方差分析与协方差分析教案资料
- 格式:doc
- 大小:22.00 KB
- 文档页数:8
方差分析方差分析(Analysis of Variance,简称ANOVA),又称"变异数分析〞或"F检验〞,是R.A.Fisher创造的,用于两个及两个以上样本均数差异的显著性检验。
由于各种因素的影响,研究所得的数据呈现波动状。
造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。
方差分析的作用一个复杂的事物,其中往往有许多因素互相制约又互相依存。
方差分析的目的是通过数据分析找出对该事物有显著影响的因素,各因素之间的交互作用,以及显著影响因素的最正确水平等。
方差分析是在可比拟的数组中,把数据间的总的"变差〞按各指定的变差来源进展分解的一种技术。
对变差的度量,采用离差平方和。
方差分析方法就是从总离差平方和分解出可追溯到指定来源的局部离差平方和,这是一个很重要的思想。
经过方差分析假设拒绝了检验假设,只能说明多个样本总体均数不相等或不全相等。
假设要得到各组均数间更详细的信息,应在方差分析的根底上进展多个样本均数的两两比拟。
方差分析的分类及举例一、单因素方差分析〔一〕单因素方差分析概念理解步骤是用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。
这里,由于仅研究单个因素对观测变量的影响,因此称为单因素方差分析。
例如,分析不同施肥量是否给农作物产量带来显著影响,考察地区差异是否影响妇女的生育率,研究学历对工资收入的影响等。
这些问题都可以通过单因素方差分析得到答案。
单因素方差分析的第一步是明确观测变量和控制变量。
例如,上述问题中的观测变量分别是农作物产量、妇女生育率、工资收入;控制变量分别为施肥量、地区、学历。
单因素方差分析的第二步是剖析观测变量的方差。
方差分析认为:观测变量值的变动会受控制变量和随机变量两方面的影响。
据此,单因素方差分析将观测变量总的离差平方和分解为组间离差平方和和组内离差平方和两局部,用数学形式表述为:SST=SS A+SSE。
Q.He Stat Consulting 1ANOVA ANCOVAQ.He Stat Consulting 2案例介绍Q.He Stat Consulting 3数据来源及说明Q.He Stat Consulting 4方差分析Q.HeStat Consulting5方差分析方差分析因素(factor ))也称为因子因子,每一因素至少有两个水平(level)。
一个因素——单向方差分析两个因素——双向方差分析ANOVA 与回归分析相结合——协方差分析(analysis ofcovariance)目的:用这类资料的样本信息来推断各组间多个总体均数的差别有无统计学意义。
Q.HeStat Consulting6如某种农作物的收获量受农作物品种、肥料种类及数量等的影响。
日常生活中经常发现,影响一个事物的因素很多,希望找到影响最显著的因素。
Q.HeStat Consulting7看哪一个影响大?并需要知道起显著作用的因素在什么时候起最好的影响作用。
方差分析就是解决这些问题的一种有效方法。
Q.HeStat Consulting8方差分析的基本思想:把全部数据关于总均值的离差平方和分解成几部分,每一部分表示某因素诸水平或交互作用所产生的效应,将各部分均方与误差均方相比较,从而确认或否认某些因素或交互作用的重要性。
用公式概括为:总变异=组间变异+组内变异各因素引起由个体差异引起(误差)种类:常用方差分析法有以下4种1、单因素方差分析2、双因素方差分析3、多因素方差分析4、有交互因素方差分析Q.He Stat Consulting 9单因素方差分析●假定:数据满足正态性、独立性、同方差性。
●要检验因素A对指标是否显著影响,就是检验假设:●H0:μ1=μ2=…=μk●接受H0:即认为来自同一总体,差异由随机因素所造成。
●若拒绝H0:表明它们之间差异显著,差异有因素水平的改变所引起。
●做法:为了检验假设H0,要从总的误差中将系统误差和随机误差分开。
方差分析和协方差分析协变量和控制变量方差分析(Analysis of Variance,简称ANOVA)是用于比较两个或多个组之间差异的一种统计方法。
它常用于实验设计中,特别是当研究者希望判断不同组别对其中一变量的均值是否存在显著差异时。
方差分析的基本思想是通过分析组间变异和组内变异的差异性,来评估不同组别之间的差异是否超出了随机误差的范围。
在执行方差分析时,我们需要计算组间平方和(Sums of Squares Between Groups, SSBG)和组内平方和(Sums of Squares Within Groups, SSWG),并以此计算F值来进行假设检验。
协方差分析(Analysis of Covariance,简称ANCOVA)则是在方差分析基础上引入了协变量(covariate)的一种分析方法。
协变量是指与主要变量(研究变量)相关的、可能对变量之间关系产生影响的另一个变量。
协方差分析旨在通过控制协变量的影响,更准确地评估主要变量对因变量的影响。
具体而言,协方差分析会使用协变量与因变量的相关性来对因变量进行线性调整,将其影响减少到最低限度。
这样可以消除协变量对因变量的干扰,使比较组之间的差异更为准确。
在研究设计中,协变量和控制变量是常用的两种概念,用于控制和修正分析过程中的干扰因素。
在实验设计中,控制变量是指研究者通过依据主要变量的研究设计,将一些可能导致干扰的因素保持恒定。
例如,在比较两种不同药物对疾病治疗效果时,研究者可以将患者的性别、年龄、体重等因素作为控制变量,确保不同组别之间的差异主要来自于药物本身的影响。
而协变量则是在非实验研究中常用的,在测量研究变量之前,研究者会对协变量进行测量和记录,并在分析过程中加以控制。
例如,研究人员可能关注不同年龄组中学生的学业成就,但同时也要控制其他因素,如家庭背景、社会经济地位等,这些因素可能会干扰到学业成就与年龄之间的关系。
总之,方差分析和协方差分析是两种常用的统计分析方法,在不同的情境下用于数据的比较和解释。
方差分析(ANOVA)与协方差分析(ANCOVA) 第5章方差分析(ANOVA)与协方差分析(ANCOVA)——野外竞争试验Deborah E.GoldbergSamuel M.Scheiner5.1 引言自从达尔文时期,竞争就占据了生态理论的中心,关于竞争的实验在许多来自许多不同环境的多生物种之间开展过(Jackson,1981综述; Connell,1984; Schoener,1984; Hairston,1989; Gurevitch,1992)。
有各种各样的竞争实验,而本章的重点则放在怎样为具体的竞争问题选择适当的实验设计和统计分析。
这类选择取决于所研究问题及系统的许多方面。
对于大多数我们所给出的设计、基本的统计方法、方差分析(ANOVA)和协方差分析(ANCOVA)在实验设计与分析的教科书中也有详尽描述,我们在这里就不像本书其他章节那样提供详细的统计细节。
对于ANOVA的基本介绍见第四章。
虽然我们着重于竞争,但许多观点对其他类型的种间关系实验同样有效,如捕食者—猎物关系或者互惠共生关系。
5.2 关于竞争的生态问题我们可以提出关于竞争的最简单问题莫过于竞争是否在野外存在,要回答这个问题,就必须利用实验处理,使潜在竞争者们的绝对多度可被控制,同时检验处理中存在低多度潜在竞争者时物种是否可能生长的更好。
这类多度处理之间生长的差异即是竞争的量纲(或促进facilitation的量纲如果在较高多度下生长较佳)。
在任何野外竞争调查中,发现是否存在竞争是重要的第一步,但是,就其本身而言,并没有什么意义。
多数关于竞争的重要问题包括竞争强度的比较以及随之而来的实验设计及分析,这比在两种或更多种多度处理间的简单比较更为复杂 (Goldburg 和Barton,1992)。
有一组问题需要比较在不同环境条件下(生境或时间)竞争强度大小。
例如,野外观测结果可能推测出一个物种的分布是由同营养级所有其它物种竞争的总和所决定的假设,检验此假设的野外实验就必须比较中心种(focal sp.)在其多度高的生境和在其多度低或稀少的生境中竞争影响的强度(如 Hairston 1980; Gureritch 1986; Mcgreno 和Chapin 1989)。
方差分析(ANOVA)与协方差分析(ANCOVA) 第5章方差分析(ANOVA)与协方差分析(ANCOVA)——野外竞争试验Deborah E.GoldbergSamuel M.Scheiner5.1 引言自从达尔文时期,竞争就占据了生态理论的中心,关于竞争的实验在许多来自许多不同环境的多生物种之间开展过(Jackson,1981综述; Connell,1984; Schoener,1984; Hairston,1989; Gurevitch,1992)。
有各种各样的竞争实验,而本章的重点则放在怎样为具体的竞争问题选择适当的实验设计和统计分析。
这类选择取决于所研究问题及系统的许多方面。
对于大多数我们所给出的设计、基本的统计方法、方差分析(ANOVA)和协方差分析(ANCOVA)在实验设计与分析的教科书中也有详尽描述,我们在这里就不像本书其他章节那样提供详细的统计细节。
对于ANOVA的基本介绍见第四章。
虽然我们着重于竞争,但许多观点对其他类型的种间关系实验同样有效,如捕食者—猎物关系或者互惠共生关系。
5.2 关于竞争的生态问题我们可以提出关于竞争的最简单问题莫过于竞争是否在野外存在,要回答这个问题,就必须利用实验处理,使潜在竞争者们的绝对多度可被控制,同时检验处理中存在低多度潜在竞争者时物种是否可能生长的更好。
这类多度处理之间生长的差异即是竞争的量纲(或促进facilitation的量纲如果在较高多度下生长较佳)。
在任何野外竞争调查中,发现是否存在竞争是重要的第一步,但是,就其本身而言,并没有什么意义。
多数关于竞争的重要问题包括竞争强度的比较以及随之而来的实验设计及分析,这比在两种或更多种多度处理间的简单比较更为复杂 (Goldburg 和Barton,1992)。
有一组问题需要比较在不同环境条件下(生境或时间)竞争强度大小。
例如,野外观测结果可能推测出一个物种的分布是由同营养级所有其它物种竞争的总和所决定的假设,检验此假设的野外实验就必须比较中心种(focal sp.)在其多度高的生境和在其多度低或稀少的生境中竞争影响的强度(如 Hairston 1980; Gureritch 1986; Mcgreno 和Chapin 1989)。
方差分析及协方差分析方差分析和协方差分析是统计学中常用的两种分析方法,用于研究变量之间的关系和差异。
本文将分别介绍方差分析和协方差分析的基本概念、原理和应用。
一、方差分析(Analysis of Variance)1.基本概念:方差分析是一种通过对不同组之间的差异进行分析,来揭示组间差异是否非随机的统计方法。
它可以用于比较两个或更多个组的均值是否有显著差异。
2.原理:方差分析的原理基于对总体变异的分解。
总体变异可以分解为组间变异和组内变异。
组间变异表示不同组之间的差异,而组内变异表示组内个体之间的差异。
方差分析通过计算组间变异与组内变异之间的比值来判断组间差异是否显著。
3.适用场景:方差分析适用于有一个自变量和一个或多个因变量的情况。
常见的应用场景包括:比较不同药物对疾病影响的效果、比较不同教学方法对学生成绩的影响等。
4.步骤:方差分析的步骤包括:确定研究目的和假设、选择适当的方差分析模型、计算方差分析统计量和p值、进行结果解释。
二、协方差分析(Analysis of Covariance)1.基本概念:协方差分析是一种结合方差分析和线性回归分析的方法。
它通过控制一个或多个连续变量(协变量)对组间差异进行调整,来比较不同组之间的差异。
协方差分析不仅考虑到组间差异,还考虑到了协变量的影响。
2.原理:协方差分析的基本原理是通过线性回归模型来估计组间均值的差异,同时考虑协变量的影响。
通过计算协方差矩阵和相关系数,可以得到组间差异的调整后的统计结果。
3.适用场景:协方差分析适用于有一个自变量、一个或多个因变量,以及一个或多个连续变量的情况。
常见的应用场景包括:比较不同药物对疾病影响的效果,并控制患者年龄和性别等协变量。
4.步骤:协方差分析的步骤包括:确定研究目的和假设、选择适当的协方差分析模型、建立回归模型、计算协方差分析统计量和p值、进行结果解释。
总结:方差分析和协方差分析都是常用的统计分析方法,用于研究组间差异和变量之间的关系。
第七章方差分析和协方差分析(医学统计之星)上次更新日期:方差分析和协方差分析在S A S系统中由S A S/S T A模块来完成,其中我们常用的有A N O V A过程和G L M 过程。
前者运算速度较快,但功能较为有限;后者运算速度较慢,但功能强大,我们做协方差分析时就要用到G L M过程。
本章将首先介绍方差分析所用数据集的建立技巧,然后重点介绍这两个程序步。
其实,这里的速度快慢只是相对而言,SAS的处理速度是首屈一指的。
举个例子,这个暑假我做了一个有6600条记录的,7因素的,交叉设计的方差分析(是不是已经有人喊头痛了?),我先是用SPSS FOR WIN95 7.5来做,运行了大约10分钟才出结果。
我又换用SAS FOR WIN95 6.12来做,结果用了――2.47秒!§7.1 方差分析数据集的建立技巧7.1方差分析的数据集格式统计分析所用的数据格式和我们在分析整理资料时所用的格式是不同的。
一般来说,数据集中应至少有一个结果变量,用于记录不同处理因素水平下观察值的大小;至少有一个处理因素变量,用于记录处理因素的类型及其水平数。
以单因素方差分析为例,就应有一个结果变量和一个处理因素变量;而两因素的方差分析应有一个结果变量和两个处理因素变量。
例7.1某职业病防治院对31名石棉矿工中的石棉肺患者、可疑患者及非患者进行了用力肺活量测定,请给出数据集的结构(卫统p44例5.1)。
解:数据集中应有两个变量,x和g r o u p。
x记录肺活量的大小;g r o u p取值为1、2或3,分别代表石棉肺患者、可疑患者及非患者。
例7.2某厂医务室测定了10名氟作业工人工前、工中及工后4小时的尿氟浓度,请给出数据集的结构(卫统p46例5.2)。
解:数据集中应有三个变量,x、g r o u p和w o r k e。
x记录尿氟浓度;g r o u p取值为1、2或3,分别代表工前、工中及工后;w o r k e r取值为1到10,分别代表10名工人。
方差分析与协方差分
析
方差分析
方差分析(Analysis of Variance,简称ANOVA),又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。
由于各种因素的影响,研究所得的数据呈现波动状。
造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。
方差分析的作用
一个复杂的事物,其中往往有许多因素互相制约又互相依存。
方差分析的目的是通过数据分析找出对该事物有显著影响的因素,各因素之间的交互作用,以及显著影响因素的最佳水平等。
方差分析是在可比较的数组中,把数据间的总的“变差”按各指定的变差来源进行分解的一种技术。
对变差的度量,采用离差平方和。
方差分析方法就是从总离差平方和分解出可追溯到指定来源的部分离差平方和,这是一个很重要的思想。
经过方差分析若拒绝了检验假设,只能说明多个样本总体均数不相等或不全相等。
若要得到各组均数间更详细的信息,应在方差分析的基础上进行多个样本均数的两两比较。
方差分析的分类及举例
一、单因素方差分析
(一)单因素方差分析概念理解步骤
是用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。
这里,由于仅研究单个因素对观测变量的影响,因此称为单因素方差分析。
例如,分析不同施肥量是否给农作物产量带来显著影响,考察地区差异是否影响妇女的生育率,研究学历对工资收入的影响等。
这些问题都可以通过单因素方差分析得到答案。
单因素方差分析的第一步是明确观测变量和控制变量。
例如,上述问题中的观测变量分别是农作物产量、妇女生育率、工资收入;控制变量分别为施肥量、地区、学历。
单因素方差分析的第二步是剖析观测变量的方差。
方差分析认为:观测变量值的变动会受控制变量和随机变量两方面的影响。
据此,单因素方差分析将观测变量总的离差平方和分解为组间离差平方和和组内离差平方和两部分,用数学形式表述为:SS T=SSA+SSE。
单因素方差分析的第三步是通过比较观测变量总离差平方和各部分所占的比例,推断控制变量是否给观测变量带来了显著影响。
(二)单因素方差分析原理总结
容易理解:在观测变量总离差平方和中,如果组间离差平方和所占比例较大,则说明观测变量的变动主要是由控制变量引起
的,可以主要由控制变量来解释,控制变量给观测变量带来了显著影响;反之,如果组间离差平方和所占比例小,则说明观测变量的变动不是主要由控制变量引起的,不可以主要由控制变量来解释,控制变量的不同水平没有给观测变量带来显著影响,观测变量值的变动是由随机变量因素引起的。
(三)单因素方差分析基本步骤
1、提出原假设:H0——无差异;H1——有显著差异
2、选择检验统计量:方差分析采用的检验统计量是F统计量,即F值检验。
3、计算检验统计量的观测值和概率P值:该步骤的目的就是计算检验统计量的观测值和相应的概率P值。
4、给定显著性水平,并作出决策
(四)单因素方差分析的进一步分析
在完成上述单因素方差分析的基本分析后,可得到关于控制变量是否对观测变量造成显著影响的结论,接下来还应做其他几个重要分析,主要包括方差齐性检验、多重比较检验。
1、方差齐性检验
是对控制变量不同水平下各观测变量总体方差是否相等进行检验。
前面提到,控制变量不同各水平下观测变量总体方差无显著差异是方差分析的前提要求。
如果没有满足这个前提要求,就不
能认为各总体分布相同。
因此,有必要对方差是否齐性进行检验。
SPSS单因素方差分析中,方差齐性检验采用了方差同质性(homogeneity of variance)检验方法,其原假设是:各水平下观测变量总体的方差无显著差异。
2、多重比较检验
单因素方差分析的基本分析只能判断控制变量是否对观测变量产生了显著影响。
如果控制变量确实对观测变量产生了显著影响,进一步还应确定控制变量的不同水平对观测变量的影响程度如何,其中哪个水平的作用明显区别于其他水平,哪个水平的作用是不显著的,等等。
例如,如果确定了不同施肥量对农作物的产量有显著影响,那么还需要了解10公斤、20公斤、30公斤肥料对农作物产量的影响幅度是否有差异,其中哪种施肥量水平对提高农作物产量的作用不明显,哪种施肥量水平最有利于提高产量等。
掌握了这些重要的信息就能够帮助人们制定合理的施肥方案,实现低投入高产出。
多重比较检验利用了全部观测变量值,实现对各个水平下观测变量总体均值的逐对比较。
由于多重比较检验问题也是假设检验问题,因此也遵循假设检验的基本步骤。
二、多因素方差分析
(一)多因素方差分析基本思想
多因素方差分析用来研究两个及两个以上控制变量是否对观测变量产生显著影响。
这里,由于研究多个因素对观测变量的影响,因此称为多因素方差分析。
多因素方差分析不仅能够分析多个因素对观测变量的独立影响,更能够分析多个控制因素的交互作用能否对观测变量的分布产生显著影响,进而最终找到利于观测变量的最优组合。
例如:
分析不同品种、不同施肥量对农作物产量的影响时,可将农作物产量作为观测变量,品种和施肥量作为控制变量。
利用多因素方差分析方法,研究不同品种、不同施肥量是如何影响农作物产量的,并进一步研究哪种品种与哪种水平的施肥量是提高农作物产量的最优组合。
(二)多因素方差分析的其他功能
1、均值检验
在SPSS中,利用多因素方差分析功能还能够对各控制变量不同水平下观测变量的均值是否存在显著差异进行比较,实现方式有两种,即多重比较检验和对比检验。
多重比较检验的方法与单因素方差分析类似。
对比检验采用的是单样本t检验的方法,它将控制变量不同水平下的观测变量值看做来自不同总体的样本,并依次检验这些总体的均值是否与某个指定的检验值存在显著差异。
其中,检验值可以指定为以下几种:
观测变量的均值(Deviation);
第一水平或最后一个水平上观测变量的均值(Simple);
前一水平上观测变量的均值(Difference);
后一水平上观测变量的均值(Helmert)。
2、控制变量交互作用的图形分析
控制变量的交互作用可以通过图形直观分析。
三、协方差分析
(一)协方差分析基本思想
通过上述的分析可以看到,不论是单因素方差分析还是多因素方差分析,控制因素都是可控的,其各个水平可以通过人为的努力得到控制和确定。
但在许多实际问题中,有些控制因素很难人为控制,但它们的不同水平确实对观测变量产生了较为显著的影响。
例如,在研究农作物产量问题时,如果仅考察不同施肥量、品种对农作物产量的影响,不考虑不同地块等因素而进行方差分析,显然是不全面的。
因为事实上有些地块可能有利于农作物的生长,而另一些却不利于农作物的生长。
不考虑这些因素进行分析可能会导致:即使不同的施肥量、不同品种农作物产量没有产生显著影响,但分析的结论却可能相反。
再例如,分析不同的饲料对生猪增重是否产生显著差异。
如果单纯分析饲料的作用,而不考虑生猪各自不同的身体条件(如
初始体重不同),那么得出的结论很可能是不准确的。
因为体重增重的幅度在一定程度上是包含诸如初始体重等其他因素的影响的。
(二)协方差分析的原理
协方差分析将那些人为很难控制的控制因素作为协变量,并在排除协变量对观测变量影响的条件下,分析控制变量(可控)对观测变量的作用,从而更加准确地对控制因素进行评价。
协方差分析仍然沿承方差分析的基本思想,并在分析观测变量变差时,考虑了协变量的影响,人为观测变量的变动受四个方面的影响:即控制变量的独立作用、控制变量的交互作用、协变量的作用和随机因素的作用,并在扣除协变量的影响后,再分析控制变量的影响。
方差分析中的原假设是:协变量对观测变量的线性影响是不显著的;在协变量影响扣除的条件下,控制变量各水平下观测变量的总体均值无显著差异,控制变量各水平对观测变量的效应同时为零。
检验统计量仍采用F统计量,它们是各均方与随机因素引起的均方比。