2014烟台二模数学试题(理)(含答案)
- 格式:doc
- 大小:925.00 KB
- 文档页数:10
第5讲 几何概型A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.在1 L 高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10 mL ,则含有麦锈病种子的概率是( ).A .1B .0.1C .0.01D .0.001解析 设事件A 为“10 mL 小麦种子中含有麦锈病种子”,由几何概型的概率计算公式得P (A )=101 000=0.01,所以10 mL 小麦种子中含有麦锈病种子的概率是0.01. 答案 C2. (2013·哈尔滨二模)如图的矩形长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,由此我们可以估计出阴影部分的面积约为( ).A.165B.215C.235D.195解析 由几何概型的概率公式,得S 10=138300,所以阴影部分面积约为235,故选C. 答案 C3.(2011·福建)如图,矩形ABCD 中,点E 为边CD 的中点.若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( ).A.14 B.13 C.12D.23解析 S △ABE =12|AB |·|AD |,S 矩形ABCD =|AB ||AD |. 故所求概率P =S △ABE S 矩形ABCD =12.答案 C4.(2012·辽宁)在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32 cm 2的概率为 ( ).A.16B.13C.23D.45解析 设出AC 的长度,先利用矩形面积小于32 cm 2求出AC 长度的范围,再利用几何概型的概率公式求解.设AC =x cm ,CB =(12-x )cm ,0<x <12,所以矩形面积小于32 cm 2即为x (12-x )<32⇒0<x <4或8<x <12,故所求概率为812=23. 答案 C二、填空题(每小题5分,共10分)5.(2013·长沙模拟)在区间⎣⎢⎡⎦⎥⎤-π2,π2上随机取一个数x ,cos x 的值介于0至12之间的概率为________.解析 根据题目条件,结合几何概型的概率公式可得所求的概率为P =2⎝ ⎛⎭⎪⎫π2-π3π2-⎝ ⎛⎭⎪⎫-π2=13.答案 136.(2011·江西)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.解析 设A ={小波周末去看电影},B ={小波周末去打篮球},C ={小波周末在家看书},D ={小波周末不在家看书},如图所示,则P (D )=1-(12)2π-(14)2ππ=1316. 答案 1316 三、解答题(共25分)7.(12分)如图,在单位圆O 的某一直径上随机的取一点Q ,求过点Q 且与该直径垂直的弦长长度不超过1的概率.解 弦长不超过1,即|OQ |≥32,而Q 点在直径AB 上是随机的,事件A ={弦长超过1}.由几何概型的概率公式得P (A )=32×22=32.∴弦长不超过1的概率为1-P (A )=1-32. 8.(13分)已知关于x 的一次函数y =mx +n .(1)设集合P ={-2,-1,1,2,3}和Q ={-2,3},分别从集合P 和Q 中随机取一个数作为m 和n ,求函数y =mx +n 是增函数的概率;(2)实数m ,n 满足条件⎩⎨⎧m +n -1≤0,-1≤m ≤1,-1≤n ≤1,求函数y =mx +n 的图象经过一、二、三象限的概率. 解 (1)抽取的全部结果的基本事件有:(-2,-2),(-2,3),(-1,-2),(-1,3),(1,-2),(1,3),(2,-2),(2,3),(3,-2),(3,3),共10个基本事件.设使函数为增函数的事件为A ,则A 包含的基本事件有:(1,-2),(1,3),(2,-2),(2,3),(3,-2),(3,3),共6个基本事件,所以,P (A )=610=35.(2)m ,n 满足条件⎩⎨⎧m +n -1≤0,-1≤m ≤1,-1≤n ≤1的区域如图所示,要使函数的图象过一、二、三象限,则m >0,n >0,故使函数图象过一、二、三象限的(m ,n )的区域为第一象限的阴影部分,∴所求事件的概率为P =1272=17.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1. 分别以正方形ABCD 的四条边为直径画半圆,重叠部分如图中阴影区域所示,若向该正方形内随机投一点,则该点落在阴影区域的概率为( ).A.4-π2B.π-22C.4-π4D.π-24解析 设正方形边长为2,阴影区域的面积的一半等于半径为1的圆减去圆内接正方形的面积,即为π-2,则阴影区域的面积为2π-4,所以所求概率为P =2π-44=π-22. 答案 B2.(2013·大连、沈阳联考)若利用计算机在区间(0,1)上产生两个不等的随机数a 和b ,则方程x =22a -2bx 有不等实数根的概率为( ).A.14B.12C.34D.25解析 方程x =22a -2bx ,即x 2-22ax +2b =0,原方程有不等实数根,则需满足Δ=(22a )2-4×2b >0,即a >b .在如图所示的平面直角坐标系内,(a ,b )的所有可能结果是边长为1的正方形(不包括边界),而事件A “方程x =22a -2bx 有不等实数根”的可能结果为图中阴影部分(不包括边界).由几何概型公式可得P (A )=12×1×11×1=12.故选B.答案 B二、填空题(每小题5分,共10分)3.(2013·武汉一模)有一个底面圆的半径为1,高为3的圆柱,点O 1,O 2分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P ,则点P 到点O 1,O 2的距离都大于1的概率为________.解析 确定点P 到点O 1,O 2的距离小于等于1的点的集合为,以点O 1,O 2为球心,1为半径的两个半球,求得体积为V =2×12×43π×13=43π,圆柱的体积为V =Sh =3π,所以点P 到点O 1,O 2的距离都大于1的概率为V =1-4π33π=59. 答案 594.(2012·烟台二模)已知正三棱锥S -ABC 的底边长为4,高为3,在三棱锥内任取一点P ,使得V P -ABC <12V S -ABC 的概率是________.解析 三棱锥P -ABC 与三棱锥S -ABC 的底面相同,V P -ABC <12V S -ABC 就是三棱锥P -ABC 的高小于三棱锥S -ABC 的高的一半,过高的中点作一平行底面的截面,这个截面下任取一点都符合题意,设底面ABC 的面积为S ,三棱锥S -ABC 的高为h ,则所求概率为:P =13Sh -13×14S ×12h 13Sh=78.答案 78三、解答题(共25分)5.(12分)(2013·深圳调研)设函数f (x )=x 2+bx +c ,其中b ,c 是某范围内的随机数,分别在下列条件下,求事件A “f (1)≤5且f (0)≤3”发生的概率. (1)若随机数b ,c ∈{1,2,3,4};(2)已知随机函数Rand( )产生的随机数的范围为{x |0≤x ≤1},b ,c 是算法语句b =4*Rand( )和c=4*Rand( )的执行结果.(注:符号“*”表示“乘号”) 解 由f (x )=x 2+bx +c 知,事件A “f (1)≤5且f (0)≤3”,即⎩⎨⎧b +c ≤4,c ≤3.(1)因为随机数b ,c ∈{1,2,3,4},所以共等可能地产生16个数对(b ,c ),列举如下:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).事件A :⎩⎨⎧b +c ≤4,c ≤3包含了其中6个数对(b ,c ),即:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1). 所以P (A )=616=38,即事件A 发生的概率为38. (2)由题意,b ,c 均是区间[0,4]中的随机数,点(b ,c )均匀地分布在边长为4的正方形区域Ω中(如图),其面积S (Ω)=16.事件A :⎩⎨⎧b +c ≤4,c ≤3所对应的区域为如图所示的梯形(阴影部分),其面积为S (A )=12×(1+4)×3=152. 所以P (A )=S (A )S (Ω)=15216=1532,即事件A 发生的概率为1532.6.(13分)甲、乙两艘船都要停靠同一个泊位,它们可能在一昼夜的任意时刻到达.甲、乙两船停靠泊位的时间分别为4小时与2小时,求有一艘船停靠泊位时必须等待一段时间的概率.解 甲比乙早到4小时内乙需等待,甲比乙晚到2小时内甲需等待.以y 和x 分别表示甲、乙两船到达泊位的时间,则有一艘船停靠泊位时需等待一段时间的充要条件为-2≤x -y ≤4,在如图所示的平面直角坐标系内,(x ,y )的所有可能结果是边长为24的正方形,而事件A “有一艘船停靠泊位时必须等待一段时间”的可能结果由阴影部分表示.由几何概型公式,得P (A )=242-12×222-12×202242=67288. 故有一艘船停靠泊位时必须等待一段时间的概率是67288.。
高一数学试题答案及解析1.单调增区间为()A.B.C.D.【答案】B【解析】因为,所以只要求的减区间,由,解得,故选择B.【考点】三角函数的性质.2.平面向量与的夹角为,,,则=( )A.B.C.4D.12【答案】B【解析】故选B.【考点】向量的数量积.3.设向量,则等于()A.B.C.D.【答案】C【解析】,故选C.【考点】1.向量数量积的坐标表示;2.两角和的正弦公式.4.计算机中常用十六进制,采用数字0~9和字母A~F共16个计数符号与十进制得对应关系如下表:16进制0123456789A B C D E F例如用十六进制表示有D+E=1B,则A×B=( )A.6E B.7C C.5F D.B0【答案】A【解析】十六进制A、B分别为10进制的10、11,而,再把110化为十六进制得6E.【考点】算法案例.5.的值是()A.1B.C.D.【答案】B【解析】,选B.【考点】诱导公式及特殊角的三角函数值.6.设是不同的直线,是不同的平面,下列命题中正确的是( )A.若,则B.若,则C.若,则⊥D.若,则【答案】C【解析】由可知与的关系为:相交、平行或线在面内,故A、B错;由可在中a中找一条直线使,又,所以,而,所以,得,故选C.【考点】面面垂直的判定.7.对于函数,下列说法正确的是( ).A.的值域是B.当且仅当时,取得最小值-1C.的最小正周期是D.当且仅当时,【答案】D【解析】本题给出的函数可以描述为中取较小的值。
可以先大致画出题目中的函数图象,如图:图中的细线分别是的图象,粗线为的图像。
从图象中可以判断D正确。
下边说明各个选项:A中1包含于值域之内,则在至少有一个为1,并且是较小的那个。
令这与其取法矛盾,A错误。
B中,这与题面“当且仅当”冲突。
B错误。
C中,若题面正确,则有而,所以题面错误。
D中,,此时x在第一象限,选D。
【考点】三角函数的图象和性质点评:中档题,正确理解函数的意义,画出的图象,是解题的关键。
2023年山东省烟台市龙口市中考数学二模试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,图1可列式计算为(+1)+(―1)=0,由此可推算图2中计算所得的结果为( )A. +1B. +7C. ―1D. ―72. 下列运算正确的是( )A. 2a2⋅a=2a3B. (a+1)2=a2+1C. (a2)÷(2a)=2aD. (2a2)3=6a63. 如图是我国四家新能车企的标志,其中是中心对称图形但不是轴对称图形的是( )A. B.C. D.4. 餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为( )A. 5×1010千克B. 50×109千克C. 5×109千克D. 0.5×1011千克5.实数a,b,c在数轴上的对应点的位置如图所示,如果a+c=0,那么下列结论正确的是( )A. b<0B. a<―bC. ab>0D. b―c>06. 下表是某校乐团的年龄分布,其中一个数据被遮盖了,下面对于中位数的说法正确的是( )年龄13141516频数5713■A. 中位数是14B. 中位数可能是14.5C. 中位数是15或15.5D. 中位数可能是167. 在数学活动课上,兴趣小组的同学用一根质地均匀的轻质木杆和若干个钩码做实验.如图所示,在轻质木杆O处用一根细线悬挂,左端A处挂一重物,右端B处挂钩码,每个钩码质量是50g.若OA=20cm,OB=40cm,挂3个钩码可使轻质木杆水平位置平衡.设重物的质量为x g,根据题意列方程得( )A. 20x=40×50×3B. 40x=20×50×3C. 3×20x=40×50D. 3×40x=20×508.如图所示,电路图上有A、B、C三个开关和一个小灯泡,闭合开关C或者同时闭合开关A、B,都可使小灯泡发光.现在任意闭合其中一个开关,则小灯泡发光的概率等于( )A. 14B. 13C. 23D. 129. 运用我们课本上采用的计算器进行计算时,下列说法不正确的是( )A. 计算5的按键顺序依次为B. 要打开计算器并启动其统计计算功能应按的键是C. 启动计算器的统计计算功能后,要清除原有统计数据应按键D. 用计算器计算时,依次按如下各键,最后显示结果是0.510. 已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:x⋯―1012⋯y⋯0―1.5―2―1.5⋯根据表格中的信息,得到了如下的结论:①二次函数y=ax2+bx+c可改写为y=a(x―1)2―2的形式;②二次函数y=ax2+bx+c的图象开口向下;③关于x的一元二次方程ax2+bx+c+1.5=0的两个根为0或2;④若y>0,则x>3,其中所有正确的结论为( )A. ①④B. ②③C. ①③D. ②④二、填空题(本大题共6小题,共18.0分)11. 因式分解:4m2n―4n3=______ .12. 已知反比例函数y=m―1的图象的一个分支位于第三象限,则m的取值范围是x______.13. 对于实数a,b定义新运算:a※b=ab2―b,若关于x的方程1※x=k有两个不相等的实数根,则k的取值范围为______ .14. 如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C,D,则cos∠ADC的值为______ .15.如图,▱ABCD中,AB=4,AD=6,∠A=60°,点E在AB的延长线上,F为DE的中点,连接CF,若BE=10,则CF的长为______ .16. 国际象棋的棋盘上共有64个小方格,假设在棋盘上摆米,第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒,16粒,32粒…一直到64格,故棋盘上可摆的米粒总数S=1+2+4+8+16+32+…+263,则S的个位数字为______ .三、解答题(本大题共8小题,共64.0分。
山东省实验中学2011级第二次模拟考试数学试题(理科)2014.4第I 卷(选择题 50分)一、选择题:本大题共10小题,每小题5分,共50分.在每个小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}{}()12,1R A x x B x x A C B =-≤≤=<⋂,则= A.{}1x x > B. {}1x x ≥ C.{}2x x 1<≤ D. {}2x x 1≤≤ 2.已知直线l ⊥平面α,直线m β⊂平面,有下面四个命题:①//l m αβ⇒⊥; ②//l m αβ⊥⇒;③//l m αβ⇒⊥;④//l m αβ⊥⇒ 其中正确的两个命题是A.①②B.③④C.②④D.①③3.给出下列图象其中可能为函数()()432,,,f x x ax cx bx d a b c d R =++++∈的图象是 A.①③ B.①②C.③④D.②④ 4.已知圆()()22121111C x y C C ++-=:,圆与圆关于直线10x y --=对称,则圆2C 的方程为A.()()22221x y ++-=B.()()22221x y -++= C.()()22221x y +++= D.()()22221x y -+-= 5.已知函数()y f x =满足:①()1y f x =+;②在[)1,+∞上为增函数,若120,0x x <>,且()()12122x x f x f x +<---,则与的大小关系是A.()()12f x f x -=-B. ()()12f x f x -<-C.()()12f x f x ->-D.无法确定6.已知G 是ABC ∆的重心,点P 是GBC ∆内一点,若AP AB AC λμλμ=++,则的取值范围是 A.112⎛⎫⎪⎝⎭, B.213⎛⎫⎪⎝⎭, C.312⎛⎫⎪⎝⎭, D.()12,7.已知点(),M a b 在由不等式组002x y x y ≥⎧⎪≥⎨⎪+≤⎩确定的平面区域内,则点(),N a b a b +-所在平面区域的面积是A.4B.2C.1D.88.已知离心率为e的双曲线和离心率为2的椭圆有相同的焦点12F F P 、,是两曲线的一个公共点,若123F PF e π∠=,则等于A.2B. 2C.52D.3 9.设αβ,为锐角,那么“()22sinsin sin αβαβ+=+”是“2παβ+=”的A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件 10.已知函数()31,0,9,0x x f x xx x ⎧+>⎪=⎨⎪+≤⎩若关于x 的方程()()22f x x a a R +=∈有六个不同的实根,则a 的取值范围是A.(]2,8B.(]2,9C.()8,9D. (]8,9二、填空题:本大题共5小题,每小题5分,共25分.11.阅读下面程序框图,则输出的数据S 为______.12.几何体的三视图如图所示(单位:m ),则该几何体的体积为________m 3.13.已知对于任意的x R ∈,不等式35x x a -+->恒成立,则实数a 的取值范围是________.14.如图,用四种不同颜色给三棱柱111ABC A B C -的六个顶点涂色,要求四种颜色全都用上,每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色.则不同的涂色方法的种数为_________(用数字做答).15.设S 为非空数集,若,x yS ∀∈,都有,,x y x y xy S +-∈,则称S 为封闭集.下列命题①实数集是封闭集; ②全体虚数组成的集合是封闭集;③封闭集一定是无限集; ④若S 为封闭集,则一定有0S ∈;⑤若S ,T 为封闭集,且满足S U T ⊆⊆,则集合U 也是封闭集.其中真命题是_________________.三、解答题:本大题共6小题,共75分.解答应写出文字说明,演算步骤或证明过程.16.(本小题满分12分)已知ABC ∆的面积为1,且满足02AB AC AB AC <⋅≤,设和的夹角为θ. (I )求θ的取值范围;(II )求函数()22sin cos 246f ππθθθ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭的最大值及取得最大值时的θ值. 17.(本小题满分12分)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点.(I )求证:1AB ⊥平面1A BD ;(II )求二面角1A A D B --的大小.18.(本小题满分12分)盒中装有5个乒乓球用作比赛,其中2个是旧球,另外3个是新球,新球使用后...即成为了旧球.(I )每次比赛从盒中随机抽取1个球使用,使用后...放回盒中,求第2次比赛结束后盒内剩余的新球数为2个的概率P ;(II )每次比赛从盒中随机抽取2个球使用,使用后放回盒中,设第2次比赛结束后盒内剩余的新球数为X ,求X 的分布列和数学期望.19.(本小题满分12分)已知数列{}()*n a n N ∈的前n 项和为n S ,数列n S n ⎧⎫⎨⎬⎩⎭是首项为0,公差为12的等差数列. (I )求数列{}n a 的通项公式;(II )设()()*4215n a n b n N =⋅-∈,对任意的正整数k ,将集合{}21221,,k k k b b b -+中的三个元素排成一个递增的等差数列,其公差为x d ,求数列{}k d 的通项公式.(III )对(II )中的x d ,求集合{}1,k k x d x d x Z +<<∈的元素个数.20.(本小题满分13分)已知椭圆()2222:1x y C a b a b +=>>0的两个左、右焦点分别是())12,F F ,且经过点33A ⎛ ⎝⎭.(I )求椭圆C 的方程;(II )若椭圆C 上两点M ,N 使(),0,2OM ON OA OMN λλ+=∈∆求面积的最大值.21.(本小题满分14分)已知函数()2ln ,f x x ax x a R =+-∈.(I )若函数()[]12f x 在,上是减函数,求实数a 的取值范围;(II )令()()2g x f x x =-,是否存在实数(]0,a x e ∈,当(e 是自然常数)时,函数()g x 的最小值是3,若存在,求出a 的值;若不存,说明理由;(III )当(]0,x e ∈时,证明:()2251ln 2e x x x x ->+.。
【高考真题与模拟题汇编】 排列组合 二项式定理最新模拟1、(日照一中模拟)在小语种提前招生考试中,某学校获得5个推荐名额,其中 俄语2名,日语2名,西班牙语1名。
并且日语和俄语都要求必须有男生参加。
学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有(A )20种 (B )22种 (C )24种 (D )36种2、(威海二模)将,,a b c 三个字母填写到3×3方格中,要求每行每列都不能出现重复字母,不同的填写方法有________种Q(用数值作答)3、(临沂3月模拟)从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为(A )300 (B )216 (C )180 (D )162 【答案】C【解析】若不选0,则有72442322=A C C ,若选0,则有10833231213=A C C C ,所以共有180种,选C Q4、(济南一中模拟) 如右图所示,使电路接通,开关不同的开闭方式有A.11种B.20种C.21种D.12种【答案】C【解析】若前一个开关只接通一个,则后一个有7332313=++C C C ,此时有1472=⨯种,若前一个开关接通两一个,则后一个有7332313=++C C C ,所以总共有21714=+,选C Q5、(滨州二模)如图所示的数阵叫“莱布尼兹调和三角形”,他们是由正整数的倒数组成的,第n 行有n 个数且两端的数均为1(2)n n≥,每个数是它下一行左右相邻两数的和,如:111111111,,1222363412=+=+=+…,则第(3)n n ≥行第3个数字是 Q6、(德州二模)年伦敦奥运会某项目参赛领导小组要从甲、乙、丙、丁、戊五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中甲、乙只能从事前三项工作,其余三人均能从事这四项工作,则不同的选派方案共有A Q18种 B Q36种 C Q48种 D Q72种7、(济南三模)将1,2,3,…,9这9个数字填在如图的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法数为A Q6种 B Q12种C Q18种 D Q24种8、(烟台二模)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门相同的选法种数为(用数字作答)___答案:30解析:可先求出所有两人各选修2门的种数2424C C =36,再求出两人所选两门都都不同的种数均为2242C C =6,故只至少有1门相同的选法有36-6=30种。
山东省2014届理科数学一轮复习试题选编7:函数的综合问题一、选择题1 .(山东省潍坊市2013届高三第二次模拟考试理科数学)某学校要召开学生代表大会,规定根据班级人数每10人给一个代表名额,当班级人数除以10的余数大于6时,再增加一名代表名额.那么各班代表人数y 与该班人数x 之间的函数关系用取整函数[]y x =([x]表示不大于*的最大整数)可表示为( ) A .[]10x y = B .3[]10x y += C .4[]10x y += D .5[]10x y += 【答案】B 法一:特殊取值法,若x=56,y=5,排除 C .D,若x=57,y=6,排除A,所以选B法二:设)90(10≤≤+=ααm x ,,时⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡+≤≤10103103,60x m m x αα 1101103103,96+⎥⎦⎤⎢⎣⎡=+=⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡+≤<x m m x αα时当,所以选B 2 .(山东省寿光市2013届高三10月阶段性检测数学(理)试题)已知函数321,,1,12()111,0,.362x x x f x x x ⎧⎛⎤∈ ⎪⎥+⎪⎝⎦=⎨⎡⎤⎪-+∈⎢⎥⎪⎣⎦⎩函数π()sin()22(0)6g x a x a a =-+ ,若存在[]12,0,1x x ∈,使得12()()f x g x =成立,则实数a 的取值范围是 ( )A .14,23⎡⎤⎢⎥⎣⎦ B .10,2⎛⎤⎥⎝⎦ C .24,33⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦【答案】B3 .(山东省德州市2013届高三第二次模拟考试数学(理)试题)若对于定义在R 上的函数f(x),存在常数()t t R ∈,使得f(x+t)+tf(x)=0对任意实数x 均成立,则称f(x )是阶回旋函数,则下面命题正确的是( )A .f(x)=2x是12-阶回旋函数 B .f(x)=sin(πx)是1阶回旋函数 C .f (x)=x 2是1阶回旋函数 D .f(x)=log a x 是0阶回旋函数【答案】B4 .(山东省2013届高三高考模拟卷(一)理科数学)已知c b a ,,为互不相等的三个正实数,函数)(x f 可能满足如下性质:①)(a x f -为奇函数;②)(a x f +为奇函数;③)(b x f -为偶函数;④)(b x f +为偶函数;⑤()()f x c f c x +=-.类比函数2013sin y x =的对称中心、对称轴与周期的关系,某同学得到了如下结论:(i)若满足①②,则)(x f 的一个周期为4a ;(ii)若满足①③;则)(x f 的一个周期为||4b a -;(iii)若满足③④,则)(x f 的一个周期为||3b a -;(iv)若满足②⑤;则)(x f 的一个周期为||4c a +. 其中正确结论的个数为 ( ) A .1 B .2 C .3 D .4【答案】B 【解析】由2013sin y x =的图象知,两相邻对称中心的距离为2T 两相邻对称轴的距离为2T,对称中心与距其最近的对称轴的距离为4T,若满足①②,则)(x f 的两个相邻对称中心分别为)0,(a ,)0,(a -,从而有a a a T2)(2=--=,即a T 4=;若满足①③,则)(x f 的对称轴为b x =,与对称轴相邻的对称中心为)0.(a ,有||4b a T-=,即||4b a T -=;若满足③④,则)(x f 的两个相邻的对称轴为b x -=和b x =,从而有=--=)(2b b Tb 2,即b T 4=;若满足②⑤,则)(x f 的对称中心为)0,(a -,与其相邻的对称轴为c x =,从而有()4Tc a a c =-+=-,即=T 4||a c -.故只有(iii)(iv)错误.5 .(山东省枣庄市2013届高三3月模拟考试数学(理)试题)已知函数2()1f x x =+的定义域为[,]()a b a b <,值域为[1,5],则在平面直角坐标系内,点(a,b)的运动轨迹与两坐标轴围成的图形的面积是 ( )A .8B .6C .4D .2【答案】C由2()15f x x =+=,得24x =,即2x =±.故根据题意得a,b 的取值范围为:20a -≤≤且2b =或者02b ≤≤且2a =-,所以点(a,b)的运动轨迹与两坐标轴围成的图形是一个边长为2的正方形面积为4,选 C .6 .(山东省德州市2013届高三3月模拟检测理科数学)已知函数(1)y f x =-的图象关于直线1x =对称,且当(,0),()'()0x f x x f x ∈-∞+<成立若a=(20.2)·0.2(2),(12)f b n =·121(12),(1)4f n c og =·121(1)4f og ,则a,b,c 的大小关系是( )A .a b c >>B .b a c >>C .c a b >>D .a c b >>【答案】B 因为函数(1)y f x =-的图象关于直线1x =对称,所以()y f x =关于y 轴对称,所以函数()y xf x =为奇函数.因为[()]'()'()xf x f x xf x =+,所以当(,0)x ∈-∞时,[()]'()'()0xf x f x xf x =+<,函数()y xf x =单调递减,当(0,)x ∈+∞时,函数()y xf x =单调递减.因为0.2122<<,0ln 21<<,121log 24=,所以0.21210ln 22log 4<<<,所以b a c >>,选B .7 .(2012年山东理)(12)设函数f (x)=,g(x )=ax 2+bx 若y=f(x)的图像与y=g(x)图像有且仅有两个不同的公共点A(x 1,y 1),B(x 2,y 2),则下列判断正确的是 ( ) A .当a<0时,x 1+x 2<0,y 1+y 2>0 B .当a<0时, x 1+x 2>0, y 1+y 2<0 C .当a>0时,x 1+x 2<0, y 1+y 2<0 D .当a>0时,x 1+x 2>0, y 1+y 2>0【答案】解析:令bx ax x+=21,则)0(123≠+=x bx ax ,设23)(bx ax x F +=,bx ax x F 23)(2+=' 令023)(2=+='bx ax x F ,则ab x 32-=,要使y=f(x)的图像与y=g(x)图像有且仅有两个不同的公共点只需1)32()32()32(23=-+-=-abb a b a a b F ,整理得23274a b =,于是可取3,2=±=b a 来研究,当3,2==b a 时,13223=+x x ,解得21,121=-=x x ,此时2,121=-=y y ,此时0,02121>+<+y y x x ;当3,2=-=b a 时,13223=+-x x ,解得21,121-==x x ,此时2,121-==y y ,此时0,02121<+>+y y x x .答案应选 B .另解:令)()(x g x f =可得b ax x+=21.设b ax y xy +=''=',12 不妨设21x x <,结合图形可知, 当0>a 时如右图,此时21x x >,即021>>-x x ,此时021<+x x ,112211y x x y -=->=,即021>+y y ;同理可由图形经过推理可得当0<a 时0,02121<+>+y y x x .答案应选B .8 .(山东省2013届高三高考模拟卷(一)理科数学)我们定义若函数)(x f 为D 上的凹函数须满足以下两条规则:(1)函数在区间D 上的任何取值有意义;(2)对于区间D 上的任意n 个值n x x x ,,,21 ,总满足)()()()(2121nx x x nf x f x f x f n n +++≥+++ ,那么下列四个图象中在]2,0[π上满足凹函数定义的是【答案】A 【解析】要判断是不是凹函数,需要先明确凹函数的定义,由定义的第一点可以排除D,在 ( ) A . B .C 这三个选项中可以考虑特值法,取01=x ,22π=x ,则显然选项 B .C 不满足)2(2)()(2121x x f x f x f +>+,故选( ) A .9 .(山东省夏津一中2013届高三4月月考数学(理)试题)函数y=f(x),x∈D,若存在常数C,对任意的x l ∈D,仔在唯一的x 2∈D,使得C =,则称函数f(x)在D 上的几何平均数为 C .已知f(x)=x 3,x∈[1,2],则函数f(x)=x 3在[1,2]上的几何平均数为 ( )A B .2C .4D .【答案】D10.(山东省威海市2013届高三上学期期末考试理科数学)对于函数()f x ,如果存在锐角θ使得()f x 的图象绕坐标原点逆时针旋转角θ,所得曲线仍是一函数,则称函数()f x 具备角θ的旋转性,下列函数具有角4π的旋转性的是 ( )A .y =B .ln y x =C .1()2x y =D .2y x =【答案】C 设直线y x b =+,要使()f x 的图像绕坐标原点逆时针旋转角4π,所得曲线仍是一函数,则函数y x b =+与()f x 不能有两个交点.由图象可知选C .11.(山东省实验中学2013届高三第一次诊断性测试数学(理)试题)已知定义在R 上的函数()y f x =满足以下三个条件:①对于任意的x R ∈,都有(4)()f x f x +=;②对于任意的121212,,02,()();x x R x x f x f x ∈≤<≤<且都有③函数(2)y f x =+的图象关于y 轴对称,则下列结论中正确的是( )A .(4.5)(7)(6.5)f f f <<B .(7)(4.5)(6.5)f f f <<C .(7)(6.5)(4.5)f f f <<D .(4.5)(6.5)(7)f f f << 【答案】A【解析】由(4)()f x f x +=知函数的周期是4,由②知,函数在[0,2]上单调递增,函数(2)y f x =+的图象关于y 轴对称,即函数函数()y f x =的图象关于2x =对称,即函数在[2,4]上单调递减.所以(4.5)(0.5)f f =,(6.5)(2.5)(1.5)f f f ==,(7)(3)(1)f f f ==,由(0.5)(1)(1.5)f f f <<可知(4.5)(7)(6.5)f f f <<,选( ) A .12.(山东省青岛市2013届高三上学期期中考试数学(理)试题)已知定义在R 上的奇函数()f x 满足(4)()f x f x -=-,且[]0,2x ∈时,2()log (1)f x x =+,甲、乙、丙、丁四位同学有下列结论:甲:()31f =;乙:函数()f x 在[]6,2--上是减函数;丙:函数()f x 关于直线4x =对称;丁:若()0,1m ∈,则关于x 的方程()0f x m -=在[]8,8-上所有根之和为8-,其中正确的是( )A .甲、乙、丁B .乙、丙C .甲、乙、丙D .甲、丙二、填空题:本大题共4小题,每小题4分,共16分. 【答案】A13.(山东省夏津一中2013届高三4月月考数学(理)试题)函数y = 1n|x-1|的图像与函数y=-2 cosπx(-2≤x≤4)的图像所有交点的横坐标之和等于( )A .8B .6C .4D .2【答案】B14.(山东省文登市2013届高三3月二轮模拟考试数学(理))对于正实数α,记M α为满足下述条件的函数()f x 构成的集合:12,x x R ∀∈且21x x >,有212121()()()()x x f x f x x x αα--<-<-.下列结论中正确的是( )A .若12(),()f x M g x M αα∈∈,则12()()f x g x M αα++∈B .若12(),()f x M g x M αα∈∈且12αα>,则12()()f x g x M αα--∈C .若12(),()f x M g x M αα∈∈,则12()()f x g x M αα⋅⋅∈D .若12(),()f x M g x M αα∈∈且()0g x ≠,则12()()f x M g x αα∈ 【答案】A15.(2013年山东临沂市高三教学质量检测考试理科数学)已知集合M={(x,y )|y f (x )=},若对于任意11(x ,y )M ∈,存在22(x ,y )M ∈,使得12120x x y y +=成立,则称集合M 是“垂直对点集”.给出下列四个集合:①M={1(x,y )|y x=};②M={1(x,y )|y sin x =+}; ③M={2(x,y )|y log x =};④{(,)2}x M x y y e ==-.其中是“垂直对点集”的序号是 ( )A .①②B .②③C .①④D .②④【答案】 【答案】D①1y x=是以,x y 轴为渐近线的双曲线,渐近线的夹角为90°,在同一支上,任意(x 1,y 1)∈M,不存在(x 2,y 2)∈M,满足“垂直对点集”的定义;对任意(x 1,y 1)∈M,在另一支上也不存在(x 2,y 2)∈M,使得x 1x 2+y 1y 2=0成立,所以不满足“垂直对点集”的定义,不是“垂直对点集”.②{(,)sin 1}M x y y y x ===+,如图在曲线上,两点构成的直角始存在,所以{(,)sin 1}M x y y y x ===+是“垂直对点集”.对于③2{(,)log }M x y y x ==,如图在曲线上两点构成的直角始存在,例如取M (0,1)-,N 2(log 2,0),满足“垂直对点集”的定义,所以正确.对于④{(,)2}x M x y y e ==-,如图取点(1,0),曲线上不存在另外的点,使得两点与原点的连线互相垂直,所以不是“垂直对点集”. ,故选 D .二、填空题16.(山东省枣庄三中2013届高三上学期1月阶段测试理科数学)已知()f x 为R 上的偶函数,对任意x R∈都有(6)()(3)f x f x f +=+且当[]12,0,3x x ∈, 12x x ≠ 时,有1212()()0f x f x x x ->-成立,给出四个命题:①(3)0f = ② 直线6x =-是函数()y f x =的图像的一条对称轴③ 函数()y f x =在[]9,6--上为增函数 ④ 函数()y f x =在[]9,9--上有四个零点其中所有正确命题的序号为______________ 【答案】①②④【解析】令3x =-,得(36)(3)(3)(3)f f f f -+=-+=,即(3)0f =,所以①正确.因为(6)()(3)f x f x f +=+,所以(6)()(3)()(3)f x f x f f x f -+=-+=+,即(6)(6)f x f x -+=+,所以直线6x =是函数()y f x =的图像的一条对称轴,因为函数为偶函数,所以6x =-也是函数()y f x =的图像的一条对称轴所以②正确.由1212()()0f x f x x x ->-可知函数()f x 在区间[0,3]上递增,又(6)()(3)()f x f x f f x +=+=,所以函数的周期为6,所以函数在[6,9]上递增,所以在[]9,6--上为减函数,所以③错误.因为函数的周期为6,所以(9)(3)(3)(9)0f f f f -=-===,故函数()y f x =在[]9,9--上有四个零点,所以④正确,所以正确的命题为①②④17.(山东省潍坊市2013届高三上学期期末考试数学理(A ))若函数)(x f 满足0,≠∈∃m R m ,对定义域内的任意)()()(,m f x f m x f x +=+恒成立,则称)(x f 为m 函数,现给出下列函数:①xy 1=; ②x y 2=;③x y sin =;④nx y 1= 其中为m 函数的序号是.(把你认为所有正确的序号都填上) 【答案】②③【解析】①若x y 1=,则由()()()f x m f x f m +=+得111x m x m=++,即111()m x m x x x m m -==++,所以22()m x x m x mx =+=+,显然不恒成立.②若x y 2=,由()()()f x m f x f m +=+得由2()22x m x m +=+恒成立,所以②为m 函数.③若x y sin =,由()()()f x m f x f m +=+得sin()sin sin x m x m +=+,当2m π=时,有sin(2)sin x x π+=,sin sin 20m π==,此时成立,所以③为m 函数.④若nx y 1=,由()()()f x m f x f m +=+得由ln()ln ln ln x m x m mx +=+=,即x m mx +=,即(1)0m x m -+=,要使(1)0m x m -+=恒成立,则有10m -=,即1m =.但此时(1)0110m x m -+=+=≠,所以不存在m ,所以④不是m 函数.所以为m 函数的序号为②③.18.(2009高考(山东理))已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++=【答案】【解析】:因为定义在R 上的奇函数,满足(4)()f x f x -=-,所以(4)()f x f x -=-,所以,由)(x f 为奇函数,所以函数图象关于直线2x =对称且(0)0f =,由(4)()f x f x -=-知(8)()f x f x -=,所以函数是以8为周期的周期函数,又因为)(x f 在区间[0,2]上是增函数,所以)(x f 在区间[-2,0]上也是增函数.如图所示,,不妨设1234x x x x <<<由对称性知1x +答案:-819.(山东省济宁市2013[a,b]⊆D,使得函数f (x )满足:(1) f (x )在[a,b]内是单调函数;(2)f (x )在[a,b]上的值域为[2a,2b],则称区间[a,b]为y=f (x )的“和谐区间”.下列函数中存在“和谐区间”的是_______ (只需填符合题意的函数序号) ①20f (x )x (x )=≥;②xf (x )e (x R )=∈; ③10f (x )(x )x =>;④2401xf (x )(x )x =≥+. 【答案】①③④【解析】①若2()f x x =,则由题意知()2()2f a a f b b =⎧⎨=⎩,即2222a a b b ⎧=⎪⎨=⎪⎩,解得02a b =⎧⎨=⎩时,满足条件.②若()x f x e =,则由题意知()2()2f a a f b b =⎧⎨=⎩,即22a b e a e b⎧=⎪⎨=⎪⎩,即,a b 是方程2xe x =的两个根,由图象可知方程2xe x =无解时,所以不满足条件.③若1()f x x =,则由题意知()2()2f a b f b a =⎧⎨=⎩,即1212b a ab⎧=⎪⎪⎨⎪=⎪⎩,所以只要12ab =即可,所以满足条件.④若24()1xf x x =+,因为22244'()(1)x f x x -=+,则由题意知当01x ≤≤时,'()0f x >,函数递增,当1x >时,'()0f x <,函数递减.当01x ≤≤时由()2()2f a af b b =⎧⎨=⎩得22421421aa ab b b ⎧=⎪⎪+⎨⎪=⎪+⎩,由2421x x x =+,解得0x =或1x =,所以当0,1a b ==时,满足条件,即区间为[0,1].所以存在“和谐区间”的是①③④.20.(山东省烟台市2013届高三上学期期中考试数学试题(理科))函数()f x 的定义域为A ,若12,x x A ∈且12()()f x f x =时总有12x x =,则称()f x 为单函数.例如:函数)(12)(R x x x f ∈+=是单函数.给出下列命题:①函数)()(2R x x x f ∈=是单函数; ②指数函数)(2)(R x x f x∈=是单函数;③若()f x 为单函数,12,x x A ∈且12x x ≠,则12()()f x f x ≠; ④在定义域上具有单调性的函数一定是单函数,其中的真命题是 ______________.(写出所有真命题的序号)【答案】②③④ 【解析】当122,2x x ==-时,12()4(),f x f x ==故①错;()2x f x =为单调增函数,故②正确;而③④显然正确21.(山东济南外国语学校2012—2013学年度第一学期高三质量检测数学试题(理科))具有性质:1()()f f x x=-的函数,我们称为满足“倒负”交换的函数,下列函数: ①1;y x x =-②1;y x x=+ ③,(01)0,(1)1(1)x x y x x x⎧⎪<<⎪==⎨⎪⎪->⎩中满足“倒负”变换的函数是________________.【答案】①③ 【解析】当1y x x =-时,11()()f x f x x x=-=-,所以①满足“倒负”变换的函数.当1y x x =+时,11()()f x f x x x =+=,所以②不满足“倒负”变换的函数.当,(01)0,(1)1(1)x x y x x x⎧⎪<<⎪==⎨⎪⎪->⎩时,当1x >时,101x <<,11()()f f x x x ==-,当01x <<时,1x >,1()()f x f x x=-=-,所以③满足“倒负”变换的函数,所以满足条件的函数是①③.22.(山东省日照市2013届高三12月份阶段训练数学(理)试题)定义在R 上的函数()yf x =,若对任意不等实数12,x x 满足()()12120f x f x x x -<-,且对于任意的,x y R ∈,不等式()()22220f x x f y y -+-≤成立.又函数()1y f x =-的图象关于点()1,0对称,则当14x ≤≤时,yx的取值范围为_______________.【答案】1[,1]2-【解析】若对任意不等实数12,x x 满足1212()()0f x f x x x -<-,可知函数()y f x =为R 上递减函数.由函数(1)y f x =-的图象关于点(1,0)对称,可知函数()y f x =的图象关于点(0,0)对称,所以函数()y f x =为奇函数.又22(2)(2)0f x x f y y -+-≤,即222(2)(2)(2)f x x f y y f y y -≤--=-,所以2222+x x y y -≥-,即()(2)0.x y x y -+-≥()(2)014x y x y x -+-≥⎧⎨≤≤⎩表示的平面区域如图所示,yx 表示区域中的点与原点连线的斜率,又12OA k =-,所以yx的取值范围为1[,1]2-.如图23.(山东省青岛市2013届高三上学期期中考试数学(理)试题)已知函数()f x 的定义域为R ,若存在常数0m >,对任意R x ∈,有()f x m x ≤,则称函数()f x 为F -函数.给出下列函数:①2()f x x =;②2()1x f x x =+;③()2xf x =;④()sin 2f x x =. 其中是F -函数的序号为_________________.【答案】②④24.(山东省淄博市2013届高三复习阶段性检测(二模)数学(理)试题)已知函数()f x 在实数集R 上具有下列性质:①直线1x =是函数()f x 的一条对称轴;②()()2f x f x +=-;③当1213x x ≤<≤时,()()()21f x f x -⋅()210,x x -<则()2012f 、()2013f 从大到小的顺序为_______.【答案】(2013)(2012)(2011)f f f >> 由()()2f x f x +=-得()()4f x f x +=,所以周期是4所以(2011)(3)f f =,()2012(0)f f =,(2013)(1)f f =.因为直线1x =是函数()f x 的一条对称轴,所以()2012(0)(2)f f f ==..由()()()21f x f x -⋅()210x x -<,可知当1213x x ≤<≤时,函数单调递减.所以(2013)(2012)(2011)f f f >>.25.(山东省莱芜市莱芜二中2013届高三4月模拟考试数学(理)试题)如图,已知边长为8米的正方形钢板有一个角锈蚀,其中4AE =米,6CD =米. 为了合理利用这块钢板,将在五边形ABCDE 内截取一个矩形块BNPM ,使点P 在边DE 上. 则矩形BNPM 面积的最大值为_________平方米 .A MEPDCB N F【答案】48 三、解答题26.(2009高考(山东理))两县城A 和B 相距20km ,现计划在两县城外以AB 为直径的半圆弧上选择一点C 建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A 和城B 的总影响度为城A 与城B 的影响度之和,记C 点到城A 的距离为x km ,建在C 处的垃圾处理厂对城A 和城B 的总影响度为y,统计调查表明:垃圾处理厂对城A 的影响度与所选地点到城A 的距离的平方成反比,比例系数为4;对城B 的影响度与所选地点到城B 的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对城A 和城B 的总影响度为0.065.(1)将y 表示成x 的函数;(11)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A 和城B 的总影响度最小?若存在,求出该点到城A 的距离;若不存在,说明理由。
山东省2014届理科数学一轮复习试题选编7:函数的综合问题一、选择题 1 .(山东省潍坊市2013届高三第二次模拟考试理科数学)某学校要召开学生代表大会,规定根据班级人数每10人给一个代表名额,当班级人数除以10的余数大于6时,再增加一名代表名额.那么各班代表人数y与该班人数x 之间的函数关系用取整函数[]y x =([x]表示不大于*的最大整数)可表示为 ( )A .[]10x y = B .3[]10x y += C .4[]10x y += D .5[]10x y += 2 .(山东省寿光市2013届高三10月阶段性检测数学(理)试题)已知函数321,,1,12()111,0,.362x x x f x x x ⎧⎛⎤∈ ⎪⎥+⎪⎝⎦=⎨⎡⎤⎪-+∈⎢⎥⎪⎣⎦⎩函数π()sin()22(0)6g x a x a a =-+ ,若存在[]12,0,1x x ∈,使得12()()f x g x =成立,则实数a 的取值范围是 ( )A .14,23⎡⎤⎢⎥⎣⎦ B .10,2⎛⎤⎥⎝⎦ C .24,33⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦3 .(山东省德州市2013届高三第二次模拟考试数学(理)试题)若对于定义在R 上的函数f(x),存在常数()t t R ∈,使得f(x+t)+tf(x)=0对任意实数x 均成立,则称f(x )是阶回旋函数,则下面命题正确的是( )A .f(x)=2x是12-阶回旋函数 B .f(x)=sin(πx)是1阶回旋函数C .f (x)=x 2是1阶回旋函数D .f(x)=log a x 是0阶回旋函数4 .(山东省2013届高三高考模拟卷(一)理科数学)已知c b a ,,为互不相等的三个正实数,函数)(x f 可能满足如下性质:①)(a x f -为奇函数;②)(a x f +为奇函数;③)(b x f -为偶函数;④)(b x f +为偶函数;⑤()()f x c f c x +=-.类比函数2013sin y x =的对称中心、对称轴与周期的关系,某同学得到了如下结论:(i)若满足①②,则)(x f 的一个周期为4a ;(ii)若满足①③;则)(x f 的一个周期为||4b a -;(iii)若满足③④,则)(x f 的一个周期为||3b a -;(iv)若满足②⑤;则)(x f 的一个周期为||4c a +. 其中正确结论的个数为 ( ) A .1 B .2 C .3 D .45 .(山东省枣庄市2013届高三3月模拟考试数学(理)试题)已知函数2()1f x x =+的定义域为[,]()a b a b <,值域为[1,5],则在平面直角坐标系内,点(a,b)的运动轨迹与两坐标轴围成的图形的面积是 ( ) A .8 B .6 C .4 D .2 6 .(山东省德州市2013届高三3月模拟检测理科数学)已知函数(1)y f x =-的图象关于直线1x =对称,且当(,0),()'()0x f x xf x ∈-∞+<成立若a=(20.2)·0.2(2),(12)f b n =·121(12),(1)4f n c og =·121(1)4f og ,则a,b,c 的大小关系是 ( ) A .a b c >>B .b a c >>C .c a b >>D .a c b >>7 .(2012年山东理)(12)设函数f (x)=,g(x )=ax 2+bx 若y=f(x)的图像与y=g(x)图像有且仅有两个不同的公共点A(x 1,y 1),B(x 2,y 2),则下列判断正确的是 ( ) A .当a<0时,x 1+x 2<0,y 1+y 2>0 B .当a<0时, x 1+x 2>0, y 1+y 2<0 C .当a>0时,x 1+x 2<0, y 1+y 2<0 D .当a>0时,x 1+x 2>0, y 1+y 2>0 8 .(山东省2013届高三高考模拟卷(一)理科数学)我们定义若函数)(x f 为D 上的凹函数须满足以下两条规则:(1)函数在区间D 上的任何取值有意义;(2)对于区间D 上的任意n 个值n x x x ,,,21 ,总满足)()()()(2121nx x x nf x f x f x f n n +++≥+++ ,那么下列四个图象中在]2,0[π上满足凹函数定义的是9 .(山东省夏津一中2013届高三4月月考数学(理)试题)函数y=f(x),x∈D,若存在常数C,对任意的x l ∈D,仔在唯一的x 2∈D,使得C =,则称函数f(x)在D 上的几何平均数为C .已知f(x)=x 3,x∈[1,2],则函数f(x)=x 3在[1,2]上的几何平均数为 ( )AB .2C .4D . 10.(山东省威海市2013届高三上学期期末考试理科数学)对于函数(f x ,如果存在锐角θ使得()f x 的图象绕坐标原点逆时针旋转角θ,所得曲线仍是一函数,则称函数()f x 具备角θ的旋转性,下列函数具有角4π的旋转性的是 ( )A .y =B .ln y x =C .1()2x y =D .2y x =11.(山东省实验中学2013届高三第一次诊断性测试数学(理)试题)已知定义在R 上的函数()y f x =满足以下三个条件:①对于任意的x R ∈,都有(4)()f x f x +=;②对于任意的121212,,02,()();x x R x x f x f x ∈≤<≤<且都有③函数(2)y f x =+的图象关于y 轴对称,则下列结论中正确的是( )A .(4.5)(7)(6.5)f f f <<B .(7)(4.5)(6.5)f f f <<C .(7)(6.5)(4.5)f f f <<D .(4.5)(6.5)(7)f f f <<12.(山东省青岛市2013届高三上学期期中考试数学(理)试题)已知定义在R 上的奇函数()f x 满足(4)()f x f x -=-,且[]0,2x ∈时,2()log (1)f x x =+,甲、乙、丙、丁四位同学有下列结论:甲:()31f =;乙:函数()f x 在[]6,2--上是减函数;丙:函数()f x 关于直线4x =对称;丁:若()0,1m ∈,则关于x 的方程()0f x m -=在[]8,8-上所有根之和为8-,其中正确的是( )A .甲、乙、丁B .乙、丙C .甲、乙、丙D .甲、丙二、填空题:本大题共4小题,每小题4分,共16分.13.(山东省夏津一中2013届高三4月月考数学(理)试题)函数y = 1n|x-1|的图像与函数y=-2 cosπx(-2≤x≤4)的图像所有交点的横坐标之和等于( )A .8B .6C .4D .2 14.(山东省文登市2013届高三3月二轮模拟考试数学(理))对于正实数α,记M α为满足下述条件的函数()f x 构成的集合:12,x x R ∀∈且21x x >,有212121()()()()x x f x f x x x αα--<-<-.下列结论中正确的是( )A .若12(),()f x M g x M αα∈∈,则12()()f x g x M αα++∈B .若12(),()f x M g x M αα∈∈且12αα>,则12()()f x g x M αα--∈C .若12(),()f x M g x M αα∈∈,则12()()f x g x M αα⋅⋅∈D .若12(),()f x M g x M αα∈∈且()0g x ≠,则12()()f x M g x αα∈ 15.(2013年山东临沂市高三教学质量检测考试理科数学)已知集合M={(x,y )|y f (x )=},若对于任意11(x ,y )M ∈,存在22(x ,y )M ∈,使得12120x x y y +=成立,则称集合M 是“垂直对点集”.给出下列四个集合:①M={1(x,y )|y x=};②M={1(x,y )|y sin x =+}; ③M={2(x,y )|y log x =};④{(,)2}x M x y y e ==-.其中是“垂直对点集”的序号是 ( )A .①②B .②③C .①④D .②④二、填空题 16.(山东省枣庄三中2013届高三上学期1月阶段测试理科数学)已知()f x 为R 上的偶函数,对任意x R ∈都有(6)()(3)f x f x f +=+且当[]12,0,3x x ∈, 12x x ≠ 时,有1212()()0f x f x x x ->-成立,给出四个命题:①(3)0f = ② 直线6x =-是函数()y f x =的图像的一条对称轴③ 函数()y f x =在[]9,6--上为增函数 ④ 函数()y f x =在[]9,9--上有四个零点 其中所有正确命题的序号为______________17.(山东省潍坊市2013届高三上学期期末考试数学理(A ))若函数)(x f 满足0,≠∈∃m R m ,对定义域内的任意)()()(,m f x f m x f x +=+恒成立,则称)(x f 为m 函数,现给出下列函数: ①xy 1=; ②x y 2=; ③x y sin =; ④nx y 1=其中为m 函数的序号是.(把你认为所有正确的序号都填上)18.(2009高考(山东理))已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++=19.(山东省济宁市2013届高三第一次模拟考试理科数学 )函数(x)f 的定义域为D,若存在闭区间[a,b]⊆D,使得函数f (x )满足:(1) f (x )在[a,b]内是单调函数;(2)f (x )在[a,b]上的值域为[2a,2b],则称区间[a,b]为y=f (x )的“和谐区间”.下列函数中存在“和谐区间”的是_______ (只需填符合题意的函数序号) ①20f (x )x (x )=≥;②xf (x )e (x R )=∈; ③10f (x )(x )x =>;④2401xf (x )(x )x =≥+. 20.(山东省烟台市2013届高三上学期期中考试数学试题(理科))函数()f x 的定义域为A ,若12,x x A ∈且12()()f x f x =时总有12x x =,则称()f x 为单函数.例如:函数)(12)(R x x x f ∈+=是单函数.给出下列命题:①函数)()(2R x x x f ∈=是单函数; ②指数函数)(2)(R x x f x∈=是单函数;③若()f x 为单函数,12,x x A ∈且12x x ≠,则12()()f x f x ≠; ④在定义域上具有单调性的函数一定是单函数,其中的真命题是 ______________.(写出所有真命题的序号)21.(山东济南外国语学校2012—2013学年度第一学期高三质量检测数学试题(理科))具有性质:1()()f f x x=-的函数,我们称为满足“倒负”交换的函数,下列函数:①1;y x x =-②1;y x x=+ ③,(01)0,(1)1(1)x x y x x x⎧⎪<<⎪==⎨⎪⎪->⎩中满足“倒负”变换的函数是________________.22.(山东省日照市2013届高三12月份阶段训练数学(理)试题)定义在R 上的函数()yf x =,若对任意不等实数12,x x 满足()()12120f x f x x x -<-,且对于任意的,x y R ∈,不等式()()22220f x x f y y -+-≤成立.又函数()1y f x =-的图象关于点()1,0对称,则当14x ≤≤时,yx的取值范围为_______________. 23.(山东省青岛市2013届高三上学期期中考试数学(理)试题)已知函数()f x 的定义域为R ,若存在常数0m >,对任意R x ∈,有()f x m x ≤,则称函数()f x 为F -函数.给出下列函数:①2()f x x =;②2()1x f x x =+;③()2xf x =;④()sin 2f x x =. 其中是F -函数的序号为_________________.24.(山东省淄博市2013届高三复习阶段性检测(二模)数学(理)试题)已知函数()f x 在实数集R 上具有下列性质:①直线1x =是函数()f x 的一条对称轴;②()()2f x f x +=-;③当1213x x ≤<≤时,()()()21f x f x -⋅()210,x x -<则()2012f 、()2013f 从大到小的顺序为_______.25.(山东省莱芜市莱芜二中2013届高三4月模拟考试数学(理)试题)如图,已知边长为8米的正方形钢板有一个角锈蚀,其中4AE =米,6CD =米. 为了合理利用这块钢板,将在五边形ABCDE 内截取一个矩形块BNPM ,使点P 在边DE 上. 则矩形BNPM 面积的最大值为_________平方米 .A MEPDCB N F三、解答题26.(2009高考(山东理))两县城A 和B 相距20km ,现计划在两县城外以AB 为直径的半圆弧上选择一点C 建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A 和城B 的总影响度为城A 与城B 的影响度之和,记C 点到城A 的距离为x km ,建在C 处的垃圾处理厂对城A 和城B 的总影响度为y,统计调查表明:垃圾处理厂对城A 的影响度与所选地点到城A 的距离的平方成反比,比例系数为4;对城B 的影响度与所选地点到城B 的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对城A 和城B 的总影响度为0.065.(1)将y 表示成x 的函数;(11)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A 和城B 的总影响度最小?若存在,求出该点到城A 的距离;若不存在,说明理由。
中考数学二模数学试题九考生须知1.本试卷共6页,共五道大题,25个小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和考试编号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.考试结束,请将本试卷和答题卡一并交回。
一、选择题(共8道小题,每小题4分,共32分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.21-的倒数是( ). A .2 B .2- C .21D . 21-2.根据中国汽车工业协会的统计,2011年上半年的中国汽车销量约为932.5万辆,同比增速3.35%.将932.5万辆用科学记数法表示为( )辆A .93.25×105B .0.9325×107C .9.325×106D .9.325×1023.若一个正多边形的每个内角都为135°,则这个正多边形的边数是( ). A .9 B .8 C .7 D .64.下列运算正确的是( ).A .22a a a =⋅B .22=÷a aC . 22423a a a += D . ()33a a -=-5.如图所示,直线a ∥b ,直线c 与直线a ,b 分别相交于点A 、点B ,AM ⊥b ,垂足为点M ,若∠1=58°,则∠2的度数是( ).A .22B .30C .32D .426.某校抽取九年级的8名男生进行了1次体能测试,其成绩分别为90,75,90,85, 75,85,95,75,(单位:分)这次测试成绩的众数和中位数分别是 ( ). A .85,75 B .75,85 C .75,80 D .75,757.已知圆锥的底面半径为3,母线长为4,则圆锥的侧面积等于( ). A .15π B .14π C .13π D .12π第5题图2a bc MB A 18.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图为( ) .A B C D 二、填空题(共4道小题,每小题4分,共16分) 9.在函数3+=x y 中,自变量x 的取值范围是 .10.若()022=++-a b a ,则=+b a .11.把代数式142-+m m 化为()b a m ++2的形式,其中a 、b 为常数,则a +b = .12.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探索可得,第20个点的坐标是__________;第90个点的坐标为____________.三、解答题(共6道小题,每小题5分,共30分) 13.()33602120---+︒-πcos解: 14.解方程:2132+=+-a a a解:15. 已知4+=y x ,求代数式2524222-+-y xy x 的值.解:16.如图,在△ABC 中,AD 是中线,分别过点B 、C 作AD 及其延长线的垂线BE 、CF ,垂足分别为点E 、F .求证:BE =CF . 证明:17.如图,某场馆门前台阶的总高度CB 为0.9m ,为了方便残疾人行走,该场馆决定将其中一个门的门前台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角A ∠为8°,请计算从斜坡起点A 到台阶最高点D 的距离(即斜坡AD 的长).(结果精确到0.1m ,参考数据:sin 8°≈0.14,cos 8°≈0.99,tan 8°≈0.14)C ABD解:18.如图,平面直角坐标系中,直线AB 与x 轴交于点A (2,0),与y 轴交于点B ,点D 在直线AB 上.⑴求直线AB 的解析式;⑵将直线AB 绕点A 逆时针旋转30°,求旋转后的直线解析式. 解:⑴⑵四、解答题(共4道小题,每小题均5分,共20分)19.如图1,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE △是等边三角形. ⑴求证:四边形ABCD 是菱形;⑵如图2,若2AED EAD ∠=∠,AC =6.求DE 的长.y x31D BO AOBEACD OB EACD图1 图2 证明:⑴ ⑵20. 如图,⊙O 中有直径AB 、EF 和弦BC ,且BC 和EF 交于点D,点D 是弦BC 的中点,CD =4,DF =8.⑴求⊙O 的半径及线段AD 的长;⑵求sin ∠DAO 的值.解:⑴⑵21.图①、图②反映是某综合商场今年1-4月份的商品销售额统计情况.观察图①和图②,解答下面问题:⑴来自商场财务部的报告表明,商场1-4月份的销售总额一共是280万元,请你根据这FE D BO A C。
2016年某某省某某市扶沟县包屯高中高考数学二模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0},则(∁U A)∩B=()A.[﹣1,0] B.[﹣1,2] C.(1,2] D.(﹣∞,1]∪[2,+∞)2.设复数z=1+i(i是虚数单位),则|+z|=()A.2 B.C.3 D.23.不等式|2x﹣1|>x+2的解集是()A.(﹣,3)B.(﹣∞,﹣)∪(3,+∞)C.(﹣∞,﹣3)∪(,+∞)D.(﹣3,+∞)4.若函数f(x)=2sin(ωx+θ)对任意x都有f(+x)=f(﹣x),则f()=()A.2或0 B.﹣2或2 C.0 D.﹣2或05.一算法的程序框图如图,若输出的y=,则输入的x的值可能为()A.﹣1 B.0 C.1 D.56.已知双曲线,它的一个顶点到较近焦点的距离为1,焦点到渐近线的距离是,则双曲线C的方程为()A.x2﹣=1 B.﹣y2=1 C.﹣y2=1 D.x2﹣=17.用a,b,c表示空间中三条不同的直线,γ表示平面,给出下列命题:①若a⊥b,b⊥c,则a∥c;②若a∥b,a∥c,则b∥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.其中真命题的序号是()A.①② B.②③ C.①④ D.②④8.设点M(x,y)是不等式组所表示的平面区域Ω中任取的一点,O为坐标原点,则|OM|≤2的概率为()A. B.C. D.9.已知等差数列{a n}的前n项和为S n,若S17=170,则a7+a9+a11的值为()A.10 B.20 C.25 D.3010.已知△ABC三边长构成公差为d(d≠0)的等差数列,则△ABC最大内角α的取值X围为()A.<α≤B.<α<πC.≤α<πD.<α≤11.已知f(x)=在x=0处取得最小值,则a的最大值是()A.4 B.1 C.3 D.212.若对∀x,y∈[0,+∞),不等式4ax≤e x+y﹣2+e x﹣y﹣2+2恒成立,则实数a的最大值是()A.B.1 C.2 D.二、填空题:本大题共4小题,每题5分,满分20分,将答案填在答题纸上13.命题“对任意x≤0,都有x2<0”的否定为_______.14.若(ax2+)6的展开式中x3项的系数为20,则ab的值为_______.15.设函数f(x)=lnx的定义域为(M,+∞),且M>0,对于任意a,b,c∈(M,+∞),若a,b,c是直角三角形的三条边长,且f(a),f(b),f(c)也能成为三角形的三条边长,那么M的最小值为_______.16.已知||=1,||=, =0,点C在∠AOB内,且∠AOC=30°,设=m+n (m、n∈R),则等于_______.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.等差数列{a n}的公差为d(d<0),a i∈{1,﹣2,3,﹣4,5}(i=1,2,3),则数列{b n}中,b1=1,点B n(n,b n)在函数g(x)=a•2x(a是常数)的图象上.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)若=a n•b n,求数列{}的前n项和S n.18.如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点E、F分别在棱BB1、CC1上,且BE=BB1,C1F=CC1.(1)求平面AEF与平面ABC所成角α的余弦值;(2)若G为BC的中点,A1G与平面AEF交于H,且设=,求λ的值.19.甲、乙两同学参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,具体成绩如下茎叶图所示,已知两同学这8次成绩的平均分都是85分.(1)求x;并由图中数据直观判断,甲、乙两同学中哪一位的成绩比较稳定?(2)若将频率视为概率,对甲同学在今后3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ.甲乙9 8 7 58 x 2 1 8 0 0 3 55 3 9 0 2 520.已知动点P到直线x=2的距离等于P到圆x2﹣7x+y2+4=0的切线长,设点P的轨迹为曲线E;(1)求曲线E的方程;(2)是否存在一点Q(m,n),过点Q任作一直线与轨迹E交于M、N两点,点(,)都在以原点为圆心,定值r为半径的圆上?若存在,求出m、n、r的值;若不存在,说明理由.21.已知函数(其中常数a,b∈R),.(Ⅰ)当a=1时,若函数f(x)是奇函数,求f(x)的极值点;(Ⅱ)若a≠0,求函数f(x)的单调递增区间;(Ⅲ)当时,求函数g(x)在[0,a]上的最小值h(a),并探索:是否存在满足条件的实数a,使得对任意的x∈R,f(x)>h(a)恒成立.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲](共1小题,满分10分)22.如图,P为圆外一点,PD为圆的切线,切点为D,AB为圆的一条直径,过点P作AB的垂线交圆于C、E两点(C、D两点在AB的同侧),垂足为F,连接AD交PE于点G.(1)证明:PC=PD;(2)若AC=BD,求证:线段AB与DE互相平分.[选修4-4:坐标系与参数方程]23.已知直角坐标系xOy的原点和极坐标系Ox的极点重合,x轴非负半轴与极轴重合,单位长度相同,在直角坐标系下,曲线C的参数方程为,(φ为参数).(1)在极坐标系下,若曲线C与射线θ=和射线θ=﹣分别交于A,B两点,求△AOB 的面积;(2)给出直线l的极坐标方程为ρcosθ﹣ρsinθ=2,求曲线C与直线l在平面直角坐标系中的交点坐标.[选修4-5:不等式选讲]24.已知:函数f(x)=|1﹣3x|+3+ax.(1)若a=﹣1,解不等式f(x)≤5;(2)若函数f(x)有最小值,某某数a的取值X围.2016年某某省某某市扶沟县包屯高中高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0},则(∁U A)∩B=()A.[﹣1,0] B.[﹣1,2] C.(1,2] D.(﹣∞,1]∪[2,+∞)【考点】交、并、补集的混合运算.【分析】化简集合B,求出A的补集,再计算(∁U A)∩B.【解答】解:全集U=R,集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0}={x|0≤x≤2},∴∁U A={x|x<﹣1或x>1},∴(∁U A)∩B={x|1<x≤2}=(1,2].故选:C.2.设复数z=1+i(i是虚数单位),则|+z|=()A.2 B.C.3 D.2【考点】复数代数形式的乘除运算.【分析】先求出+z,再求出其模即可.【解答】解:∵z=1+i,∴+z=+1+i===1﹣i+1+i=2,故|+z|=2,故选:A.3.不等式|2x﹣1|>x+2的解集是()A.(﹣,3)B.(﹣∞,﹣)∪(3,+∞)C.(﹣∞,﹣3)∪(,+∞)D.(﹣3,+∞)【考点】绝对值三角不等式.【分析】选择题,对x+2进行分类讨论,可直接利用绝对值不等式公式解决:|x|>a等价于x>a或x<﹣a,最后求并集即可.【解答】解:当x+2>0时,不等式可化为2x﹣1>x+2或2x﹣1<﹣(x+2),∴x>3或2x﹣1<﹣x﹣2,∴x>3或﹣2<x<﹣,当x+2≤0时,即x≤﹣2,显然成立,故x的X围为x>3或x<﹣故选:B.4.若函数f(x)=2sin(ωx+θ)对任意x都有f(+x)=f(﹣x),则f()=()A.2或0 B.﹣2或2 C.0 D.﹣2或0【考点】正弦函数的图象.【分析】由f(+x)=f(﹣x),可得x=是函数f(x)的对称轴,利用三角函数的性质即可得到结论.【解答】解:∵函数f(x)=2sin(ωx+θ)对任意x都有f(+x)=f(﹣x),∴x=是函数f(x)的对称轴,即此时函数f(x)取得最值,即f()=±2,故选:B5.一算法的程序框图如图,若输出的y=,则输入的x的值可能为()A.﹣1 B.0 C.1 D.5【考点】程序框图.【分析】模拟执行程序可得程序功能是求分段函数y=的值,根据已知即可求解.【解答】解:模拟执行程序可得程序功能是求分段函数y=的值,∵y=,∴sin()=∴=2kπ+,k∈Z,即可解得x=12k+1,k∈Z.∴当k=0时,有x=1.故选:C.6.已知双曲线,它的一个顶点到较近焦点的距离为1,焦点到渐近线的距离是,则双曲线C的方程为()A.x2﹣=1 B.﹣y2=1 C.﹣y2=1 D.x2﹣=1【考点】双曲线的简单性质.【分析】由题意可得c﹣a=1,求出渐近线方程和焦点的坐标,运用点到直线的距离公式,可得b=,由a,b,c的关系,可得a,进而得到所求双曲线的方程.【解答】解:双曲线的一个顶点(a,0)到较近焦点(c,0)的距离为1,可得c﹣a=1,由双曲线的渐近线方程为y=x,则焦点(c,0)到渐近线的距离为d==b=,又c2﹣a2=b2=3,解得a=1,c=2,即有双曲线的方程为x2﹣=1.故选:A.7.用a,b,c表示空间中三条不同的直线,γ表示平面,给出下列命题:①若a⊥b,b⊥c,则a∥c;②若a∥b,a∥c,则b∥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.其中真命题的序号是()A.①② B.②③ C.①④ D.②④【考点】空间中直线与平面之间的位置关系.【分析】与立体几何有关的命题真假判断,要多结合空间图形,充分利用相关的公里、定理解答.判断线与线、线与面、面与面之间的关系,可将线线、线面、面面平行(垂直)的性质互相转换,进行证明,也可将题目的中直线放在空间正方体内进行分析.【解答】解:因为空间中,用a,b,c表示三条不同的直线,①中正方体从同一点出发的三条线,满足已知但是a⊥c,所以①错误;②若a∥b,b∥c,则a∥c,满足平行线公理,所以②正确;③平行于同一平面的两直线的位置关系可能是平行、相交或者异面,所以③错误;④垂直于同一平面的两直线平行,由线面垂直的性质定理判断④正确;故选:D.8.设点M(x,y)是不等式组所表示的平面区域Ω中任取的一点,O为坐标原点,则|OM|≤2的概率为()A. B.C. D.【考点】几何概型.【分析】若x,y∈R,则区域W的面积是2×2=4.满足|OM|≤2的点M构成的区域为{(x,y)|﹣1≤x≤1,0≤y≤2,x2+y2≤4},求出面积,即可求出概率.【解答】解:这是一个几何概率模型.若x,y∈R,则区域W的面积是2×2=4.满足|OM|≤2的点M构成的区域为{(x,y)|﹣1≤x≤1,0≤y≤2,x2+y2≤4},面积为2[﹣(﹣)]= +,故|OM|≤2的概率为.故选:D.9.已知等差数列{a n}的前n项和为S n,若S17=170,则a7+a9+a11的值为()A.10 B.20 C.25 D.30【考点】等差数列的前n项和.【分析】由等差数列的性质可得a7+a9+a11=3a9,而s17=17a9,故本题可解.【解答】解:∵a1+a17=2a9,∴s17==17a9=170,∴a9=10,∴a7+a9+a11=3a9=30;故选D.10.已知△ABC三边长构成公差为d(d≠0)的等差数列,则△ABC最大内角α的取值X围为()A.<α≤B.<α<πC.≤α<πD.<α≤【考点】余弦定理;正弦定理.【分析】由已知根据三角形内角和定理得3α>π,从而解得α>,妨设三角形三边为a﹣d,a,a+d,(a>0,d>0),利用余弦定理可得cosα=2﹣>﹣1,结合三角形内角的X围即可得解.【解答】解:∵α为△ABC最大内角,∴3α>π,即α>,由题意,不妨设三角形三边为a﹣d,a,a+d,(a>0,d>0),则由余弦定理可得,cosα===2﹣=2﹣,又∵三角形两边之和大于第三边,可得a﹣d+a>a+d,可得a>2d,即,∴cosα=2﹣>﹣1,又α为三角形内角,α∈(0,π),可得:α∈(,π).故选:B.11.已知f(x)=在x=0处取得最小值,则a的最大值是()A.4 B.1 C.3 D.2【考点】函数的最值及其几何意义.【分析】根据分段函数,分别讨论x的X围,求出函数的最小值,根据题意得出不等式a2<a+2,求解即可.【解答】解:∵f(x)=,当x≤0时,f(x)的最小值为a2,当x>0时,f(x)的最小值为2+a,∵在x=0处取得最小值,∴a2<a+2,∴﹣1≤a≤2,故选D.12.若对∀x,y∈[0,+∞),不等式4ax≤e x+y﹣2+e x﹣y﹣2+2恒成立,则实数a的最大值是()A.B.1 C.2 D.【考点】函数恒成立问题.【分析】利用基本不等式和参数分离可得a≤在x>0时恒成立,构造函数g(x)=,通过求导判断单调性求得g(x)的最小值即可得到a的最大值.【解答】解:当x=0时,不等式即为0≤e y﹣2+e﹣y﹣2+2,显然成立;当x>0时,设f(x)=e x+y﹣2+e x﹣y﹣2+2,不等式4ax≤e x+y﹣2+e x﹣y﹣2+2恒成立,即为不等式4ax≤f(x)恒成立.即有f(x)=e x﹣2(e y+e﹣y)+2≥e x﹣2•2+2=2+2e x﹣2(当且仅当y=0时,取等号),由题意可得4ax≤2+2e x﹣2,即有a≤在x>0时恒成立,令g(x)=,g′(x)=,令g′(x)=0,即有(x﹣1)e x﹣2=1,令h(x)=(x﹣1)e x﹣2,h′(x)=xe x﹣2,当x>0时h(x)递增,由于h(2)=1,即有(x﹣1)e x﹣2=1的根为2,当x>2时,g(x)递增,0<x<2时,g(x)递减,即有x=2时,g(x)取得最小值,为,则有a≤.当x=2,y=0时,a取得最大值.故选:D二、填空题:本大题共4小题,每题5分,满分20分,将答案填在答题纸上13.命题“对任意x≤0,都有x2<0”的否定为存在x0≤0,都有.【考点】命题的否定.【分析】利用全称命题的否定是特称命题,写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以,命题“对任意x≤0,都有x2<0”的否定为:存在x0≤0,都有;故答案为:存在x0≤0,都有;14.若(ax2+)6的展开式中x3项的系数为20,则ab的值为 1 .【考点】二项式系数的性质.【分析】直接利用二项式定理的通项公式,求出x3项的系数为20,得到ab的值.【解答】解:(ax2+)6的展开式的通项公式为T r+1=•a6﹣r•b r•x12﹣3r,令12﹣3r=3,求得r=3,故(ax2+)6的展开式中x3项的系数为•a3•b3=20,∴ab=1.故答案为:1.15.设函数f(x)=lnx的定义域为(M,+∞),且M>0,对于任意a,b,c∈(M,+∞),若a,b,c是直角三角形的三条边长,且f(a),f(b),f(c)也能成为三角形的三条边长,那么M的最小值为.【考点】三角形的形状判断;函数的值.【分析】不妨设c为斜边,则M<a<c,M<b<c,则可得ab>M2,结合题意可得,结合a2+b2≥2ab可求c的X围,进而可求M的X围,即可求解【解答】解:不妨设c为斜边,则M<a<c,M<b<c∴ab>M2由题意可得,∴∵a2+b2≥2ab>2c∴c2>2c即c>2∴ab>2∴M2≥2∴故答案为:16.已知||=1,||=, =0,点C在∠AOB内,且∠AOC=30°,设=m+n (m、n∈R),则等于 3 .【考点】平面向量数量积的运算;线段的定比分点.【分析】先根据=0,可得⊥,又因为===|OC|×1×cos30°==1×,所以可得:在x轴方向上的分量为在y轴方向上的分量为,又根据=m+n=n+m,可得答案.【解答】解:∵||=1,||=, =0,⊥===|OC|×1×cos30°==1×∴在x轴方向上的分量为在y轴方向上的分量为∵=m+n=n+m∴,两式相比可得: =3.故答案为:3三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.等差数列{a n}的公差为d(d<0),a i∈{1,﹣2,3,﹣4,5}(i=1,2,3),则数列{b n}中,b1=1,点B n(n,b n)在函数g(x)=a•2x(a是常数)的图象上.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)若=a n•b n,求数列{}的前n项和S n.【考点】数列的求和;等差数列的通项公式.【分析】(I)等差数列{a n}的公差为d(d<0),a i∈{1,﹣2,3,﹣4,5}(i=1,2,3),可得a1=5,a2=3,a3=1.利用等差数列的通项公式即可得出.由点B n(n,b n)在函数g(x)=a•2x(a是常数)的图象上,可得b n=a•2n.利用b1=1,解得a,即可得出.(II)=a n•b n=(7﹣2n)•2n﹣1.利用“错位相减法”与等比数列的求和公式即可得出.【解答】解:(I)等差数列{a n}的公差为d(d<0),a i∈{1,﹣2,3,﹣4,5}(i=1,2,3),∴a1=5,a2=3,a3=1.∴d=3﹣5=﹣2,∴a n=5﹣2(n﹣1)=7﹣2n.∵点B n(n,b n)在函数g(x)=a•2x(a是常数)的图象上,∴b n=a•2n.∵b1=1,∴1=a×21,解得a=.∴b n=2n﹣1.(II)=a n•b n=(7﹣2n)•2n﹣1.∴数列{}的前n项和S n=5×1+3×2+1×22+…+(7﹣2n)•2n﹣1.∴2S n=5×2+3×22+…+(9﹣2n)•2n﹣1+(7﹣2n)•2n,∴﹣S n=5﹣2(2+22+…+2n﹣1)﹣(7﹣2n)•2n=5﹣﹣(7﹣2n)•2n=9﹣(9﹣2n)•2n,∴S n=(9﹣2n)•2n﹣9.18.如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点E、F分别在棱BB1、CC1上,且BE=BB1,C1F=CC1.(1)求平面AEF与平面ABC所成角α的余弦值;(2)若G为BC的中点,A1G与平面AEF交于H,且设=,求λ的值.【考点】二面角的平面角及求法;棱柱的结构特征.【分析】(1)建立空间坐标系,求出平面的法向量,利用向量法进行求解即可.(2)利用四点共面, =x+y,建立方程关系进行求解即可.【解答】解:(1)在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点E、F分别在棱BB1、CC1上,且BE=BB1,C1F=CC1.∴建立以A为坐标原点,AB,AC,AA1分别为x,y,z轴的空间直角坐标系如图:则A(0,0,0),A1(0,0,6),B(2,0,0),C(0,2,0),E(2,0,2),F(0,2,4),则=(2,0,2),=(0,2,4),设平面AEF的法向量为=(x,y,z)则令z=1.则x=﹣1,y=﹣2,即=(﹣1,﹣2,1),平面ABC的法向量为=(0,0,1),则cos<,>===即平面AEF与平面ABC所成角α的余弦值是;(2)若G为BC的中点,A1G与平面AEF交于H,则G(1,1,0),∵=,∴==λ(1,1,﹣6)=(λ,λ,﹣6λ),=+=(λ,λ,6﹣6λ)∵A,E,F,H四点共面,∴设=x+y,即(λ,λ,6﹣6λ)=x(2,0,2)+y(0,2,4),则,得λ=,x=y=,故λ的值为.19.甲、乙两同学参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,具体成绩如下茎叶图所示,已知两同学这8次成绩的平均分都是85分.(1)求x;并由图中数据直观判断,甲、乙两同学中哪一位的成绩比较稳定?(2)若将频率视为概率,对甲同学在今后3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ.甲乙9 8 7 58 x 2 1 8 0 0 3 55 3 9 0 2 5【考点】离散型随机变量的期望与方差;极差、方差与标准差;离散型随机变量及其分布列.【分析】(1)由题意利用平均数的定义仔细分析图表即可求得;(2)由题意记“甲同学在一次数学竞赛中成绩高于8”为事A,则,而随机变量ξ的可能取值为0、1、2、3,由题意可以分析出该随机变量ξ~B(3,),再利用二项分布的期望与分布列的定义即可求得.【解答】解:(1)依题意,解x=4,由图中数据直观判断,甲同学的成绩比较稳定.(2)记“甲同学在一次数学竞赛中成绩高于80分”为事A,则,随机变ξ的可能取值为0、1、2、3,ξ~B(3,),,其k=0、1、2、3.所以变ξ的分布列为:ξ0 1 2 3P20.已知动点P到直线x=2的距离等于P到圆x2﹣7x+y2+4=0的切线长,设点P的轨迹为曲线E;(1)求曲线E的方程;(2)是否存在一点Q(m,n),过点Q任作一直线与轨迹E交于M、N两点,点(,)都在以原点为圆心,定值r为半径的圆上?若存在,求出m、n、r的值;若不存在,说明理由.【考点】直线与圆锥曲线的综合问题.【分析】(1)设P(x,y),由题意可得,整理可得切线E 的方程(2)过点Q任作的直线方程可设为:为直线的倾斜角),代入曲线E的方程y2=3x,得(n+tsinα)2=3(m+tcosα),sin2αt2+(2nsinα﹣3cosα)t+n2﹣3m=0,由韦达定理得,,若使得点(,)在以原点为圆心,定值r为半径的圆上,则有=为定值【解答】解:(1)设P(x,y),圆方程x2﹣7x+y2+4=0化为标准式:则有∴(x﹣2)2=x2﹣7x+y2+4,整理可得y2=3x∴曲线E的方程为y2=3x.(2)过点Q任作的直线方程可设为:为直线的倾斜角)代入曲线E的方程y2=3x,得(n+tsinα)2=3(m+tc osα),sin2αt2+(2nsinα﹣3cosα)t+n2﹣3m=0由韦达定理得,,==═令﹣12n与2n2+6m﹣9同时为0得n=0,,此时为定值故存在.21.已知函数(其中常数a,b∈R),.(Ⅰ)当a=1时,若函数f(x)是奇函数,求f(x)的极值点;(Ⅱ)若a≠0,求函数f(x)的单调递增区间;(Ⅲ)当时,求函数g(x)在[0,a]上的最小值h(a),并探索:是否存在满足条件的实数a,使得对任意的x∈R,f(x)>h(a)恒成立.【考点】函数在某点取得极值的条件;利用导数研究函数的单调性.【分析】(I)根据所给的函数是一个奇函数,写出奇函数成立的等式,整理出b的值是0,得到函数的解析式,对函数求导,使得导函数等于0,求出极值点.(II)要求函数的单调增区间,首先对函数求导,使得导函数大于0,解不等式,问题转化为解一元二次不等式,注意对于a值进行讨论.(Ⅲ)求出函数g(x)在[0,a]上的极值、端点值,比较其中最小者即为h(a),再利用奇函数性质及基本不等式求出f(x)的最小值,对任意的x∈R,f(x)>h(a)恒成立,等价于f(x)min>h(a),在上只要找到一a值满足该不等式即可.【解答】解:(Ⅰ)当a=1时,因为函数f(x)是奇函数,∴对x∈R,f(﹣x)=﹣f(x)成立,得,∴,∴,得,令f'(x)=0,得x2=1,∴x=±1,经检验x=±1是函数f(x)的极值点.(Ⅱ)因为,∴,令f'(x)>0⇒﹣ax2﹣2bx+a>0,得ax2+2bx﹣a<0,①当a>0时,方程ax2+2bx﹣a=0的判别式△=4b2+4a2>0,两根,单调递增区间为,②当a<0时,单调递增区间为和.(Ⅲ)因为,当x∈[0,a]时,令g'(x)=0,得,其中.当x变化时,g'(x)与g(x)的变化情况如下表:x (0,x0)x0(x0,a)g'(x)+ 0 ﹣g(x)↗↘∴函数g(x)在[0,a]上的最小值为g(0)与g(a)中的较小者.又g(0)=0,,∴h(a)=g(a),∴,b=0时,由函数是奇函数,且,∴x>0时,,当x=1时取得最大值;当x=0时,f(0)=0;当x<0时,,∴函数f(x)的最小值为,要使对任意x∈R,f(x)>h(a)恒成立,则f(x)最小>h(a),∴,即不等式在上有解,a=π符合上述不等式,∴存在满足条件的实数a=π,使对任意x∈R,f(x)>h(a)恒成立.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲](共1小题,满分10分)22.如图,P为圆外一点,PD为圆的切线,切点为D,AB为圆的一条直径,过点P作AB的垂线交圆于C、E两点(C、D两点在AB的同侧),垂足为F,连接AD交PE于点G.(1)证明:PC=PD;(2)若AC=BD,求证:线段AB与DE互相平分.【考点】与圆有关的比例线段.【分析】(1)利用PD为圆的切线,切点为D,AB为圆的一条直径,证明:∠DGP=∠PDG,即可证明PC=PD;(2)若AC=BD,证明DE为圆的一条直径,即可证明线段AB与DE互相平分.【解答】证明:(1)∵PD为圆的切线,切点为D,AB为圆的一条直径,∴∠PDA=∠DBA,∠BDA=90°,∴∠DBA+∠DAB=90°,∵PE⊥AB∴在Rt△AFG中,∠FGA+∠GAF=90°,∴∠FGA+∠DAB=90°,∴∠FGA=∠DBA.∵∠FGA=∠DGP,∴∠DGP=∠PDA,∴∠DGP=∠PDG,∴PG=PD;(2)连接AE,则∵CE⊥AB,AB为圆的一条直径,∴AE=AC=BD,∴∠EDA=∠DAB,∵∠DEA=∠DBA,∴△BDA≌△EAD,∴DE=AB,∴DE为圆的一条直径,∴线段AB与DE互相平分.[选修4-4:坐标系与参数方程]23.已知直角坐标系xOy的原点和极坐标系Ox的极点重合,x轴非负半轴与极轴重合,单位长度相同,在直角坐标系下,曲线C的参数方程为,(φ为参数).(1)在极坐标系下,若曲线C与射线θ=和射线θ=﹣分别交于A,B两点,求△AOB 的面积;(2)给出直线l的极坐标方程为ρcosθ﹣ρsinθ=2,求曲线C与直线l在平面直角坐标系中的交点坐标.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)曲线C的参数方程为,(φ为参数),利用平方关系可得:曲线 C 在直角坐标系下的普通方程.将其化为极坐标方程为,分别代入和,可得|OA|,|OB|,,利用直角三角形面积计算公式可得△AOB的面积.(2)将l的极坐标方程化为直角坐标方程得x﹣y﹣2=0,与椭圆方程联立解出即可得出交点坐标.【解答】解:(1)曲线C的参数方程为,(φ为参数),利用平方关系可得:曲线 C在直角坐标系下的普通方程为,将其化为极坐标方程为,分别代入和,得,∵,故△AOB的面积.(2)将l的极坐标方程化为直角坐标方程,得x﹣y﹣2=0,联立方程,解得x=2,y=0,或,∴曲线C与直线l的交点坐标为(2,0)或.[选修4-5:不等式选讲]24.已知:函数f(x)=|1﹣3x|+3+ax.(1)若a=﹣1,解不等式f(x)≤5;(2)若函数f(x)有最小值,某某数a的取值X围.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(1)若a=﹣1,不等式f(x)≤5,即为|3x﹣1|≤x+2,去掉绝对值解不等式f(x)≤5;(2)分析知函数f(x)有最小值的充要条件为,即可某某数a的取值X围.【解答】解:(1)当a=﹣1时,f(x)=|3x﹣1|+3﹣x,所以不等式f(x)≤5,即为|3x﹣1|≤x+2,讨论:当时,3x﹣1﹣x+3≤5,解之得;当时,﹣3x+1﹣x+3≤5,解之得,综上,原不等式的解集为…(2),分析知函数f(x)有最小值的充要条件为,即﹣3≤a≤3…。
2013—2014学年度高三适应性测试(一)数学(理)注意事项:1.本试题满分150分,考试时间为120分钟.2.使用答题纸时,必须使用0.5毫米黑色墨水签字笔书写,作图时,可用2B 铅笔。
要字迹工整,笔迹清晰.超出答题区书写的答案无效;在草稿纸,试题卷上答题无效。
3.答卷前将密封线内的项目填写清楚。
一、选择题:本大题共10小题;每小题5分,共50分.每小题给出四个选项,只有一个选项符合题目要求,把正确选项的代号涂在答题卡上。
1.已知集合{}{}()22,=U A x x B x x N C A B =->=∈⋂,则 A.{}123,,B.{}0123,,,C.{}01234,,,,D.{}1234,,,2.若复数z 满足()25i z +=(其中i 为虚数单位),则z 的共轭复数z 对应的点位于 A.第一象限B.第二象限C.第三象限D.第四象限3.某班有60名学生,一次考试后数学成绩()()~110102100110=0.35N P ξξ≤≤,,若,则估计该班学生数学成绩在120分以上的人数为 A.10 B.9 C.8 D.74.设,a b R ∈则“0,0a b >>”是“2a b+> A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件5.定义22⨯矩阵()()()()(()1234sin 1423cos x a a a a x a aa a f x f x ππ-+=-=,若,则的图象向右平移3π个单位得到的函数解析式为 A.22sin 3y x π⎛⎫=- ⎪⎝⎭B.2sin 3y x π⎛⎫=+ ⎪⎝⎭C.2cos y x =D.2sin y x =6.一个几何体的三视图如右上图所示,则这个几何体的体积是 A.23π B.43π C.83π D.163π7.已知圆C 的方程为2220x y x +-=,若以直线2y kx =-上任意一点为圆心,以1为半径的圆与圆C 没有公共点,则k 的整数值是 A.1-B.0C.1D.28.函数()()sin ln 2xf x x =+的图象可能是9.若在曲线(),0f x y =上两个不同点处的切线重合.则称这条切线为曲线(),0f x y =的“自公切线”.下列方程:①1x y e =-;②2y x x =-;③1x +=④2y x x=+对应的曲线中存在“自公切线”的有 A.①② B.③④ C.②④D.③④10.已知双曲线()222210,0x y a b a b-=>>左、右焦点分别为()()12,0,,0F c F c -,若双曲线右支上存在点P 使得1221sin sin a cPF F PF F =∠∠,则该双曲线离心率的取值范围为A.()1B.)1,1C.()1D.)1,+∞二、填空题:本大题共有5个小题,每小题5分,共25分.请将正确答案填在答题卡相应位置.11.右方茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x y +的值为12.直线y x =与抛物线22y x x =-所围成封闭图形的面积为13.已知数列{}111,n n n a a a a n +==+中,若利用如右图所示的程序框图计算该数列的第8项.则判断框内的条件是14.已知关于x的二项式n的展开式的二项式系数和为32,常数项为80,则a 的值为15.已知函数()x x f x e e -=-,实数,x y 满足()()22220f x x f y y -+-≥,若点()()1,2,,M N x y ,14x ≤≤则当时, OM ON ⋅的最大值为(其中O 为坐标原点)三、解答题.本大题共6个小题,共75分.解答时要求写出必要的文字说明、证明过程或推理步骤.16.(本小题满分12分)已知函数()()21cos sin 2f x x x x x R =++∈. (1)当5,1212x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最小值和最大值; (2)设ABC ∆的内角A,B,C的对应边分别为(),,2,a b c c f C ==,且若向量()1,m a =与向量()2,n b =共线,求,a b 的值.17.(本小题满分12分)第十二届全国人民代表大会第二次会议和政协第十二届全国委员会第二次会议,2014年3月在北京召开.为了做好两会期间的接待服务工作,中国人民大学学生实践活动中心从7名学生会干部(其中男生4人,女生3人)中选3人参加两会的志愿者服务活动. (1)所选3人中女生人数为ξ,求ξ的分布列及数学期望; (2)在男生甲被选中的情况下,求女生乙也被选中的概率. 18.(本小题满分12分)已知等比数列{}n a 的前n n S 项和满足:41324282,S S a a a -=+,且是的等差中项. (1)求数列{}n a 的通项公式;(2)若数列{}n a 为递增数列,122221,log log n n n n n b T b b b a a +==++⋅⋅⋅⋅,问是否存在最小正整数n 使得12n T >成立?若存在试确定n 的值,不存在说明理由. 19.(本小题满分12分)在如图所示的多面体中,底面BCFE 是梯形,EF//BC ,又EF ⊥平面AEB ,,//.24AE EB AD EF BC AD ⊥==,3,2,EF AE BE G BC ===为的中点.(I )求证:AB//平面DEG ; (2)求证:BD EG ⊥;(3)求二面角C —DF —E 的正弦值. 20.(本小题满分13分)已知椭圆1C 和抛物线2C 有公共焦点()11.0F C ,的中心和2C 的顶点都在坐标原点,过点M (4,0)的直线l 与抛物线2C 分别相交于A ,B 两点. (1)如图所示,若14AM MB =,求直线l 的方程; (2)若坐标原点O 关于直线l 的对称点P 在抛物线2C 上,直线l 与椭圆1C 有公共点,求椭圆1C 的长轴长的最小值.21.(本小题满分14分) 已知函数()()()21ln 12f x x ax a x a R =+-+∈. (1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)当0a >时,若()[]1f x e 在区间,上的最小值为2-,求a 的值;(3)若对任意()()()12121122,0,,x x x x f x x f x x ∈+∞<+<+,且恒成立,求a 的取值范围.数学理一参考答案及评分标准一、选择题CABDD CAACC二、填空题11.13 12. 1613. 7?n≤14.2 15.12三、解答题16.解:1cos21()222xf x x-++12cos2122x x=-+sin(2)16xπ=-+…………3分∵51212xππ-≤≤,∴22363xπππ-≤-≤,∴sin(2)16xπ≤-≤,从而1sin(2)1226xπ-≤-+≤则)(xf的最小值是12-,最大值是2 …………6分(2)()sin(2)126f C Cπ=-+=,则πsin(2C-)=16,∵0Cπ<<,∴112666Cπππ-<-<,∴262Cππ-=,解得3Cπ=. …………8分∵向量(1,)a=m与向量(2,)b=n共线,∴20b a-=,即2b a=①…………9分由余弦定理得,222πc=a+b-2abcos3,即22a+b-ab=3②由①②解得a=1,b=2. …………12分17.解:(1)ξ得可能取值为 0,1,2,3由题意P(ξ=0)=3437435CC=, P(ξ=1)=2143371835C CC=,P (ξ=2)=1243371235C C C = P (ξ=3)=034337135C C C = …………4分∴ξ的分布列、期望分别为:E ξ=0×435+1×1835+2 ×1235+3×135=97…………8分 (2)设在男生甲被选中的情况下,女生乙也被选中的事件为C男生甲被选中的种数为2615C =,男生甲被选中,女生乙也被选中的 种数为155C = …………10分∴P (C )=152651153C C ==在男生甲被选中的情况下,女生乙也被选中的概率为13……12分 18.解:(1)设等比数列{}n a 的首项为1a ,公比为q ,依题意,有423)22a a a +=+(,由4128S S -=可得,28432=++a a a 得20,8423=+∴=a a a ……3分⎪⎩⎪⎨⎧===+∴820213311q a a q a q a 解之得11122232q q a a ⎧==⎧⎪⎨⎨=⎩⎪=⎩或 ………………5分 所以n n a 2=或6)21(-=n n a ………………6分(2)因为数列{}n a 单调递增,nn a a q 2,2,21=∴=∴=∴22211111()log 2log 2(2)22n n n b n n n n +===-⋅++,……………………7分所以11111111(1)2324352n T n n =-+-+-++-+ 21311323()22124264n n n n n +=--=-++++.……………………9分假设存在,则有2323142642n n n +->++,整理得:240n n -->解得n n ><(不合题意舍去) ………………11分 又因为n 为正整数,所以n 的最小值为3. ………………………………12分 19. 解:(1)证明://,//,//AD EF EF BC AD BC ∴,2,//,BC AD G BC AD BG AD BG =∴=为的中点,且.//.ABGD AB DG ∴∴四边形是平行四边形, …………2分,,//.AB DEG DG DEG AB DEG ⊄⊂∴平面平面平面…………4分(2)证明:EF AEB AE AEB BE AEB ∴⊥⊂⊂平面,平面,平面,,,,,,EF AE EF BE AE EB EB EF EA ∴⊥⊥⊥∴两两垂直.……6分以点E 为坐标原点,,,,,EB EF EA x y z 分别为轴,建立空间直角坐标系如图所示,由已知得(002),(200),(240),(022),(030),(220).A B C D F G ,,,,,,,,,,,,(220),(22,2),=-2222200.EG BD EG BD ∴==-⋅⨯+⨯+⨯=,,,故BD EG ∴⊥ ………………………8分(3)由已知可得(2,0,0)EB =是平面EFDA 的一个法向量. 设平面DCF 的一个法向量为()=x,y,z n ,(0-1,2(210)FD FC ==,),,,,20,11, 2.(1,2,1).20y z z x y x y -+=⎧∴==-==-⎨+=⎩n 令得即……………10分设二面角C FD E --的大小为θ,则cos cos ,66n EB θθ=<>==-=…………11分C DF E ∴--二面角………………………12分 20.解:(1)由题知抛物线方程为24y x = 。