知,y=﹣x+=﹣×+=.即PF=.参与本试卷答题和审题的老师有:梁宝华;sd2011;CJX;sjzx;王学峰;1987483819;gsls;zjx111;Linaliu;lantin;caicl;Liuzhx;HLing;733599;zcx;mayanq;tcm123;星月相随(排名不分先后)菁优网2017年3月10日。
人教版八年级下册数学广州数学期末试卷测试与练习(word 解析版)一、选择题1.当x =0时,下列式子有意义的是( )A .0xB .1x x +C .1x x +D .1x - 2.下列各组数中,不能构成直角三角形的是( )A .9、12、15B .12、18、22C .8、15、17D .5、12、13 3.已知四边形ABCD 中,对角线AC 、BD 交于O ,则下列选项中不能证明四边形ABCD 为平行四边形的是( )A .AB ∥CD ,AB =CDB .AB =CD ,BC =AD C .AB ∥CD ,AC =BD D .OA =OC ,OB =OD4.在建党100周年来临之际,为了弘扬红色经典文化,西华县教体局举办了红色经典诵读比赛,记分员根据比赛中七位评委所给的某参赛单位的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )平均数中位数 众数 方差 9.2 9.3 9.4 0.5A .平均数B .中位数C .众数D .方差5.如图,在矩形纸片ABCD 中,AB =6,AD =8,折叠该纸片,使得AB 边落在对角线AC 上,点B 落在点F 处,折痕为AE ,则线段EF 的长为( )A .3B .4C .5D .66.如图是两个全等的三角形纸片,其三边长之比为3: 4: 5,按图中方法分别将其对折,使折痕(图中虚线)过其中的一个顶点,且使该顶点所在两边重合,记折叠后不重叠部分面积分别为,A B S S ,已知15A B S S -=,则纸片的面积是( )A .102B .104C .106D .1087.如图,ABCD 的对角线AC 、BD 相交于点O ,//OE AB 交AD 于点E ,若1OA =,AOE △的周长等于5,则ABCD 的周长等于( )A.16 B.12 C.10 D.88.货车和轿车分别沿同一路线从A地出发去B地,已知货车先出发10分钟后,轿车才出发,当轿车追上货车5分钟后,轿车发生了故障,花了20分钟修好车后,轿车按原来速度的910继续前进,在整个行驶过程中,货车和轿车均保持各自的速度匀速前进,两车相距的路程y(米)与货车出发的时间x(分钟)之间的关系的部分图象如图所示,对于以下说法:①货车的速度为1500米/分;②OA//CD;③点D的坐标为()65,27500;④图中a的值是4703,其中正确的结论有()个A.1 B.2 C.3 D.4二、填空题9.在函数312y xx=++-中,自变量x的取值范围是________.10.如图,菱形ABCD的周长为45,对角线AC和BD相交于点O,AC∶BD=1∶2,则AO∶BO=____,菱形ABCD的面积S=____.11.如图,则阴影小长方形的面积S=_____.12.矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形周长的和是86cm,矩形的对角线长是13cm,那么该矩形的周长为_____.13.直线y=kx+3经过点(1,2),则k=_____________.14.如图,矩形ABCD 中,AB =2,AD =2.点E 是BC 边上的一个动点,连接AE ,过点D 作DF ⊥AE 于点F .当△CDF 是等腰三角形时,BE 的长为_____.15.如图,在平面直角坐标系中,点()11,1A 在直线y x =图象上,过1A 点作y 轴平行线,交直线y x =-于点1B ,以线段11A B 为边在右侧作正方形1111D C B A ,11C D 所在的直线交y x =的图象于点2A ,交y x =-的图象于点2B ,再以线段22A B 为边在右侧作正方形2222A B C D 依此类推,按照图中反应的规律,第2020个正方形的边长是_______.16.在Rt △ACB 中,∠ACB =90°,点D 在边AB 上,连接CD ,将△ADC 沿直线CD 翻折,点A 恰好落在BC 边上的点E 处,若AC =3,BE =1,则DE 的长是_____.三、解答题17.计算:(102(52)()π+-;(2312783- 18.湖的两岸有A ,B 两棵景观树,数学兴趣小组设计实验测量两棵景观树之间的距离,他们在与AB 垂直的BC 方向上取点C ,测得30BC =米,50AC =米.求:(1)两棵景观树之间的距离;(2)点B到直线AC的距离.19.在学习了勾股定理之后,甲乙丙三位同学在方格图(正方形的边长都为1)中比赛找“整数三角形”,什么叫“整数三角形”呢?他们三人规定:边长和面积都是整数的三角形才能叫“整数三角形”.甲同学很快找到了如图1的“整数三角形”,一会儿后乙同学也找到了周长为24的“整数三角形”.丙同学受到甲、乙两同学的启发找到了两个不同的等腰“整数三角形”.请完成:(1)以点A为一个顶点,在图2中作出乙同学找到的周长为24的“整数三角形”,并在每边周边标注其边长;(2)在图3中作出两个不同的等腰“整数三角形”,并在每边周边标注其边长;(3)你还能找到一个等边“整数三角形”吗?若能找出,请写出它的边长;若不能,请说明理由.20.如图所示,在矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交BC,AD 于点E,F,垂足为O,连接AE,CF.(1)求证:四边形AFCE为菱形;(2)求AF的长.21.阅读理解:把分母中的根号化去叫做分母有理化,例如:①25=2555⋅=255;②121-=1(21)(21)(21)⨯+-+=2221(2)1+-=21+.等运算都是分母有理化,根据上述材料,(1)化简:352-;(2)121++132++143++…+1109+.22.学校决定采购一批气排球和篮球,已知购买2个气排球和2个篮球共需340元,购买2个气排球所需费用比购买2个篮球所需费用少140元.(1)求气排球和篮球的售价分别是多少(元/个)?(2)学校计划购进气排球和篮球共120个,其中气排球的数量不超过篮球数量的3倍,若设购买篮球x个,当x为何值时总费用最小,并说明理由.23.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当E在AD边上移动时,折痕的端点P、Q也随着移动.①当点Q与点C重合时,(如图2),求菱形BFEP的边长;②如果限定P、Q分别在线段BA、BC上移动,直接写出菱形BFEP面积的变化范围.24.定义:对于平面直角坐标系xOy中的点P(a,b)和直线y=ax+b,我们称点P((a,b)是直线y=ax+b的关联点,直线y=ax+b是点P(a,b)的关联直线.特别地,当a=0时,直线y=b(b为常数)的关联点为P(0,b).如图,已知点A(-2,-2),B(4,-2),C(1,4).(1)点A的关联直线的解析式为______;直线AB的关联点的坐标为______;(2)设直线AC的关联点为点D,直线BC的关联点为点E,点P在y轴上,且S△DEP=2,求点P的坐标.(3)点M(m,n)是折线段AC→CB(包含端点A,B)上的一个动点.直线l是点M的关联直线,当直线l与△ABC恰有两个公共点时,直接写出m的取值范围.25.探究:如图①,△ABC是等边三角形,在边AB、BC的延长线上截取BM=CN,连结MC、AN,延长MC交AN于点P.(1)求证:△ACN≌△CBM;(2)∠CPN= °;(给出求解过程)(3)应用:将图①的△ABC分别改为正方形ABCD和正五边形ABCDE,如图②、③,在边AB、BC的延长线上截取BM=CN,连结MC、DN,延长MC交DN于点P,则图②中∠CPN= °;(直接写出答案)(4)图③中∠CPN= °;(直接写出答案)(5)拓展:若将图①的△ABC改为正n边形,其它条件不变,则∠CPN= °(用含n 的代数式表示,直接写出答案).26.(1)问题探究:如图①,在四边形ABCD中,AB∥CD,E是BC的中点,AE是∠BAD 的平分线,则线段AB,AD,DC之间的等量关系为;(2)方法迁移:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,E是BC的中点,AE是∠BAF的平分线,试探究线段AB,AF,CF之间的等量关系,并证明你的结论;(3)联想拓展:如图③,AB∥CF,E是BC的中点,点D在线段AE上,∠EDF=∠BAE,试探究线段AB,DF,CF之间的数量关系,并证明你的结论.【参考答案】一、选择题1.C解析:C【分析】根据零指数幂、分式有意义,二次根式有意义的条件进行判断即可;【详解】解:当x=0时,0x0x当x=0=0xx当x=0时,x-1=-11x-故选:C【点睛】本题考查了零指数幂、分式有意义,二次根式有意义的条件,熟练掌握相关知识是解题的关键2.B解析:B【分析】欲判断能否构成直角三角形,只需验证两小边的平方和是否等于最长边的平方.【详解】解:A、92+122=152,能构成直角三角形;B、122+182≠222,不能构成直角三角形;C、82+152=172,能构成直角三角形;D、52+122=132,能构成直角三角形.故选:B.【点睛】本题考查了利用勾股定理逆定理判定直角三角形的方法.在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.C解析:C【解析】【分析】根据平行四边形的判定方法逐一进行分析判断即可.【详解】解:A、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,故选项A不符合题意;B、∵AB=CD,BC=AD,∴四边形ABCD是平行四边形,故选项B不符合题意;C、由AB∥CD,AC=BD,不能判定四边形ABCD是平行四边形,故选项C符合题意;D、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,故选项D不符合题意;故选:C.【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.4.B解析:B【解析】【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【详解】解:去掉一个最高分和一个最低分对中位数没有影响,故选:B.【点睛】本题考查了统计量的选择,解题的关键是了解中位数、众数、平均数及方差的定义,难度不大.5.A解析:A【分析】根据矩形的性质可得BC=AD,∠B=90°,利用勾股定理可求出AC的长,根据折叠的性质可得AF=AB,∠B=∠AFE=90°,BE=EF,在Rt△CEF中利用勾股定理列方程求出EF的长即可得答案.【详解】∵四边形ABCD是矩形,AD=8,∴∠B=90°,BC=AD=8,∴AC10,∵折叠该纸片,使得AB边落在对角线AC上,点B落在点F处,折痕为AE,∴BE=EF,AF=AB=6,∠AFE=∠B=90°,∴CF=AC-AF=10﹣6=4,在Rt△CEF中,由勾股定理得,EF2+CF2=CE2,∴EF 2+CF 2=(BC -EF )2,即EF 2+42=(8-EF )2,解得:EF =3,故选:A .【点睛】本题主要考查了翻折变换的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、勾股定理等几何知识点来分析、判断、推理或解答.6.D解析:D【解析】【分析】设3AC FH x ==,则4BC GH x ==,5AB GF x ==,根据勾股定理即可求得CD 的长,利用x 表示出A S ,同理表示出B S ,根据15A B S S -=,即可求得x 的值,进而求得三角形的面积.【详解】解:设3AC FH x ==,则4BC GH x ==,5AB GF x ==.设CD y =,则4BD x y =-,DE CD y ==,在直角BDE ∆中,532BE x x x =-=,根据勾股定理可得:2224(4)x y x y +=-, 解得:32y x =, 则2113322222A S BE DE xx x ==⨯=, 同理可得:223B S x =,15A B S S -=, ∴22321523x x -=, 解得:32x =,∴纸片的面积是:213461082x x x ⨯==, 故选:D ..【点睛】本题主要考查了翻折变换(折叠问题),三角形面积的计算,根据勾股定理求得CD 的长是解题的关键.7.A解析:A【解析】【分析】因为AOE △的周长是5,1OA =,所以可以推出+=4OE AE ,又根据中位线性质,可以得到2,2AB OE AD AE ==,由此即可推导出平行四边形ABCD 的周长.【详解】解:∵ AOE △的周长是5,且1OA =∴+=514OE AE -=又∵对角线AC 、BD 相交于点O∴O 是BD 的中点∵//OE AB ∴12OE AB =,点E 为AD 的中点 ∵四边形ABCD 是平行四边形∴,AB DC AD BC ==∴4,4AD BC AE AB DC OE +=+=∴+444()16AD BC AB DC AE OE AE OE ++=+=+=故选:A【点睛】本题考查平行四边形的性质,三角形中位线的性质,根据相关内容解题是关键. 8.D解析:D【分析】先设出货车的速度和轿车故障前的速度,再根据货车先出发10分钟后轿车出发,桥车发生故障的时间和两车相遇的时间,根据路程=速度×时间列出方程组求解可判断①;利用待定系数法求OA 与CD 解析式可判断②,先求出点C 货车的时间,用轿车修车20分钟-BC 段货车追上轿车时间乘以货车速度,求出点D 的坐标可判断③;求出轿车速度2000×910=1800(米/分),到x =a 时轿车追上货车两车相遇,列方程(a -65)×(1800-1500)=27500,解得a =4703可判断④. 【详解】解:由图象可知,当x =10时,轿车开始出发;当x =45时,轿车开始发生故障,则x =45-5=40(分钟),即货车出发40分钟时,轿车追上了货车,设货车速度为x 米/分,轿车故障前的速度为y 米/分,根据题意,得:()()()()10401045402500x y x y x ⎧=--⎪⎨--=⎪⎩, 解得:15002000x y =⎧⎨=⎩, ∴货车的速度为1500米/分,轿车故障前的速度是2000米/分,故①货车的速度为1500米/分正确;∵A (10,15000)设OA 解析式:y kx b =+过点O (0,0)与点A ,代入坐标得01015000b k b =⎧⎨+=⎩ 解得01500b k =⎧⎨=⎩∴OA 解析式:1500y x =点C 表示货车追上轿车,从B 到C 表示货车追及的距离是2500,货车所用速度为1500, 追及时间为25005=15003分 点C (1403,0) CD 段表示货车用20-555=33分钟行走的路程, D 点的横坐标为45+20=65分,纵坐标551500=275003⨯米, ∴D (65,27500)故③点D 的坐标为()65,27500正确;设CD 解析式为11y k x b =+,代入坐标得1111140036527500k b k b ⎧+=⎪⎨⎪+=⎩ 解得11=1500-70000k b ⎧⎨=⎩∴CD 解析式为1500-70000y x =∵OA 与CD 解析式中的k 相同,∴OA ∥CD ,∴②OA//CD 正确;D 点表示轿车修好开始继续行驶时,轿车的速度变为原来的910,即此时轿车的速度为:2000×910=1800(米/分), 到x =a 时轿车追上货车两车相遇,∴(a -65)×(1800-1500)=27500,解得a =65+27547033=, 即图中a 的值是4703; 故④图中a 的值是4703正确, 正确的结论有4个.【点睛】本题考查一次函数图像与行程问题的应用,解答本题的关键是明确题意,从图像中获取信息,利用一次函数的性质和数形结合的思想,方程思想解答.二、填空题9.x ≥﹣1且x ≠2【解析】【分析】根据分式的分母不为零、二次根式的被开方数为非负数求解可得答案.【详解】依题意,20x -≠且10x +≥,解得1x ≥-且2x ≠ ,故答案为:1x ≥-且2x ≠.【点睛】本题主要考查函数自变量的取值范围,①当表达式的分母不含有自变量时,自变量取全体实数.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.掌握相关知识是解题的关键.10.A解析: 1:2 4【解析】【分析】根据菱形性质得出AC ⊥BD ,AC=2AO=2CO ,BD=2BO=2DO ,即可求出AO :BO ,根据勾股定理得出方程,求出x 的值,求出AC 、BD ,根据菱形面积公式求出即可.【详解】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,AC=2AO=2CO ,BD=2BO=2DO ,∵AC :BD=1:2,∴AO :BO=12AC :(12BD )=AC :BD=1:2;设AO=x ,则BO=2x ,在Rt △AOB 中,由勾股定理得:x 2+(2x )2=2,解得:x=1(负数舍去),即AO=1,BO=2,∴AC=2,BD=4,∴菱形ABCD 的面积是S=12×AC×BD=12×2×4=4,故答案为:1:2,4.本题考查了菱形的性质的应用,主要考查学生运用性质进行推理和计算的能力,注意:菱形的对角线互相垂直平分,菱形的四条边相等和菱形的面积为两对角线乘积的一半. 11.30【解析】【分析】由勾股定理求出小长方形的长,再由长方形的面积公式进行计算.【详解】 由勾股定理得:2268+=10,∴阴影小长方形的面积S=3×10=30;故答案是:30.【点睛】考查了勾股定理;解题关键是利用勾股定理求出小长方形的长.12.A解析:34cm【分析】根据四个小三角形的周长和为86,列式得86AD AO DO DC DO CO BC BO CO AB AO BO +++++++++++=,再由矩形的对角线相等解题即可.【详解】解:如图,矩形ABCD 中,13AC BD ==,由题意得,86AOD DOC BOC AOB C C C C +++=,86AD AO DO DC DO CO BC BO CO AB AO BO ∴+++++++++++=∴2286AD AC DB DC BC AB +++++=21321386AD DC BC AB ∴+⨯+⨯+++=8626234AD DC BC AB ∴+++=-⨯=故答案为:34cm .【点睛】本题考查矩形的性质,是重要考点,掌握相关知识是解题关键.13.-1.【详解】试题分析:把(1,2)代入直线y=kx+3,即可得方程k+3=2,解得k=-1.考点:一次函数图象上点的坐标特征.14.C【分析】过点C作CM⊥DF,垂足为点M,判断△CDF是等腰三角形,要分类讨论,①CF=CD;②DF=DC;③FD=FC,根据相似三角形的性质进行求解.【详解】①CF=CD时,过点C作CM⊥DF,垂足为点M,则CM∥AE,DM=MF,延长CM交AD于点G,∴AG=GD=1,∴CE=1,∵CG∥AE,AD∥BC,∴四边形AGCE是平行四边形,∴CE=AG=1,∴BE=1∴当BE=1时,△CDF是等腰三角形;②DF=DC时,则DC=DF∵DF⊥AE,AD=2,∴∠DAE=45°,则BE∴当BE△CDF是等腰三角形;③FD=FC时,则点F在CD的垂直平分线上,故F为AE中点.∵AB,BE=x,∴AEAF∵△ADF∽△EAB,∴AD AFAE EB=,x=,x2﹣4x+2=0,解得:x=∴当BE=2时,△CDF是等腰三角形.综上,当BE=12时,△CDF是等腰三角形.故答案为12.【点睛】此题难度比较大,主要考查矩形的性质、相似三角形的性质及等腰三角形的判定,考查知识点比较多,综合性比较强,另外要注意辅助线的作法.15.【分析】通过计算可得第一个正方形的边长为2,第二个正方形的边长为6,……,通过探究规律,利用规律解决问题即可.【详解】解:由题意,,,,第一个正方形的边长为2,,,,,第二个正方解析:201923⨯【分析】通过计算可得第一个正方形的边长为2,第二个正方形的边长为6,……,通过探究规律,利用规律解决问题即可.【详解】解:由题意,1(1,1)A ,1(1,1)B -,112A B ,∴第一个正方形的边长为2,112A D ∴=,2(3,3)A ∴,2(3,3)B -,2223=6A B ∴=⨯,∴第二个正方形的边长为6,226A D ∴=,3(9,9)A ∴,3(9,9)B -,即:232(3)3A ,, 223(33)B ,-,233=2318A B ∴⨯=,∴第三个正方形的边长为18,4(27,27)A ∴,4(27,27)B -,即:334(3)3A ,, 334(33)B ,-,434=2354A B ∴⨯=⋯,可得1(3n n A -,13)n -,1(3n n B -,13)n --,1=23n n n A B -⨯第2020个正方形的边长为201923⨯.故答案为: 201923⨯.【点睛】本题考查一次函数图像上的点的特征,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.16.【分析】过点作于,于,由折叠的性质可得,,由勾股定理可求,由面积法可求的长,由勾股定理可求的长.【详解】解:如图,过点作于,于,将沿直线翻折,,,,,,,,,,,,,, 解析:157【分析】过点D 作DH AC ⊥于H ,DF BC ⊥于F ,由折叠的性质可得3AC CE ==,45ACD BCD ∠=∠=︒,由勾股定理可求5AB =,由面积法可求DF 的长,由勾股定理可求DE 的长.【详解】解:如图,过点D 作DH AC ⊥于H ,DF BC ⊥于F ,将ADC ∆沿直线CD 翻折,3AC CE ∴==,45ACD BCD ∠=∠=︒,4BC ∴=,DH AC ⊥,DF BC ⊥,45ACD BCD ∠=∠=︒,DF DH ∴=,45DCF FDC ∠=∠=︒,DF CF ∴=,22291625AB AC BC =+=+=,5AB ∴=,111222ABC S AC BC AC DH BC DF ∆=⨯⨯=⨯⨯+⨯⨯, 127DF ∴=,127DF ∴=, 127DF CF ∴==,97EF =, 22144811549497DE DF EF ∴=+=+=, 故答案为:157. 【点睛】 本题考查了翻折变换,直角三角形的性质,角平分线的性质,勾股定理等知识,求出DF 的长是本题的关键.三、解答题17.(1);(2)【分析】(1)根据二次根式乘法法则及零指数幂计算即可;(2)先把各二次根式化为最简二次根式,然后合并同类二次根式即可.【详解】解:(1)=+2+1=+3;(2)=3-解析:(13;(22【分析】(1)根据二次根式乘法法则及零指数幂计算即可;(2)先把各二次根式化为最简二次根式,然后合并同类二次根式即可.【详解】解:(10()π+-2+13;(2=2,2.【点睛】此题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算;注意乘法运算公式的运用.18.(1)A ,B 两点间的 距离是40米;(2)点B 到直线AC 的距离是24米.【分析】(1)根据勾股定理解答即可;(2)根据三角形面积公式解答即可.【详解】(1)因为是直角三角形,所以由勾股定解析:(1)A ,B 两点间的 距离是40米;(2)点B 到直线AC 的距离是24米.【分析】(1)根据勾股定理解答即可;(2)根据三角形面积公式解答即可.【详解】(1)因为ABC 是直角三角形,所以由勾股定理,得222AC BC AB =+.因为50AC =米,30BC =,所以22250301600AB =-=.因为0AB >,所以40AB =米.即A ,B 两点间的 距离是40米.(2)过点B 作BD AC ⊥于点D .因为1122ABCS AB BC AC BD=⋅=⋅△,所以AB BC AC BD⋅=⋅.所以30402450AB BCBDAC⋅⨯===(米),即点B到直线AC的距离是24米.【点睛】本题考查了勾股定理的应用,属于基础题,关键是掌握勾股定理在直角三角形中的表达式.19.(1)见解析;(2)见解析;(3)不能,理由见解析;【解析】【分析】(1)根据勾股定理以及题目给的数据作出边长分别为的“整数三角形”;(2)根据勾股定理,作出两个不同的等腰“整数三角形”可以解析:(1)见解析;(2)见解析;(3)不能,理由见解析;【解析】【分析】(1)根据勾股定理以及题目给的数据作出边长分别为6,8,10的“整数三角形”;(2)根据勾股定理,作出两个不同的等腰“整数三角形”可以是边长为5,5,8;5,5,6的等腰三角形;(3)根据题意先求得等边三角形的面积,比较面积和边长的关系即可得出不能找到等边“整数三角形”.【详解】(1)如图1,以A为顶点,周长为12的直角“整数三角形”的边长为3,4,5∴以A为顶点,周长为24的直角“整数三角形”的边长为6,8,10如图:(2)如图,根据勾股定理,作出两个不同的等腰“整数三角形”可以是边长为5,5,8;5,5,6的等腰三角形(3)不存在,理由如下:如图,ABC 是等边三角形,AD 是三角形BC 边上的高,设AB =a (a 为正整数) 则1122BD AB a ==2233a AD AB BD BD =-=211133222ABC S BC AD a a ∴=⨯==△ a 23是无理数, ∴不存在边长和面积都是整数的等边三角形故找不到等边“整数三角形”.【点睛】本题考查了勾股定理的应用,等边三角形的性质,熟练利用勾股定理找到勾股数是解题的关键.20.(1)见解析;(2)AF=5【分析】(1)根据EF 是AC 的垂直平分线可以得到AF=CF ,AE=CE ,再只需证明△AFO ≌△CEO即可得到答案;(2)根据四边形AECF 是菱形可以得到AE=EC解析:(1)见解析;(2)AF =5【分析】(1)根据EF 是AC 的垂直平分线可以得到AF =CF ,AE =CE ,再只需证明△AFO ≌△CEO即可得到答案;(2)根据四边形AECF 是菱形可以得到AE =EC =x ,则BE =8-x ,然后利用勾股定理求解即可.【详解】解:(1)∵EF 是AC 的垂直平分线,∴AF =CF ,AE =CE ,AO =CO∵四边形ABCD 是矩形,∴AF ∥EC∴∠FAO =∠ECO ,∠AFO =∠CEO ,在△AFO 和△CEO 中,AFO CEO AO COFAO ECO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AFO ≌△CEO (AAS ),∴AF =EC ,∴AF =FC =AE =EC ,∴四边形AECF 是菱形;(2)由(1)得AE =CE =AF ,设AE =CE =AF =x ,则BE =8-x ,∵四边形ABCD 是矩形,∴∠B =90°,在直角三角形ABE 中222AB BE AE +=,∴()22248x x +-=, 解得x =5,∴AF =5,21.(1)+;(2).【解析】【分析】(1)分母有理化即可;(2)先分母有理化,然后合并即可.【详解】解:(1);(2)+++…+=.【点睛】此题考查了二次根式的分母有理化,本题解析:(1;(21.【解析】【分析】(1)分母有理化即可;(2)先分母有理化,然后合并即可.【详解】解:(13(21…1.【点睛】此题考查了二次根式的分母有理化,本题中二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.找出分母的有理化因式是解本题的关键.22.(1)气排球的售价是50元/个,篮球的售价是120元/个;(2)x =30时,总费用最小,见解析【分析】(1)直接利用购买2个排球和2个篮球共需340元,购买2个气排球所需费用比购买2个篮球所需费解析:(1)气排球的售价是50元/个,篮球的售价是120元/个;(2)x =30时,总费用最小,见解析【分析】(1)直接利用购买2个排球和2个篮球共需340元,购买2个气排球所需费用比购买2个篮球所需费用少140元,进而列出方程组得出答案;(2)利用气排球的数量不超过篮球数量的3倍,得出不等关系,再根据总共费用等于排球的费用和篮球费用的总和列出一次函数关系式,根据一次函数的增减性在自变量取值范围内求出总费用最小值.【详解】解:(1)设气排球的售价是a 元/个,篮球的售价是b 元/个,由题意得:2234022140a b b a +=⎧⎨-=⎩解得:50120ab=⎧⎨=⎩,答:气排球的售价是50元/个,篮球的售价是120元/个.(2)由题意知购买气排球(120﹣x)个,∴120﹣x≤ 3x解得:x≥30设购买气排球和篮球的总费用为w元,由题意可得:w=50(120﹣x)+120x=70x+6000∵w随x的增大而增大,且x为正整数,∴当x=30时,w取得最小值.∴当x=30时,总费用最小【点睛】本题主要考查二元一次方程组,不等式和一次函数解决最值问题,解决本题的关键是要认真审题寻找等量关系列方程组,不等式,一次函数关系进行求解.23.(1)证明过程见解析;(2)①边长为cm,②.【分析】(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=E解析:(1)证明过程见解析;(2)①边长为cm,②.【分析】(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;(2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD-DE=1cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=cm即可;②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案.【详解】解:(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ,∴点B与点E关于PQ对称,∴PB=PE,BF=EF,∠BPF=∠EPF,又∵EF∥AB,∴∠BPF=∠EFP,∴∠EPF=∠EFP,∴EP=EF,∴BP=BF=EF=EP,∴四边形BFEP为菱形;(2)①∵四边形ABCD是矩形,∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,∵点B与点E关于PQ对称,∴CE=BC=5cm,在Rt△CDE中,DE==4cm,∴AE=AD﹣DE=5cm-4cm=1cm;在Rt△APE中,AE=1,AP=3-PB=3﹣PE,∴,解得:EP=cm,∴菱形BFEP的边长为cm;②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm,BP=cm,,当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,,∴菱形的面积范围:.【点睛】本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识,求出PE是本题的关键.24.(1)y=-2x-2,(0,-2);(2)P(0,5)或P(0,3);(3)-2≤m<,或2<m≤4【解析】【分析】(1)利用待定系数法求得直线AB的解析式,根据关联点和关联直线的定义可得结论解析:(1)y=-2x-2,(0,-2);(2)P(0,5)或P(0,3);(3)-2≤m<23,或2<m≤4【解析】【分析】(1)利用待定系数法求得直线AB 的解析式,根据关联点和关联直线的定义可得结论; (2)先根据关联点求D 和E 的坐标,根据面积和列式可得P 的坐标;(3)点M 分别在线段AC→CB 上讨论,根据直线l 与△ABC 恰有两个公共点时,可得m 的取值范围.【详解】解:(1)设直线AB 的解析式为:y=kx+b ,把点A (-2,-2),B (4,-2)代入得:2242k b k b -+=-⎧⎨+=-⎩, 解得:02k b =⎧⎨=-⎩, ∴直线AB 的解析式为:y=-2,∴点A 的关联直线的解析式为y=-2x-2;直线AB 的关联点的坐标为:(0,-2);故答案为:y=-2x-2,(0,-2);(2)∵点A (-2,-2),B (4,-2),C (1,4).∴直线AC 的解析式为y=2x+2,直线BC 的解析式为y=-2x+6,∴D (2,2),E (-2,6).∴直线DE 的解析式为y=-x+4,∴直线DE 与y 轴交于点F (0,4),如图1,设点P (0,y ),∵S △DEP =2,∴S △DEP =S △EFP +S △DFP =142y ⨯-×|-2|+1422y ⨯-⨯=2, 解得:y=5或y=3,∴P (0,5)或P (0,3).(3)①当M 在线段AC 上时,如图3,∵AC:y=2x+2,∴设M(m,2m+2)(-2≤m≤1),则关联直线l:y=mx+2m+2,把C(1,4)代入y=mx+2m+2得:m+2m+2=4,m=23,∴-2≤m<23;②当M在线段BC上时,如图3,∵BC:y=-2x+6,∴设M(m,-2m+6)(1≤m≤4),则关联直线l:y=mx-2m+6,把A(-2,-2)代入y=mx-2m+6得:-2m-2m+6=-2,m=2,∴2<m≤4;综合上述,-2≤m<23或2<m≤4.【点睛】本题是一次函数的综合题,也是有关关联点和关联直线的新定义问题,考查了一次函数图象上点的坐标特征、理解新定义、利用待定系数法求一次函数的解析式,本题中理解关联点和关联直线的定义,正确进行分类讨论是解题的关键.25.(1)见解析;(2)120;(3)90;(4)72;(5).【分析】(1)利用等边三角形的性质得到BC=AC ,∠ACB=∠ABC ,从而得到△ACN ≌△CBM.(2)利用全等三角形的性质得到∠C解析:(1)见解析;(2)120;(3)90;(4)72;(5)360n. 【分析】(1)利用等边三角形的性质得到BC=AC ,∠ACB=∠ABC ,从而得到△ACN ≌△CBM.(2)利用全等三角形的性质得到∠CAN=∠BCM ,再利用三角形的外角等于与它不相邻的两个内角的和,即可求解.(3)利用正方形(或正五边形)的性质得到BC=DC ,∠ABC=∠BCD ,从而判断出△DCN ≌△CBM ,再利用全等三角形的性质得到∠CDN=∠BCM ,再利用内角和定理即可得到答案.(4)由(3)的方法即可得到答案.(5)利用正三边形,正四边形,正五边形,分别求出∠CPN 的度数与边数的关系式,即可得到答案.【详解】(1)∵△ABC 是等边三角形,∴BC=AC ,∠ACB=∠BAC=∠ABC=60︒,∴∠ACN=∠CBM=120︒,在△CAN 和△CBM 中,CN BM ACN CBM AC BC =⎧⎪∠=∠⎨⎪=⎩, ∴△ACN ≌△CBM.(2)∵△ACN ≌△CBM.∴∠CAN=∠BCM ,∵∠ABC=∠BMC+∠BCM ,∠BAN=∠BAC+∠CAN ,∴∠CPN=∠BMC+∠BAN=∠BMC+∠BAC+∠CAN=∠BMC+∠BAC+∠BCM=∠ABC+∠BAC=60︒+60︒,=120︒,故答案为:120.(3)将等边三角形换成正方形,。
2013-2014学年广东省广州市越秀区八年级(下)期末数学试卷一、选择题:本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符号题目要求的.1.(3分)式子在实数范围内有意义,则x的取值范围是()A.x≥﹣2 B.x≥2 C.x≤﹣2 D.x≤22.(3分)一位运动鞋经销商到一所学校抽样调查了10名男生的鞋号,其号码分别为:37,38,39,40,41,41,41,42,43,45,经销商最感兴趣的是这组数据中的()A.平均数B.中位数C.众数D.方差3.(3分)下列式子中,表示y是x的正比例函数的是()A.y=2x B.y=x+2 C.D.y=x24.(3分)下列计算正确的是()A.B.C.D.5.(3分)下列命题的逆命题是假命题的是()A.两直线平行,同位角相等B.两直线平行,内错角相等C.两三角形全等,三对对应边相等D.两三角形全等,三对对应角相等6.(3分)下列条件中,不能判断四边形ABCD是平行四边形的为()A.AB∥CD,AD∥BC B.AB=CD,AD=BC C.AB∥CD,AD=BC D.AB∥CD,AB=CD7.(3分)在平面直角坐标系xOy中,一次函数y=kx﹣1(k<0)的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)下列各曲线中,表示y是x的函数的是()A.B.C. D.9.(3分)依次连接菱形的各边中点,得到的四边形是()A.矩形B.菱形C.正方形D.梯形10.(3分)在△ABC中,∠ABC=90°,AB=8,BC=6,D、E分别为AB、AC的中点,则BE+DE=()A.7 B.8 C.9 D.10二、填空题:本大题共6小题,每小题3分,满分18分.11.(3分)在一次男子马拉松长跑比赛中,抽样得到10名选手所用的时间(单位:min)如下:124,129,136,140,142,148,154,158,165,170,则这组数据的中位数是.12.(3分)当时,代数式x2+2x+3的值是.13.(3分)如图,在▱ABCD中,AB⊥BD,∠BAD=45°,CD=2,则直线AB与CD 之间的距离为.14.(3分)若一个直角三角形的三边长分别为2,3,x,则x=.15.(3分)如图反映的是小明从家去食堂吃早餐,接着去图书馆读报,然后回家的过程中,小明离家的距离y与时间x之间的对应关系.小明家、食堂、图书馆在同一条直线上.根据图象可以计算得出,小明从食堂行走到图书馆的平均速度是km/min.16.(3分)在同一直角坐标系xOy中,函数y=kx与y=x+b的图象如图.根据图象可以得出,使y=kx的函数值大于y=x+b的函数值的自变量x的取值范围是.三、解答题:本大题共9小题,满分72分.解答须写出文字说明、证明过程和演算步骤.17.(6分)计算:.18.(8分)某商场招募员工一名,现有甲、乙、丙三人竞聘.通过计算机技能、语言表达和商品知识三项测试,他们各自成绩(百分制)如下表:(1)若商场需要招聘负责将商品拆装上架的人员,对计算机技能、语言表达和商品知识分别赋权2、3、5,计算这三名应试者的平均成绩.从成绩看,应该录取谁?(2)若商场需要招聘电脑收银员,计算机技能、语言表达和商品知识成绩分别占50%、30%、20%,计算这三名应试者的平均成绩.从成绩看,应该录取谁?19.(8分)甲、乙两台机床同时生产一种零件.在10天中,两台机床每天出次品的数量如下表:(1)分别计算两组数据的平均数和方差;(2)从计算的结果来看,在10天总,哪台机床出次品的平均数较小?哪台机床出次品的波动较小?20.(8分)如图,在4×4正方形网格中,每个小正方形的边长都为1.(1)求△ABC的周长;(2)求证:∠ABC=90°.21.(8分)已知一次函数的图象经过点(1,1)和点(﹣1,﹣3).(1)求这个一次函数的解析式;(2)在给定的直角坐标系xOy中画出这个一次函数的图象,并指出当x增大时y如何变化?22.(8分)如图,在▱ABCD中,对角线AC、BD相交于点O,且OA=OB.(1)求证:四边形ABCD是矩形;(2)若AB=6,∠AOB=120°,求BC的长.23.(8分)如图,在直角梯形ACED中,∠C=∠E=90°,BC=DE,AC=BE.设BC=a,AC=b,AB=c,试利用该图形证明勾股定理.24.(8分)甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原件为x(x>0)元,让利后的购物金额为y元.(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.25.(10分)已知正方形ABCD的边长为a,EF∥GH,且EF与GH之间的距离等于a.(1)如图1,若EF经过A,GH与BC、CD分别交于点I、J.作AP⊥GH,垂足为P.求证:△API≌△ABI,且∠IAJ=45°;(2)如图2,若EF与AD、AB分别相交于点K、L,GH与BC、CD分别相交于点I、J,IK与JL相交于点M.作KP⊥GH,垂足为P,作KQ⊥BC,垂足为Q.求证:△KPI≌△KQI,且∠IMJ=45°.2013-2014学年广东省广州市越秀区八年级(下)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符号题目要求的.1.(3分)式子在实数范围内有意义,则x的取值范围是()A.x≥﹣2 B.x≥2 C.x≤﹣2 D.x≤2【解答】解:由题意得:2﹣x≥0,解得:x≤2,故选:D.2.(3分)一位运动鞋经销商到一所学校抽样调查了10名男生的鞋号,其号码分别为:37,38,39,40,41,41,41,42,43,45,经销商最感兴趣的是这组数据中的()A.平均数B.中位数C.众数D.方差【解答】解:经销商最感兴趣的是哪种鞋卖的多,而众数就是一组数据出现次数最多的数,所以经销商最感兴趣的是这组数据的众数.故选:C.3.(3分)下列式子中,表示y是x的正比例函数的是()A.y=2x B.y=x+2 C.D.y=x2【解答】解:A、y=2x,符合正比例函数的含义,故本选项正确;B、y=x+2,是和的形式,故本选项错误;C、y=,自变量次数不为1,故本选项错误;D、y=x2,自变量次数不为1,故本选项错误,故选:A.4.(3分)下列计算正确的是()A.B.C.D.【解答】解:A、()2=3,故A错误;B、算术平方根都是非负数,故B错误;C、一个正数的负平方根是负数,故C错误;D、=0.1,故D正确.故选:D.5.(3分)下列命题的逆命题是假命题的是()A.两直线平行,同位角相等B.两直线平行,内错角相等C.两三角形全等,三对对应边相等D.两三角形全等,三对对应角相等【解答】解:A、逆命题为:同位角相等,两直线平行,正确,是真命题;B、逆命题为:内错角相等,两直线平行,正确,是真命题;C、逆命题为:三对对应边相等的两三角形全等,正确,是真命题;D、逆命题为:三对对应角相等的两三角形全等,错误,是假命题,故选:D.6.(3分)下列条件中,不能判断四边形ABCD是平行四边形的为()A.AB∥CD,AD∥BC B.AB=CD,AD=BC C.AB∥CD,AD=BC D.AB∥CD,AB=CD【解答】解:A、AB∥CD,AD∥BC,可以根据:两组对边分别平行的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意;B、AB=CD,AD=BC,可以根据:两组对边分别相等的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意;C、AB∥CD,AD=BC,不能判定四边形ABCD是平行四边形,故此选项符合题意;D、AB∥CD,AB=CD,可以根据:一组对边平行且相等的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意.故选:C.7.(3分)在平面直角坐标系xOy中,一次函数y=kx﹣1(k<0)的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵一次函数y=kx﹣1(k<0)中,k<0,b=﹣1<0,∴此函数的图象经过二、三、四象限,不经过第一象限.故选:A.8.(3分)下列各曲线中,表示y是x的函数的是()A.B.C. D.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B正确.故选:B.9.(3分)依次连接菱形的各边中点,得到的四边形是()A.矩形B.菱形C.正方形D.梯形【解答】解:如右图所示,四边形ABCD是菱形,顺次连接个边中点E、F、G、H,连接AC、BD,∵E、H是AB、AD中点,∴EH∥BD,同理有FG∥BD,∴EH∥FG,同理EF∥HG,∴四边形EFGH是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°,又∵EF∥AC,∴∠BME=90,∵EH∥BD,∴∠HEF=∠BME=90°,∴四边形EFGH是矩形.故选:A.10.(3分)在△ABC中,∠ABC=90°,AB=8,BC=6,D、E分别为AB、AC的中点,则BE+DE=()A.7 B.8 C.9 D.10【解答】解:∵∠ABC=90°,AB=8,BC=6,∴AC===10,∵D、E分别为AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC=×6=3,∵∠ABC=90°,E是AC的中点,∴BE=AC=×10=5,∴BE+DE=5+3=8.故选:B.二、填空题:本大题共6小题,每小题3分,满分18分.11.(3分)在一次男子马拉松长跑比赛中,抽样得到10名选手所用的时间(单位:min)如下:124,129,136,140,142,148,154,158,165,170,则这组数据的中位数是145.【解答】解:把数据按从小到大排列后,这组数据的第5,第6个数分别是142,148,它们的平均数=(142+148)=145,所以中位数为145.故答案为:145.12.(3分)当时,代数式x2+2x+3的值是7.【解答】解:∵,∴x+1=,∴(x+1)2=5,即x2+2x+1=5,∴x2+2x=4,∴x2+2x+3=4+3=7.故答案为7.13.(3分)如图,在▱ABCD中,AB⊥BD,∠BAD=45°,CD=2,则直线AB与CD 之间的距离为2.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=2,又∵AB⊥BD,∠BAD=45°,∴BD=AB=2.故答案是:2.14.(3分)若一个直角三角形的三边长分别为2,3,x,则x=或.【解答】解:①当x为斜边时,x==;②当3为斜边时32=22+x2,解得x=.故答案为:或15.(3分)如图反映的是小明从家去食堂吃早餐,接着去图书馆读报,然后回家的过程中,小明离家的距离y与时间x之间的对应关系.小明家、食堂、图书馆在同一条直线上.根据图象可以计算得出,小明从食堂行走到图书馆的平均速度是km/min.【解答】解;由纵坐标看出:家到食堂的距离是0.6km,家到图书馆的距离是0.8km,食堂到图书馆的距离是0.8﹣06=0.2km;由横坐标看出:从食堂到图书馆的时间是28﹣25=3min,小明从食堂行走到图书馆的平均速度是0.2÷3=km/min,故答案为:.16.(3分)在同一直角坐标系xOy中,函数y=kx与y=x+b的图象如图.根据图象可以得出,使y=kx的函数值大于y=x+b的函数值的自变量x的取值范围是x <﹣1.【解答】解:根据题意得当x<﹣1时,y=kx的函数值大于y=x+b的函数值.故答案为x<﹣1.三、解答题:本大题共9小题,满分72分.解答须写出文字说明、证明过程和演算步骤.17.(6分)计算:.【解答】解:原式=(5+4﹣3)÷2=6÷2=3.18.(8分)某商场招募员工一名,现有甲、乙、丙三人竞聘.通过计算机技能、语言表达和商品知识三项测试,他们各自成绩(百分制)如下表:(1)若商场需要招聘负责将商品拆装上架的人员,对计算机技能、语言表达和商品知识分别赋权2、3、5,计算这三名应试者的平均成绩.从成绩看,应该录取谁?(2)若商场需要招聘电脑收银员,计算机技能、语言表达和商品知识成绩分别占50%、30%、20%,计算这三名应试者的平均成绩.从成绩看,应该录取谁?【解答】解:(1)甲成绩:=78(分),乙成绩:=83(分),丙成绩:=79(分),因此乙成绩最高,应被录取.(2)甲成绩:80×50%+90×30%+70×20%=81(分),乙成绩:70×50%+80×30%+90×20%=77(分),丙成绩:90×50%+70×30%+80×20%=82(分),因此丙成绩最高,应被录取.19.(8分)甲、乙两台机床同时生产一种零件.在10天中,两台机床每天出次品的数量如下表:(1)分别计算两组数据的平均数和方差;(2)从计算的结果来看,在10天总,哪台机床出次品的平均数较小?哪台机床出次品的波动较小?【解答】解:(1)甲的平均数是:(1+1+0+2+1+3+2+1+1+0)÷10=1.2;乙的平均数是:(0+2+2+0+3+1+0+1+3+1)=1.3;S2甲=[5×(1﹣1.2)2+2×(0﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76;S2乙=[3×(0﹣1.3)2+2×(2﹣1.3)2+2×(3﹣1.3)2+3×(1﹣1.3)2]=1.21;(2)∵甲=1.2,乙=1.3,∴甲机床出次品的平均数较小;∵S2甲=0.76,S2乙=1.215,∴S2甲<S2乙,∴甲机床出次品的波动较小.20.(8分)如图,在4×4正方形网格中,每个小正方形的边长都为1.(1)求△ABC的周长;(2)求证:∠ABC=90°.【解答】解:(1)AB==2,BC==,AC==5,△ABC的周长=2++5=3+5,(2)∵AC2=25,AB2=20,BC2=5,∴AC2=AB2+BC2,∴∠ABC=90°.21.(8分)已知一次函数的图象经过点(1,1)和点(﹣1,﹣3).(1)求这个一次函数的解析式;(2)在给定的直角坐标系xOy中画出这个一次函数的图象,并指出当x增大时y如何变化?【解答】解:(1)设一次函数解析式为y=kx+b,将(1,1)与(﹣1,﹣3)代入得,解得:k=2,b=﹣1,则一次函数解析式为y=2x﹣1;(2)如图所示,y随着x的增大而增大.22.(8分)如图,在▱ABCD中,对角线AC、BD相交于点O,且OA=OB.(1)求证:四边形ABCD是矩形;(2)若AB=6,∠AOB=120°,求BC的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AO=OC,BO=OD,∵OA=OB,∴OA=OB=OC=OD,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵∠AOB=120°,OA=OB,∴∠OAB=∠OBA=30°,∵四边形ABCD是矩形,∴∠ABC=90°,∴AC=2BC,∴AB==BC,∴BC=AB=6×=2.23.(8分)如图,在直角梯形ACED中,∠C=∠E=90°,BC=DE,AC=BE.设BC=a,AC=b,AB=c,试利用该图形证明勾股定理.【解答】证明:如图,在△BDE和△ABC中,,∴△BDE≌△ABC(SAS),∴∠BDE=∠ABC,AB=BD,∵∠BDE+∠DBE=90°,∴∠ABC+∠DBE=90°,∴∠ABD=90°,∴梯形的面积=(a+b)(a+b)=2×ab+c2,整理得:a2+b2=c2.24.(8分)甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原件为x(x>0)元,让利后的购物金额为y元.(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.【解答】解;(1)甲商场写出y关于x的函数解析式y1=0.85x,乙商场写出y关于x的函数解析式y2=200+(x﹣200)×0.75=0.75x+50 (x>200),y2=x (0≤x≤200);(2)由y1>y2,得0.85x>0.75x+50,x>500,当x>500时,到乙商场购物会更省钱;由y1=y2得0.85x=0.75x+50,x=500时,到两家商场去购物花费一样;由y1<y2,得0.85x<0.75x+500,x<500,当x<500时,到甲商场购物会更省钱;综上所述:x>500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x<500时,到甲商场购物会更省钱.25.(10分)已知正方形ABCD的边长为a,EF∥GH,且EF与GH之间的距离等于a.(1)如图1,若EF经过A,GH与BC、CD分别交于点I、J.作AP⊥GH,垂足为P.求证:△API≌△ABI,且∠IAJ=45°;(2)如图2,若EF与AD、AB分别相交于点K、L,GH与BC、CD分别相交于点I、J,IK与JL相交于点M.作KP⊥GH,垂足为P,作KQ⊥BC,垂足为Q.求证:△KPI≌△KQI,且∠IMJ=45°.【解答】证明:(1)如图1,∵四边形ABCD是正方形,∴∠ABC=∠ADC=90°,AB=BC=CD=DA=a.∵AP⊥GH,∴∠ABI=∠API=∠BAD=∠APJ=90°.∵EF与GH之间的距离等于a∴AP=AB=AD=a.在Rt△ABI和Rt△API中,,∴Rt△ABI≌Rt△API(HL)即△API≌△ABI.∴∠BAI=∠PAI=∠BAP.在Rt△APJ和Rt△ADJ中,∴Rt△APJ≌Rt△ADJ(HL)∴∠DAJ=∠PAJ=∠DAP.∵∠BAP+∠DAP=90°∴∠IAJ=∠PAI+∠PAJ=(∠BAP+∠DAP)=45°;(2)如图2,∵ABCD是正方形,∴AB=BC=CD=DA=a,∠B=∠D=∠DAB=90°.∵KP⊥GH,KQ⊥BC,∴∠KPI=∠KQI=∠KQB=90°.∴∠B=∠AQB=∠DAB=90°,∴四边形KABQ为矩形,∴KQ=AB.∵EF与GH之间的距离等于a∴KP=AB=a.∴KP=KQ.在Rt△KPI和Rt△KQI中,,∴Rt△KPI≌Rt△KQI(HL)如图3,作MR⊥CD于R,MS⊥BC于S,MO⊥JI于O,∴∠MRJ=∠MOJ=∠MOI=∠MSI=90°.∵Rt△KPI≌Rt△KQI,∴∠JIM=∠MIS.在△MOI和△MSI中,,∴△MOI≌△MSI(AAS).∴∠OMI=∠IMS.同理可得△RMJ≌△OMJ(作LW⊥HG于W,LY⊥CD于Y,证明△LJW≌△LJY,推出∠JMO=∠JIW=∠JMR=∠JLY即可证明)∴∠RMJ=∠OMJ,∵∠IMJ=∠IMO+∠JMO,∴∠IMJ=(∠RMO+∠OMS).∵∠RMO+∠OMS=90°∴∠IMJ=45°.。
2016-2017学年广东省广州市越秀区八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列式子没有意义的是()A.B. C. D.2.(3分)下列计算中,正确的是()A.÷=B.(4)2=8 C.=2 D.2×2=23.(3分)刻画一组数据波动大小的统计量是()A.平均数B.方差C.众数D.中位数4.(3分)在暑假到来之前,某机构向八年级学生推荐了A,B,C三条游学线路,现对全级学生喜欢哪一条游学线路作调查,以决定最终的游学线路,下面的统计量中最值得关注的是()A.方差B.平均数C.中位数D.众数5.(3分)关于正比例函数y=﹣2x,下列结论中正确的是()A.函数图象经过点(﹣2,1)B.y随x的增大而减小C.函数图象经过第一、三象限D.不论x取何值,总有y<06.(3分)以下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.2,3,4 B.,,C.1,,2 D.7,8,97.(3分)若一个直角三角形的一条直角边长是5cm,另一条直角边比斜边短1cm,则斜边长为()cm.A.10 B.11 C.12 D.138.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,则菱形ABCD的面积是()A.24 B.26 C.30 D.489.(3分)在下列命题中,是假命题的是()A.有一个角是直角的平行四边形是矩形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.有两组邻边相等的四边形是菱形10.(3分)已知平面上四点A(0,0),B(10,0),C(12,6),D(2,6),直线y=mx﹣3m+6将四边形ABCD分成面积相等的两部分,则m的值为()A.B.﹣1 C.2 D.二、填空题:本大题共6小题,每小题3分,满分18分.11.(3分)已知a=+2,b=﹣2,则ab=.12.(3分)一次函数y=kx+b(k≠0)中,x与y的部分对应值如下表:x﹣2﹣1012y﹣6﹣4﹣202那么,一元一次方程kx+b=0的解是x=.13.(3分)如图是一次函数y=mx+n的图象,则关于x的不等式mx+n>2的解集是.14.(3分)一组数据:2017、2017、2017、2017、2017,它的方差是.15.(3分)考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端垂直滑下6个单位时,请问其下端离开墙角有多远?”,这个问题的答案是:其下端离开墙角个单位.16.(3分)如图所示,在Rt△ABC中,∠A=90°,DE∥BC,F,G,H,I分别是DE,BE,BC,CD的中点,连接FG,GH,HI,IF,FH,GI.对于下列结论:①∠GFI=90°;②GH=GI;③GI=(BC﹣DE);④四边形FGHI是正方形.其中正确的是(请写出所有正确结论的序号).三、解答题:本大题共9小题,满分72分.解答须写出文字说明、推理过程和演算步骤.17.(6分)计算:(+﹣)×.18.(8分)如图,在△ABC中,AD⊥BC,AB=5,BD=4,CD=.(1)求AD的长.(2)求△ABC的周长.19.(8分)如图在平行四边形ABCD中,AC交BD于点O,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:四边形AECF为平行四边形.20.(8分)下表是某校八年级(1)班43名学生右眼视力的检查结果.视力 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0人数125435115106(1)该班学生右眼视力的平均数是(结果保留1位小数).(2)该班学生右眼视力的中位数是.(3)该班小鸣同学右眼视力是4.5,能不能说小鸣同学的右眼视力处于全班同学的中上水平?试说明理由.21.(8分)如图,正方形ABCD的对角线相交于点O,BC=6,延长BC至点E,使得CE=8,点F是DE的中点,连接CF、OF.(1)求OF的长.(2)求CF的长.22.(8分)如图,在平面直角坐标系中,直线y=kx+b经过点A(﹣30,0)和点B(0,15),直线y=x+5与直线y=kx+b相交于点P,与y轴交于点C.(1)求直线y=kx+b的解析式.(2)求△PBC的面积.23.(8分)2016年下半年开始,不同品牌的共享单车出现在城市的大街小巷.现已知A品牌共享单车计费方式为:初始骑行单价为1元/半小时,不足半小时按半小时计算.内设邀请机制,每邀请一位好友注册认证并充值押金成功,双方骑行单价均降价0.1元/半小时,骑行单价最低可降至0.1元/半小时(比如,某用户邀请了3位好友,则骑行单价为0.7元/半小时).B品牌共享单车计费方式为:0.5元/半小时,不足半小时按半小时计算.(1)某用户准备选择A品牌共享单车使用,设该用户邀请好友x名(x为整数,x≥0),该用户的骑行单价为y元/半小时.请写出y关于x的函数解析式.(2)若有A,B两种品牌的共享单车各一辆供某用户一人选择使用,请你根据该用户已邀请好友的人数,给出经济实惠的选择建议.24.(8分)下面我们做一次折叠活动:第一步,在一张宽为2的矩形纸片的一端,利用图(1)的方法折出一个正方形,然后把纸片展平,折痕为MC;第二步,如图(2),把这个正方形折成两个相等的矩形,再把纸片展平,折痕为FA;第三步,折出内侧矩形FACB的对角线AB,并将AB折到图(3)中所示的AD处,折痕为AQ.根据以上的操作过程,完成下列问题:(1)求CD的长.(2)请判断四边形ABQD的形状,并说明你的理由.25.(10分)如图,正方形ABCD中,AB=4,P是CD边上的动点(P点不与C、D重合),过点P作直线与BC的延长线交于点E,与AD交于点F,且CP=CE,连接DE、BP、BF,设CP═x,△PBF的面积为S1,△PDE的面积为S2.(1)求证:BP⊥DE.(2)求S1﹣S2关于x的函数解析式,并写出x的取值范围.(3)分别求当∠PBF=30°和∠PBF=45°时,S1﹣S2的值.2016-2017学年广东省广州市越秀区八年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列式子没有意义的是()A.B. C. D.【解答】解:A、有意义,故此选项不合题意;B、没有意义,故此选项符合题意;C、有意义,故此选项不合题意;D、有意义,故此选项不合题意;故选:B.2.(3分)下列计算中,正确的是()A.÷=B.(4)2=8 C.=2 D.2×2=2【解答】解:A、原式===3,不符合题意;B、原式=32,不符合题意;C、原式=|﹣2|=2,符合题意;D、原式=4,不符合题意;故选:C.3.(3分)刻画一组数据波动大小的统计量是()A.平均数B.方差C.众数D.中位数【解答】解:由于方差反映数据的波动情况,衡量一组数据波动大小的统计量是方差.故选:B.4.(3分)在暑假到来之前,某机构向八年级学生推荐了A,B,C三条游学线路,现对全级学生喜欢哪一条游学线路作调查,以决定最终的游学线路,下面的统计量中最值得关注的是()A.方差B.平均数C.中位数D.众数【解答】解:由于众数是数据中出现次数最多的数,故全级学生喜欢的游学线路最值得关注的应该是统计调查数据的众数.故选:D.5.(3分)关于正比例函数y=﹣2x,下列结论中正确的是()A.函数图象经过点(﹣2,1)B.y随x的增大而减小C.函数图象经过第一、三象限D.不论x取何值,总有y<0【解答】解:A、当x=﹣2时,y=﹣2×(﹣2)=4,即图象经过点(﹣2,4),不经过点(﹣2,1),故本选项错误;B、由于k=﹣2<0,所以y随x的增大而减小,故本选项正确;C、由于k=﹣2<0,所以图象经过二、四象限,故本选项错误;D、∵x>0时,y<0,x<0时,y>0,∴不论x为何值,总有y<0错误,故本选项错误.故选:B.6.(3分)以下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.2,3,4 B.,,C.1,,2 D.7,8,9【解答】解:A、22+32≠42,故不是直角三角形;B、()2+()2≠()2,故不是直角三角形;C、12+()2=22,故是直角三角形;D、72+82≠92,故不是直角三角形;故选:C.7.(3分)若一个直角三角形的一条直角边长是5cm,另一条直角边比斜边短1cm,则斜边长为()cm.A.10 B.11 C.12 D.13【解答】解:设斜边长为xcm,则另一条直角边为(x﹣1)cm,由勾股定理得,x2=52+(x﹣1)2,解得,x=13,则斜边长为13cm,故选:D.8.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,则菱形ABCD的面积是()A.24 B.26 C.30 D.48【解答】解:∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB=,=,=4,∴BD=2OB=8,∴S=×AC×BD=×6×8=24.菱形ABCD故选:A.9.(3分)在下列命题中,是假命题的是()A.有一个角是直角的平行四边形是矩形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.有两组邻边相等的四边形是菱形【解答】解:A、有一个角是直角的平行四边形是矩形,正确;B、一组邻边相等的矩形是正方形,正确;C、一组对边平行且相等的四边形是平行四边形,正确;D、有两组邻边相等且平行的四边形是菱形,错误;故选:D.10.(3分)已知平面上四点A(0,0),B(10,0),C(12,6),D(2,6),直线y=mx﹣3m+6将四边形ABCD分成面积相等的两部分,则m的值为()A.B.﹣1 C.2 D.【解答】解:如图,∵A(0,0),B(10,0),C(12,6),D(2,6),∴AB=10﹣0=10,CD=12﹣2=10,又点C、D的纵坐标相同,∴AB∥CD且AB=CD,∴四边形ABCD是平行四边形,∵12÷2=6,6÷2=3,∴对角线交点P的坐标是(6,3),∵直线y=mx﹣3m+6将四边形ABCD分成面积相等的两部分,∴直线y=mx﹣3m+6经过点P,∴6m﹣3m+6=3,解得m=﹣1.故选:B.二、填空题:本大题共6小题,每小题3分,满分18分.11.(3分)已知a=+2,b=﹣2,则ab=1.【解答】解:∵a=+2,b=﹣2,∴ab=(+2)(﹣2)=5﹣4=1,故答案为:112.(3分)一次函数y=kx+b(k≠0)中,x与y的部分对应值如下表:x﹣2﹣1012y﹣6﹣4﹣202那么,一元一次方程kx+b=0的解是x=1.【解答】解:根据上表中的数据值,当y=0时,x=1,即一元一次方程kx+b=0的解是x=1.故答案是:1.13.(3分)如图是一次函数y=mx+n的图象,则关于x的不等式mx+n>2的解集是x>0.【解答】解:由题意,可知一次函数y=mx+n的图象经过点(0,2),且y随x 的增大而增大,所以关于x的不等式mx+n>2的解集是x>0.故答案为x>0.14.(3分)一组数据:2017、2017、2017、2017、2017,它的方差是0.【解答】解:该组数据一样,没有波动,方差为0,故答案为0.15.(3分)考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端垂直滑下6个单位时,请问其下端离开墙角有多远?”,这个问题的答案是:其下端离开墙角18个单位.【解答】解:∵PC=AB=30,PA=6,∴AC=24,∴BC===18,∴下端离开墙角18个单位.故答案为18.16.(3分)如图所示,在Rt△ABC中,∠A=90°,DE∥BC,F,G,H,I分别是DE,BE,BC,CD的中点,连接FG,GH,HI,IF,FH,GI.对于下列结论:①∠GFI=90°;②GH=GI;③GI=(BC﹣DE);④四边形FGHI是正方形.其中正确的是①③(请写出所有正确结论的序号).【解答】解:延长IF交AB于K,∵DF=EF,BG=GE,∴FG=BD,GF∥AB,同理IF∥AC,HI=BD,HI∥BD,∴∠BKI=∠A=90°,∴∠GFI=∠BKI=90°,∴GF⊥FI,故①正确,∴FG=HI,FG∥HI,∴四边形FGHI是平行四边形,∵∠GFI=90°,∴四边形FGHI是矩形,故②④错误,∵EG=GB,EI=IN,∴GI=BHN=(BC﹣DE),故③正确,故答案为①③.三、解答题:本大题共9小题,满分72分.解答须写出文字说明、推理过程和演算步骤.17.(6分)计算:(+﹣)×.【解答】解:原式=(6+﹣﹣3)×=×=7.18.(8分)如图,在△ABC中,AD⊥BC,AB=5,BD=4,CD=.(1)求AD的长.(2)求△ABC的周长.【解答】解:(1)在Rt△ABD中,AD==3;(2)在Rt△ACD中,AC==2,则△ABC的周长=AB+AC+BC=5+4++2=9+3.19.(8分)如图在平行四边形ABCD中,AC交BD于点O,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:四边形AECF为平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE⊥BD,CF⊥BD,∴AE∥CF,∠AEB=∠CFD=90°,在△AEB和△CFD中,∵,∴△AEB≌△CFD(AAS),∴AE=CF,∴四边形AECF是平行四边形.20.(8分)下表是某校八年级(1)班43名学生右眼视力的检查结果.视力 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0人数125435115106(1)该班学生右眼视力的平均数是 4.6(结果保留1位小数).(2)该班学生右眼视力的中位数是 4.7.(3)该班小鸣同学右眼视力是4.5,能不能说小鸣同学的右眼视力处于全班同学的中上水平?试说明理由.【解答】解:(1)该班学生右眼视力的平均数是×(4.0+4.1×2+4.2×5+4.3×4+4.4×3+4.5×5+4.6+4.7+4.8×5+4.9×10+5.0×6)≈4.6,故答案为:4.6;(2)由于共有43个数据,其中位数为第22个数据,即中位数为4.7,故答案为:4.7;(3)不能,∵小鸣同学右眼视力是4.5,小于中位数4.7,∴不能说小鸣同学的右眼视力处于全班同学的中上水平.使得CE=8,点F是DE的中点,连接CF、OF.(1)求OF的长.(2)求CF的长.【解答】解:(1)∵四边形ABCD是正方形,∴BC=CD=6,∠BCD=∠ECD=90°,OB=OD,∵CE=8,∴BE=14,∵OB=OD,DF=FE,∴OF=BE=7.(2)在Rt△DCE中,DE===10,∵DF=FE,∴CF=DE=5.22.(8分)如图,在平面直角坐标系中,直线y=kx+b经过点A(﹣30,0)和点B(0,15),直线y=x+5与直线y=kx+b相交于点P,与y轴交于点C.(1)求直线y=kx+b的解析式.(2)求△PBC的面积.,解得:,∴直线y=kx+b的解析式为y=x+15.(2)联立两直线解析式成方程组,,解得:,∴点P的坐标为(20,25).当x=0时,y=x+5=5,∴点C的坐标为(0,5),∴BC=15﹣5=10,=BC•x P=×10×20=100.∴S△PBC23.(8分)2016年下半年开始,不同品牌的共享单车出现在城市的大街小巷.现已知A品牌共享单车计费方式为:初始骑行单价为1元/半小时,不足半小时按半小时计算.内设邀请机制,每邀请一位好友注册认证并充值押金成功,双方骑行单价均降价0.1元/半小时,骑行单价最低可降至0.1元/半小时(比如,某用户邀请了3位好友,则骑行单价为0.7元/半小时).B品牌共享单车计费方式为:0.5元/半小时,不足半小时按半小时计算.(1)某用户准备选择A品牌共享单车使用,设该用户邀请好友x名(x为整数,x≥0),该用户的骑行单价为y元/半小时.请写出y关于x的函数解析式.(2)若有A,B两种品牌的共享单车各一辆供某用户一人选择使用,请你根据该用户已邀请好友的人数,给出经济实惠的选择建议.【解答】解:(1)由题意可得,当0≤x≤9且x为正整数时,y=1﹣0.1x,当x≥10且x为正整数时,y=0.1,即y关于x的函数解析式是y=;(2)由题意可得,当0≤x≤9时,1﹣0.1x>0.5,可得,x<5,则当x≤x<5且x为正整数时,选择B品牌的共享单车;费一样;当0≤x≤9时,1﹣0.1x<0.5,得x>5,则x>5且x为正整数,选择A品牌的共享单车;当x≥10且x为正整数时,0.1<0.5,故选项A品牌的共享单车.24.(8分)下面我们做一次折叠活动:第一步,在一张宽为2的矩形纸片的一端,利用图(1)的方法折出一个正方形,然后把纸片展平,折痕为MC;第二步,如图(2),把这个正方形折成两个相等的矩形,再把纸片展平,折痕为FA;第三步,折出内侧矩形FACB的对角线AB,并将AB折到图(3)中所示的AD处,折痕为AQ.根据以上的操作过程,完成下列问题:(1)求CD的长.(2)请判断四边形ABQD的形状,并说明你的理由.【解答】解:(1)∵∠M=∠N=∠MBC=90°,∴四边形MNCB是矩形,∵MB=MN=2,∴矩形MNCB是正方形,∴NC=CB=2,由折叠得:AN=AC=NC=1,Rt△ACB中,由勾股定理得:AB==,∴CD=AD﹣AC=﹣1;(2)四边形ABQD是菱形,理由是:由折叠得:AB=AD,∠BAQ=∠QAD,∵BQ∥AD,∴∠BQA=∠QAD,∴∠BAQ=∠BQA,∴AB=BQ,∴BQ=AD,BQ∥AD,∴四边形ABQD是平行四边形,∵AB=AD,∴四边形ABQD是菱形.25.(10分)如图,正方形ABCD中,AB=4,P是CD边上的动点(P点不与C、D重合),过点P作直线与BC的延长线交于点E,与AD交于点F,且CP=CE,连接DE、BP、BF,设CP═x,△PBF的面积为S1,△PDE的面积为S2.(1)求证:BP⊥DE.(2)求S1﹣S2关于x的函数解析式,并写出x的取值范围.(3)分别求当∠PBF=30°和∠PBF=45°时,S1﹣S2的值.【解答】解:(1)如图1中,延长BP交DE于M.∵四边形ABCD是正方形,∴CB=CD,∠BCP=∠DCE=90°,∵∠CBP+∠CPB=90°,∠CPB=∠DPM,∴∠CDE+∠DPM=90°,∴∠DMP=90°,∴BP⊥DE.(2)由题意S1﹣S2=(4+x)•x﹣•(4﹣x)•x=x2(0<x<4).(3)①如图2中,当∠PBF=30°时,∵∠CPE=∠CEP=∠DPF=45°,∠FDP=90°,∴∠PFD=∠DPF=45°,∴DF=DP,∵AD=CD,∴AF=PC,∵AB=BC,∠A=∠BCP=90°,∴△BAF≌△BCP,∴∠ABF=∠CBP=30°,∴x=PC=BC•tan30°=,∴S1﹣S2=x2=.②如图3中,当∠PBF=45°时,在CB上截取CN=CP,理解PN.由①可知△ABF≌△BCP,∵∠CNP=∠NBP+∠NPB=45°,∴∠NBP=∠NPB=22.5°,∴BN=PN=x,∴x+x=4,∴x=4﹣4,∴S1﹣S2=(4﹣4)2=48﹣32.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321DA1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +bx -b-ab 45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +bx -b-ab a45°ABE挖掘图形特征:a+bx-aa 45°DBa+b-a45°A运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.ABFEDCF。