地震勘探学复习重点全
- 格式:doc
- 大小:57.50 KB
- 文档页数:5
地震勘探原理各章重点复习资料第⼀章:1、地球物理勘探:是根据地质学和物理学的基本原理,利⽤电⼦学和信息论等许多学科领域的新技术建⽴起来的⽅法,简称物探⽅法。
也就是,根据地层和岩⽯之间的物理性质不同来推断岩⽯性质和构造。
2、主要物探⽅法:地震勘探(岩⽯弹性的差别)—勘探地震学⾮地震类:重⼒勘探(岩⽯的密度差别)磁法勘探(岩⽯的磁性差别电法勘探(岩⽯的电性差别)3、重⼒勘探是研究反映地下岩⽯密度横向差异引起的重⼒变化,⽤于提供构造和矿产等地质信息。
重⼒异常的规模、形状和强度取决于具有密度差的物体⼤⼩、形状及深度。
重⼒勘探的任务是通过研究地⾯、⽔⾯、⽔下(或井下)或空间重⼒场的局部或区域不规则变化(即局部重⼒异常或区域重⼒异常)来寻找埋藏在地下的矿体和地质构造4、磁法勘探就是测定和分析各种磁异常,找出磁异常与地下岩⽯、地质构造及有⽤矿产的关系,作出地下地质情况和矿产分布等有关结论。
磁法勘探主要⽤来研究地质构造;研究深⼤断裂;计算结晶基底的埋深;寻找油⽓、煤⽥的构造圈闭、盐丘等,寻找磁铁矿床、⾦属和⾮⾦属矿床等。
5、电法勘探就是利⽤⼈⼯或天然产⽣的直流电场或电磁场在地下的分布规律来研究地球结构、地质构造及找矿的⼀种物探⽅法。
电法勘探是以岩⽯或矿⽯的电性差异为基础的,主要研究的电性差异参数包括:电阻率(ρ)、激发极化率(η)、介电常数(ε)、导磁率(µ)、电化学活动性等。
电法勘探的内容⼗分丰富,它们⼴泛应⽤于⾦属及⾮⾦属、⽯油、⼯程地质、⽔⽂地质等勘探研究⼯作中。
6、地震勘探⽅法就是利⽤⼈⼯⽅法激发的地震波(弹性波),研究地震波在地层中传播的规律,来确定矿藏(包括油⽓,矿⽯,⽔,地热资源等)、考古的位置,以及获得⼯程地质信息。
地震勘探所获得的资料,与其它的地球物理资料、钻井资料及地质资料联合使⽤,并根据相应的物理与地质概念,能够得到有关构造及岩⽯类型分布等信息。
7、地震波的激发和接收,提取有⽤信息。
《地震勘探原理》考试题型一、名词解释1、振动:物体围绕一个中心做往复运动波动:各振动在空间上的传播射线平面(三线所决定平面):由入射线、反射线和过反射点界面法线所组成的平面称为射线平面。
振动图:固定空间位置,观察r处质点位移随时间变化规律的图形。
波剖面:固定某时刻,观察质点位移随距离变化规律的图形。
时距曲线:表示某一波阻抗差界面反射波传播时间与炮检距关系的曲线,称为时距曲线。
2、平均速度:地震波垂直穿过地层的总厚度与总传播时间之比。
均方根速度:把水平层状介质情况下的反射波时距曲线近似当作双曲线,所求出的地震波速度称为均方根速度,这种近似在一定程度上考虑了射线的偏折。
叠加速度:由共中心点道集速度谱求出的速度。
对一组共中心点道集上的某个同相轴,利用双曲线公式选用一系列不同速度来计算各道的动校正量,病进行动校正;当某个速度能把同相轴校成水平直线时,则这个速度就是这条同相轴对应的反射波叠加速度。
层速度:在水平层状介质中,某一层的速度。
等效速度:在均匀介质条件下,理论双曲线与实际反射波时距曲线最佳拟合的介质速度。
视速度:不沿射线方向测得的传播速度。
视周期:从振动图中可得到的相邻两峰或两谷间的时间称为视周期。
视频率:视周期的倒数称为视频率。
视波长:从波剖面中可得到的相邻两峰或两谷间的距离称为视波长。
视波数:视波长的倒数称为视波数。
地震地质条件:在一个地区能否有成效的应用地震勘探,来研究地下地质构造的条件。
具体可分为表层地震地质条件和深地震地质条件。
激发条件:是指震源种类、能量、周围介质的情况等与激发地震波密切有关的各种条件。
对陆上炸药震源来说,激发条件包括炸药量大小、药包形状、个数、分布方式,埋置岩性和深度等。
对非炸药震源,激发条件则包括装置的种类、能量、参数选择及安置情况等。
激发条件的选择是否适当对地震原始资料质量的影响很大。
接收条件:是指接收地震波的仪器的工作状态和条件。
具体包括地震检波器的安置情况,组合个数和方式,以及地震仪的各种因素等。
绪论1、地球物理勘探的概念(1)简称“物探”,是通过观察存在地球及其周围的地球物理场的特征和岩石的各种物理特性来研究地质规律和勘查各种矿产的各种方法的总称。
(2)是以物理学原理为基础,利用电子学、计算机的数字处理、信息论等科学技术中的新技术所建立起来的一整套勘探地下矿产的方法。
(3)是借助于各种物探仪器在地面观测地下岩石的各种物理参数,从而解释和推断地下岩石的构造特点、岩石性质等,从而到达勘查地下矿产(金属非金属矿产、煤、油气等等)的目的。
2、地球物理勘探的分类,不同勘探方法的优缺点。
重力勘探:利用岩石的密度差异磁法勘探:利用岩石的磁性差异电法勘探:利用岩石的电性差异地震勘探:利用岩石的弹性差异放射性勘探:利用岩石的放射性差异地震勘探的优点:精度高,分辨率高,穿透深度大,能较详细地了解由浅至深一整套地层的地质规律。
缺点:成本高3、地震勘探的概念、分类,目前地震勘探以何种方法为主。
概念:利用岩石的弹性差异来进行矿产勘察。
是通过人工激发地震波,研究地震波在弹性不同的地下地层中传播的规律,以查明地下的地质构造,达到油气或其他勘探目的的一种物探方法。
分类:地质法(优:在找油初期,可以起到一个指向作用,避免了盲目性,成本低。
缺:野外地质方法很难准确了解地下地质情况!);钻探法(优点:精度最高,缺点:一孔之见,而采用大量的钻井,不仅成本高,而且效率低);物探方法(优点:精度高于地质法,成本低于钻探法;不足:精度低于钻探法,成本高于地质法)。
应用最多的方法:物探方法4、地震勘探的三个阶段地震资料野外采集、地震资料室内处理、地震资料解释。
第一章各种介质的概念重点:①物体是否为弹性、塑性介质与受力大小、时间及温度有关。
②均匀介质与各向同性介质的关系。
(1)理想弹性介质:当介质受外力后立即发生形变,而外力消失后能立即完全恢复为原状的介质;(2)粘弹性介质:当外力消失后不是立即恢复原状,而是过一段时间后才恢复原状的介质称为粘弹性介质。
地震勘探资料一、勘探石油的方法: 地质法, 物探法(有重力勘探、磁法勘探、电法勘探、地震勘探), 钻探法. 地震勘探要解决的基本矛盾:1,记录时间段,不能当场研究,要由动变静再变动。
2,能量弱,深度不同强度差别大,记录困难3,与干扰波作斗争,突出有效波,压制干扰波4,地下情况复杂,由记录中分析地质情况的真伪困难地震勘探: 就是用人工激发地震波,研究地震波在地层中的传播的情况,以查明地下的地质构造,为寻找油气田或其它勘探目的服务的一种物探方法。
地震勘探技术的主线:数据采集,信噪比.分辨率,成像,反演1,高分辨率地震数据处理中的三个主要矛盾:信噪比与分辨率的矛盾2,保持地震数据的相对振幅关系和时频特性 与分辨率的矛盾3,保持低频信号与分辨率的矛盾地震波实质上就是一种在岩层中传播的弹性波。
描述某一质点位移与时间关系的图形叫做地震波的质点振动图形.* 视振幅: 通常指振动离开平衡位置的 最大位移;T* 视周期: 通常指相邻两个极大值或相邻 两个极小值之间的时间间隔;f * 视频率: f* =1/T*;t 1 初始时间: 表示质点刚刚开始振动 的时间;t 2 终止时间: 表示质点刚刚停止振动 的时间;Δt =t 1 –t 2 : 表示该质点的振动延续时间;相位数:表示振动的正向极值或负向极值 的个数;相 位: 表示振动的正向极值或负向极值;波形特征: 指振动相位数、视周期、视振幅 及其相互关系。
地震波与地震记录之间的关系1)、地震勘探中所获得的一道地震记录,实际上就是一系列地震波传播到地表时,引起地表某一质点振动的振动图形。
2)、地震勘探中所获得的一张原始地震波形记录,实际上就是在地面沿测线设置多道检波器,得到的多个振动图形的总和。
射 线:波的传播方向称为射线。
波尾: 波在空间传播时,某一时刻空间介质刚刚停止振动的点连成的曲面波前:波在空间传播时,某一时刻空间介质刚刚开始振动的点连成的曲面波 面:波在空间传播时,某一时刻空间介质振动质点中相位相同的点连成的曲面视速度:地震波沿非射线传播的速度,常用 v * 表示。
地震勘探复习资料1.地球物理勘探:以岩矿石间的地球物理性质差异为基础,通过接收和研究地质体在地表及其周围空间产生的地球物理场的变化和特征来推断地质体的存在状态的一种地质勘探方法。
2.地震勘探:以岩矿石间的弹性差异为基础,通过接收和研究地质体在地表及其周围空间产生的弹性波场的变化和特征来推断地质体的存在状态的一种物探方法。
3.工程地震勘探:指一种研究人工震源所激发产生的地震波在地下岩层,土壤或其他介质中传播来解决工程地质问题的方法。
4.波动:振动在介质中传播5.浅层地震勘探:研究人工激发的地震波在岩,土介质中的传播规律,以探测浅部地质构造或测定岩,土物理力学参数的地球物理方法。
6.地球物理前提:岩矿石间的的弹性差异。
7.振动图:在波传播的某一特定距离上,该处质点位移μ随时间t 变化规律的图形。
8.波剖面图:若在某已确定的时刻t,位移μ随距离x变化关系的图形。
9.振动带:波前与波尾之间的介质区域,此时,其中所有质点正处于震动状态。
10.等时面:在介质分布空间,将地震波到达的时间值相同的各点连接起来,所构成的空间曲面。
11.视速度:地震波是沿射线方向传播的,我们观测它时,只有射线方向一致才能测得其真实速度,其他任意方向所得的速度为视速度。
12.折射波盲区:观测不到折射波的范围,即震源至初至折射波之间的区域。
13.单相介质:只考虑单一相态的介质14.垂向分辨率:是指用地震记录沿垂直方向能分辨的最薄地层的厚度。
15.水平分辨率:用地震记录横向能分辨的最小地质体的宽度。
16.双相介质:有两种相态组成的介质。
17.粘滞介质:具有吸收性能的非理想弹性介质,或叫“粘弹性介质”。
18.各向同性介质:弹性体的弹性性质与空间方向无关的介质。
19.各向同性介质:弹性体的弹性性质与空间方向相关的介质。
20.时距曲线:震源到接受点的距离x与地震波走时t之间的关系曲线。
21.正常时差;反射波旅行时t与来自同一反射界面的双程垂直时间(回声时间)t0之差。
《地震勘探原理》各章节的复习要点第一章绪论(不作为考试内容)第二章地震波运动学理论§2.1 几何地震学基本概念1、基本概念,如地震子波:具有多个相位、延续60~100毫秒的稳定波形称为地震子波。
几何地震学:地震波的运动学是研究地震波,波前的空间位置与传播时间的关系,他与几何光学相似,也是引用波前,射线等几何图形来描述波的运动过程和规律,因此又叫几何地震学.地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造,力寻找油气田或其他勘探目的服务的一种物探方法.波面:介质中每一个同时开始振动的曲面。
射线:在几何地震学中,通常认为波及其能量是沿着一条“路径”从波源传到所考虑的一点P,然后又沿着那条“路径”从P点传向其他位置。
这样的假想路径称为通过P点的波线或射线。
振动图:在地震勘探中,每个检波器所记录的,便是那个检波器所在点处的地面振动,它的振动曲线习惯上叫做该点的振动图。
波剖面:在地震勘探中,通常把沿着测线画出的波形曲线叫做“波剖面”。
视速度和视波长:如果不是沿着波的传播方向而是沿着别的方向来确定波速和波长,得到的结果就不是波速和波长的真实值。
这样的结果叫做简谐波的视速度和视波长。
全反射:如果V2>V1,则有sinθ2>sinθ1,即θ2>θ1;当θ1增大到一定程度但还没到90°时,θ2已经增大到90°,这时透射波在第二种介质中沿界面“滑行”,出现了“全反射”现象,因为θ1再增大就不能出现透射波了。
雷克子波:2、基本原理反射定律:反射线位于入射平面内,反射角等于入射角,即。
透射定律:透射线也位于入射面内,入射角的正弦与透射角的正弦之比等于第一、第二两种介质中的波速之比,即Snell定律:惠更斯原理:在已知波前面(等时面)上的每一个点都可视为独立的、新的子波源,每个子波源都向各方发出新的波,称其为子波,子波以所在处的波速传播,最近的下一时刻的这些子波的包络面或线便是该时刻的波前面。
1. 振动图,波动图振动图:波在传播过程中,某一质点的位移u是随时间t变化的,描述某一质点位移与时间关系的图形叫做地震波的质点振动图形.波动图:在地震勘探中,通常把同一时刻沿地震测线的各质点离开平衡位置的位移分布所构成的图形叫做地震波的波剖面。
即位移u 是距离x的函数,u=f(x) 。
2. 纵波,横波特点费马定理,斯奈尔定律纵波(P波):质点的振动方向与波传播方向平行(或一致)的波。
横波(S波):质点的振动方向与波传播方向垂直的波。
费马原理(又称射线原理或最小时间原理)内容:它较通俗的表达是:波在各种介质中传播路径,满足所用时间为最短的条件。
斯奈尔定律:入射线、透射线位于反射界面法向的两侧,入射线、透射线和法线同在一个平面内.入射角的正弦和透射角的正弦之比,等于入射波的速度和透射波的速度之比。
3. 反射波,透射波,折射波,滑行波,多次波反射波:各地层之间存在阻抗差异透射波:透射波产生在速度不同的分界面上折射波: 在任一地层顶面形成折射波,必须是该层波速大于上覆所有各层的波速。
识别多次波的重要标志:t0标志,角度标志4. 地震纵向/横向分辨率地震纵向分辨率:指在纵向上能分辨岩性单元的最小厚度。
地震横向分辨率:指在横向上能确定特殊地质体的大小、位置和边界的精确程度。
5. 反射波时距曲线推导虚震源6.a弹性:物体在外力作用下发生了形变,当外力去掉以后,物体就立刻恢复其原状。
塑性:物体在外力作用下发生了形变,当外力掉以后仍旧保持其受外力时的形状。
弹性体: 具有弹性的物体叫做弹性体;塑性体: 具有塑性的物体叫做塑性体弹性波: 振动在弹性介质中传播就形成了弹性波b.惠更斯原理(又称波前原理):在弹性介质中,若已知任一时刻t 的波前,则该波前面上的每一个点都可以看作是新的震源(子波源),并各自发出子波(由子波源向各方发出的微弱的波),所有这些子波以介质中的波速v 向各方传播,经过Δt时间间隔,它们的包络面便是t+Δt 时刻的波前。
1. 振动图,波动图
振动图:波在传播过程中,某一质点的位移u是随时间t变化的,描述某一质点位移与时间关系的图形叫做地震波的质点振动图形.
波动图:在地震勘探中,通常把同一时刻沿地震测线的各质点离开平衡位置的位移分布所构成的图形叫做地震波的波剖面。
即位移u 是距离x的函数,u=f(x) 。
2. 纵波,横波特点费马定理,斯奈尔定律
纵波(P波):质点的振动方向与波传播方向平行(或一致)的波。
横波(S波):质点的振动方向与波传播方向垂直的波。
费马原理(又称射线原理或最小时间原理)
内容:它较通俗的表达是:波在各种介质中传播路径,满足所用时间为最短的条件。
斯奈尔定律:入射线、透射线位于反射界面法向的两侧,入射线、透射线和法线同在一个平面内.入射角的正弦和透射角的正弦之比,等于入射波的速度和透射波的速度之比。
3. 反射波,透射波,折射波,滑行波,多次波
反射波:各地层之间存在阻抗差异
透射波:透射波产生在速度不同的分界面上
折射波: 在任一地层顶面形成折射波,必须是该层波速大于上覆所有各层的波速。
识别多次波的重要标志:t0标志,角度标志
4. 地震纵向/横向分辨率
地震纵向分辨率:指在纵向上能分辨岩性单元的最小厚度。
地震横向分辨率:指在横向上能确定特殊地质体的大小、位置和边界的精确程度。
5. 反射波时距曲线推导
虚震源
6.a弹性:物体在外力作用下发生了形变,当外力去掉以后,物体就立刻恢复其原状。
塑性:物体在外力作用下发生了形变,当外力掉以后仍旧保持其受外力时的形状。
弹性体: 具有弹性的物体叫做弹性体;
塑性体: 具有塑性的物体叫做塑性体
弹性波: 振动在弹性介质中传播就形成了弹性波
b.惠更斯原理(又称波前原理):在弹性介质中,若已知任一时刻t 的波前,则该波前面上的每一个点都可以看作是新的震源(子波源),并各自发出子波(由子波源向各方发出的微弱的波),所有这些子波以介质中的波速v 向各方传播,经过Δt时间间隔,它们的包络面
便是 t+Δt 时刻的波前。
球面扩散是波前扩散的实例。
同相轴:地震记录上,同一个波的相同极值相位的连线
7.a.正常时差:由于炮检距变化带来的反射波传播时间上的差异
b.动校正:把非零炮检距的反射波传播时间校正为零炮检距传播时间的校正过程
动校正的实质:把共反射点时距曲线或共炮点反射波时距曲线校正成为ti=t0的直线 c.剩余时差:把某个波按水平界面一次反射波作动校正后的反射时间与共中心点处的t 0时间差称为剩余时差
8.回转波的形成条件:凹界面的曲率半径小于凹界面的埋藏深度,当R<H 时,凹界面所产生的反射波。
9.a.平均速度:一组水平层状介质中某一界面以上介质的平均速度就是地震波垂直穿过该界面以上各层的总厚度与总的传播时间之比。
引入平均速度的思想——地震波传播遵循的是“沿最小时间路程传播”
引入平均速度的目
的——把沿最短时间路径传播转化为沿最短距离路径传播
主要用途:时深转换 b .均方根速度:把水平层状介质情况下的反射波时距曲线近似地当作双曲线时,求出的波速就是这一水平层状介质的均方根速度。
均方根速度的意义:把各层的速度值的“平方”按时间取其加权“平均”值,而后取“平方根”值 均方根速度的主要用途: 水平层状(或连续)介质的 动校正处理
c.叠加速度:在一般情况下,对各共中心点时距曲线都可以用一条双曲线来近似它
式中的Va 为叠加速度
叠加速度就是使共中心点叠加取得最佳叠加效果的速度
d.等效速度:书上P80. 公式。
V ϕ是为了使倾斜界面等效于水平界面而引入的一种速度(即用速度为V ϕ的水平层去代替速度为V 的倾斜层的一种等效处理) 另外,水平界面的叠加速度就是等效速度。
主要用途:利用等效速度可消除倾斜界面产生的剩余时差对迭加效果的影响。
10.频谱振幅谱的主要因素是什么? 主频f0,频宽Δf 11、排列长度的定义?(P61)
排列长度L :每次激发时炮点和最后一个接收点之间的距离;
12、影响叠加效果的因素?(P66—71)
22202a
i i V x t t +=
注意:共反射点叠加原理的假设条件:地下反射界面是水平的、介质是均匀的。
一、动校正速度选取不准确的影响
1)叠加次数越高,偏移距越大时,对动校正速度精度要求越高。
2)界面深度越深,反射波受速度误差的影响越小;
3)随着道间距的增大,允许的最大速度差就要减小,速度的精度越高。
4)反射波频率f越高,速度的精度越高。
结论:动校正速度不准,不利于突出有效波,而对多次波有可能突出或有可能被压制。
二、地层倾斜对叠加效果的影响
当地面倾斜时,对水平叠加效果的影响可归结为:共反射点的分散和把倾斜界面当水平界面计算动校正量造成的校正不准的影响。
三、其它影响叠加效果的主要因素
偏移距、道间距、叠加次数、接收道数、倾斜界面的剩余时差、动校正速度、倾斜界面出现的反射点偏移和分散。
13、水平叠加的目的是什么?共反射点叠加法的实质是什么?(P54)
目的:突出有用信息,压制规则干扰波和随机干扰波、特别是压制全程多次波。
实质:通过剩余时差的差异来压制干扰波。
14、水平叠加剖面和偏移剖面?(P71)
由于是在画图工具上做的,也许做的不好,但是能够读懂,相信我们也都会画了,不好之处请海涵。
15、地震资料的数字处理流程的关键步骤及作用?(P89—96)
步骤:(P89)
作用:1)、预处理:就是对原始地震资料进行初步加工,使它能满足计算机和处理方法的要
求。
2)、水平叠加:把经过动校正的同一共中心点道集内各道各个相同时刻的离散振幅值叠加起来,就得到经过共中心点叠加后的一个地震道。
3)数字滤波:将输入信号离散取样变为数字信号,将滤波器的特性设计为数学函数,然后将数字信号与数学函数进行数学运算,得到新的数字信号输出,从而达到滤波的目的。
4)、偏移归位:就是把叠加剖面上偏移了的反射层,进行反偏移,将反射波“归位”于地层的真实位置上。
A 、偏移叠加:先进行偏移归位处理,后进行水平叠加处理。
B 、叠加偏移:先进行水平叠加处理,后进行偏移归位处理。
5)、动校正:把非零炮检距的反射波传播时间校正为零炮检距传播时间的校正过程。
6)静校正:指将地面记录的数据校正到一个统一的水平基准面上。
一般包括地形校正、震源深度校正和低速带校正。
16.地震资料构造解释的一般原则?
17.时间剖面上不整合面和断层的标志。
断层: 1、反射同相轴错断,断层两侧波组关系稳定,特征清楚。
一般是中小型断层的反映。
2、反射波同相轴的数目突然增减或消失。
一般是基底大断裂的反映。
3、反射波同相轴形状突变;反射零乱或出现空白带。
一般是大断裂的反映。
4、反射标准层同相轴发生分叉、合并、扭曲、强相位转换等现象。
一般是小断层的反映。
5、绕射波和断面波的出现是识别断层的重要标志。
面
显示出水平叠加时间剖显示前的加工滤波等
面
显示出叠加偏移时间剖显示前的加工滤波等偏移归位水平叠加动校正提供速度
静校正速度分析
预处理输入
→↓
↓
→→→→↓
←↓←↓→↓
↓
不整合面:1)平行不整合A、出现大量的绕射波,波状形同相轴;
B、强度和波形变化大;
C、反射波的极值相位增多。
2)角度不整合A、不整合下面的反射波相位依次被不整合上面的反射波相位所置换;
B、在地层的尖灭点处出现绕射波;
C、不整合面反射波的波形、振幅不稳定。
18.地震解释波的对比原则
1、振幅标志-波动振幅的显著增强。
2、相位标志-波动的同相性。
即时间剖面上出现同相轴的延长线。
3、波形标志-波形的相似性。
同一个波具有相同的波形特征,不同的波具有不同的波形特征。
4、t0时间标志-t0时差稳定不变(当相邻反射界面具有厚度不变时)
19.构造解释的两大基本功
层位对比,绘制构造图
20.t0闭合的概念及原则
t0闭合是指对同一界面上的反射波,在相交测线的同一交点上,法向反射时间相等。
原则:1)、一般要求t0时间闭合差不能超过半个相位;
2)、两条偏移剖面交点处同层反射波不闭合。
(界面倾斜时)
21.简述引起时间剖面上地质假象的主要因素?
速度、地表条件、邻近层、复杂构造形态、处理参数和方法。