最新人教版九年级数学上册第二十二章全章复习
- 格式:doc
- 大小:293.97 KB
- 文档页数:6
九年级数学上册第二十二章二次函数全部重要知识点单选题1、已知二次函数y=ax2+bx+c的图象开口向下,对称轴为直线x=−1,且经过点(−3,0),则下列结论正确的是()A.b>0B.c<0C.a+b+c>0D.3a+c=0答案:D=−1,得b=2a,则b<0,图象经过(−3,0),根据对分析:图象开口向下,得a<0,对称轴为直线x=−b2a称性可知,图象经过点(1,0),故c>0,当x=1时,a+b+c=0,将b=2a代入,可知3a+c=0.解:∵图象开口向下,∴a<0,∵对称轴为直线x=−b=−1,2a∴b=2a,∴b<0,故A不符合题意;根据对称性可知,图象经过(−3,0),∴图象经过点(1,0),当x=1时,a+b+c=0,故C不符合题意;∴c=-a-b,∴c>0,故B不符合题意;将b=2a代入,可知3a+c=0,故D符合题意.故选:D.小提示:本题考查了二次函数的性质和图象,对称轴及对称性,与坐标轴的交点,熟练地掌握二次函数的图象特征是解决问题的关键.2、在平面直角坐标系中,将二次函数y=x2的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为()A.y=(x−2)2+1B.y=(x+2)2+1C.y=(x+2)2−1D.y=(x−2)2−1答案:B分析:先求出平移后抛物线的顶点坐标,进而即可得到答案.解:∵y=x2的顶点坐标为(0,0)∴将二次函数y=x2的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线的顶点坐标为(-2,1),∴所得抛物线对应的函数表达式为y=(x+2)2+1,故选B小提示:本题主要考查二次函数的平移规律,找出平移后二次函数图像的顶点坐标或掌握“左加右减,上加下减”,是解题的关键.3、如图,抛物线y=ax2+bx+c与x轴相交于点A(−2,0),B(6,0),与y轴相交于点C,小红同学得出了以下结论:①b2−4ac>0;②4a+b=0;③当y>0时,−2<x<6;④a+b+c<0.其中正确的个数为()A.4B.3C.2D.1答案:B分析:根据二次函数的图像与性质,逐一判断即可.解:∵抛物线y=ax2+bx+c与x轴交于点A(−2,0)、B(6,0),∴抛物线对应的一元二次方程ax2+bx+c=0有两个不相等的实数根,即△=b2−4ac>0,故①正确;对称轴为x=−b2a =6−22,整理得4a+b=0,故②正确;由图像可知,当y>0时,即图像在x轴上方时,x<-2或x>6,故③错误,由图像可知,当x=1时,y=a+b+c<0,故④正确.∴正确的有①②④,故选:B.小提示:本题考查二次函数的性质与一元二次方程的关系,熟练掌握相关知识是解题的关键.4、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4√3cm,CD⊥AB,垂足为点D,动点M从点A出发沿AB方向以√3cm/s的速度匀速运动到点B,同时动点N从点C出发沿射线DC方向以1cm/s的速度匀速运动.当点M停止运动时,点N也随之停止,连接MN,设运动时间为t s,△MND的面积为S cm2,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.答案:B分析:分别求出M在AD和在BD上时△MND的面积为S关于t的解析式即可判断.解:∵∠ACB=90°,∠A=30°,AB=4√3,∴∠B=60°,BC=1AB=2√3,AC=√3BC=6,2∵CD⊥AB,∴CD=12AC=3,AD=√3CD=3√3,BD=12BC=√3,∴当M在AD上时,0≤t≤3,MD=AM−AD=3√3−√3t,DN=DC+CN=3+t,∴S=12MD·DN=12(3√3−√3t)(3+t)=−√32t2+9√32,当M在BD上时,3<t≤4,MD=AD−AM=√3t−3√3,∴S=12MD·DN=12(√3t−3√3)(3+t)=√32t2−9√32,故选:B.小提示:本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.5、三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.4√3米B.5√2米C.2√13米D.7米答案:B分析:根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=﹣10代入可求解.解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=32,设大孔所在抛物线解析式为y =ax 2+32, ∵BC =10,∴点B (﹣5,0),∴0=a ×(﹣5)2+32, ∴a =-350, ∴大孔所在抛物线解析式为y =-350x 2+32,设点A (b ,0),则设顶点为A 的小孔所在抛物线的解析式为y =m (x ﹣b )2,∵EF =14,∴点E 的横坐标为-7,∴点E 坐标为(-7,-3625), ∴-3625=m (x ﹣b )2, ∴x 1=65√−1m +b ,x 2=-65√−1m +b ,∴MN =4,∴|65√−1m +b -(-65√−1m +b )|=4 ∴m =-925, ∴顶点为A 的小孔所在抛物线的解析式为y =-925(x ﹣b )2, ∵大孔水面宽度为20米,∴当x =-10时,y =-92, ∴-92=-925(x ﹣b )2, ∴x 1=52√2+b ,x 2=-5√22+b , ∴单个小孔的水面宽度=|(52√2+b )-(-52√2+b )|=5√2(米),故选:B .小提示:本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.6、如图,顶点为(−3,−6)的抛物线y =ax 2+bx +c 经过点(−1,−4),则下列结论中正确的是( )A .b 2−4ac ≥0B .若点(−2,m),(−4,n)都在抛物线上,则m >nC .当x <−3时,y 随x 的增大而减小D .关于x 的一元二次方程ax 2+bx +c =−7有两个不等的实数根答案:C分析:由抛物线与x 轴有两个交点则可对A 进行判断;根据抛物线上的点离对称轴的远近,则可对B 进行判断;由抛物线的增减性可直接判断C 选项;根据二次函数的最值可对D 进行判断.解:A 、图像与x 轴有两个交点,方程ax 2+bx +c =0有两个不相等的实数根,b 2-4ac >0,故A 选项不符合题意;B、抛物线的对称轴为直线x=-3,因为-2离对称轴的距离等于-4离对称轴的距离,所以m=n,故B选项不符合题意;C、顶点为(-3,-6),则对称轴为直线x=-3,抛物线开口向上,则当x<-3时,y随x的增大而减小,故C 选项符合题意;D、由抛物线开口向上及顶点为(-3,-6)可知,此函数的最小值为-6,则ax2+bx+c=-7(a≠0)没有实数根,故D选项不符合题意.故选:C.小提示:本题综合考查了二次函数的性质,属于基础题,且难度适中;考查了根的判别式、最值与顶点坐标的关系,及一元二次方程与二次函数的关系等方面的内容,掌握相关基础知识是解题关键.7、已知实数x,y满足x+y=12,则xy−2的最大值为()A.10B.22C.34D.142答案:C分析:利用二次函数的性质求解即可.解:∵x+y=12,∴y=12-x,∴xy-2=x(12-x)-2=-x2+12x-2=-(x-6)2+34,∵-1<0,∴当x=6时,xy-2有最大值,最大值为34,故选:C.小提示:本题考查二次函数的性质,会利用二次函数的性质求最值是解答的关键.8、已知二次函数y=ax2+2ax+a−1的图象只经过三个象限,下列说法正确的是()A.开口向下B.顶点在第一象限C.a≥1D.当x>1时,y的最小值为-1答案:C分析:二次函数y=ax2+2ax+a−1的图象只经过三个象限,要满足条件,常数项大于等于0,解不等式即得.∵二次函数y =ax 2+2ax +a −1的图象只经过三个象限,∴a -1≥0,∴a ≥1.故选C .小提示:本题考查了二次函数y =ax 2+2ax +a −1的图象只经过三个象限,运用函数图象与x 轴的两个交点横坐标的积大于等于0,即常数项大于等于0,是解决此类问题的关键.9、抛物线y =ax 2+bx +c 上部分点的横坐标x ,纵坐标y 的对应值如表:下列结论不正确的是( )A .抛物线的开口向下B .抛物线的对称轴为直线x =12C .抛物线与x 轴的一个交点坐标为(2,0)D .函数y =ax 2+bx +c 的最大值为254 答案:C 分析:利用待定系数法求出抛物线解析式,由此逐一判断各选项即可解:由题意得{4a −2b +c =0a −b +c =4c =6,解得{a =−1b =1c =6,∴抛物线解析式为y =−x 2+x +6=−(x −12)2+254, ∴抛物线开口向下,抛物线对称轴为直线x =12,该函数的最大值为254,故A 、B 、D 说法正确,不符合题意;令y =0,则−x 2+x +6=0,解得x =3或x =−2,∴抛物线与x 轴的交点坐标为(-2,0),(3,0),故C 说法错误,符合题意;故选C .小提示:本题主要考查了二次函数的性质,正确求出二次函数解析式是解题的关键.10、如图,某公司准备在一个等腰直角三角形ABC 的绿地上建造一个矩形的休闲书吧PMBN ,其中点P 在AC 上,点NM 分别在BC ,AB 上,记PM=x ,PN=y ,图中阴影部分的面积为S ,若NP 在一定范围内变化,则y 与x ,S与x 满足的函数关系分别是( )A .反比例函数关系,一次函数关系B .二次函数关系,一次函数关系C .一次函数关系,反比例函数关系D .一次函数关系,二次函数关系答案:D分析:先求出AM =PM ,利用矩形的性质得出y =﹣x +m ,最后利用S =S △ABC -S 矩形PMBN 得出结论. 设AB =m (m 为常数).在△AMP 中,∠A =45°,AM ⊥PM ,∴△AMP 为等腰直角三角形,∴AM =PM ,又∵在矩形PMBN 中,PN =BM ,∴x +y =PM +PN =AM +BM =AB =m ,即y =﹣x +m ,∴y 与x 成一次函数关系,∴S =S △ABC -S 矩形PMBN =12m 2-xy =12m 2-x (﹣x +m )=x 2-mx +12m 2, ∴S 与x 成二次函数关系.故选D .小提示:本题考查了一次函数的实际应用及二次函数的实际应用,解题的关键是掌握根据题意求出y 与x 之间的函数关系式.填空题11、在平面直角坐标系中,已知抛物线y =mx -2mx +m -2(m >0).(1)抛物线的顶点坐标为_________;(2)点M(x1,y1)、N(x2,y2)(x1<x2≤3)是拋物线上的两点,若y1<y2,x2-x1=2,则y2的取值范围为_________(用含m的式子表示)答案:(1,-2)m−2<y2≤4m−2分析:(1)将二次函数解析式化为顶点式求解;(2)抛物线的对称轴为直线x=1,得到当点M,N关于抛物线的对称轴对称时,x1+x2=2,结合x2-x1=2,可得x1=0,x2 =2,得到当2<x2≤3时,y1<y2,再将x=2、x=3代入函数关系式进行求解即可.(1)∵y=mx2-2mx+m-2=m(x−1)2−2,∴抛物线顶点坐标为(1,-2),故答案为(1,-2).(2)∵抛物线的对称轴为直线x=1,∴当点M,N关于抛物线的对称轴对称时,x1+x2=2,结合x2-x1=2,可得x1=0,x2 =2,∴当2<x2≤3时,y1<y2,对于y=m(x-1)2-2,当x =2时,y=m-2;当x=3时,y=4m-2,∴m−2<y2≤4m−2.小提示:本题考查二次函数图象上的点的特征,解题关键是掌握二次函数与方程及不等式的关系.12、如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(−1,0)和点(2,0),以下结论:①abc<0;②4a−2b+c<0;③a+b=0;④当x<1时,y随x的增大而减小.其中正确的结论有2___________.(填写代表正确结论的序号)答案:①②##②①分析:根据二次函数的对称轴位置和抛物线开口方向确定①③,根据x=-2时判定②,由抛物线图像性质判定④.解:①抛物线的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,故正确;②x=-2时,函数值小于0,则4a-2b+c<0,故正确;③与x轴交于点(−1,0)和点(2,0),则对称轴x=−b2a =−1+22=−12,故a=b,故③错误;④当x<12时,图像位于对称轴左边,y随x的增大而减大.故④错误;综上所述,正确的为①②.所以答案是:①②.小提示:本题考查了二次函数的图像和性质,要求熟悉掌握函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.13、阳光超市里销售的一种水果,每千克的进价为10元,销售过程中发现,每天销量y(kg)与销售单价x (元)之间满足一次函数y=−x+50的关系.若不计其他成本(利润=售价-进价),则该超市销售这种水果每天能够获得的最大利润是_________元.答案:400分析:设超市销售这种水果每天能够获得的利润是w元,由题意得w=-(x-30)2+400,再根据二次函数的性质可得答案.解:设超市销售这种水果每天能够获得的利润是w元,由题意得,w=(x−10)(−x+50)=−x2+60x−500=−(x−30)2+400,∵a=-1<0,∴当x=30时,w最大为400元,所以答案是:400.小提示:本题考查二次函数的实际应用,根据题意得到二次函数的关系式是解题关键.14、某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为______________元(利润=总销售额-总成本).答案:121分析:利用待定系数法求一次函数解析式,然后根据“利润=单价商品利润×销售量”列出二次函数关系式,从而根据二次函数的性质分析其最值.解:当10≤x ≤20时,设y =kx +b ,,把(10,20),(20,10)代入可得:{10k +b =2020k +b =10, 解得{k =−1b =30, ∴每天的销售量y (个)与销售价格x (元/个)的函数解析式为y =−x +30,设该食品零售店每天销售这款冷饮产品的利润为w 元,w =(x −8)y =(x −8)(−x +30)=−x 2+38x −240=−(x −19)2+121,∵−1<0,∴当x =19时,w 有最大值为121,所以答案是:121.小提示:本题考查二次函数的应用,理解题意,掌握“利润=单价商品利润×销售量”的等量关系及二次函数的性质是解题关键.15、已知点(3,a )在抛物线y =-2x 2+2x 上,则a =______.答案:-12分析:把点(3,a )代入解析式即可求得a 的值.解:∵点(3,a )在抛物线y =-2x 2+2x 上,∴a =-2×32+2×3=-18+6=-12,所以答案是:-12.小提示:本题考查了二次函数图象上点的坐标特征,图象上点的坐标适合解析式是解题的关键.解答题16、已知y=(k+2)x k2+k−4是二次函数,且当x<0时,y随x的增大而增大.(1)求k的值;(2)直接写出顶点坐标和对称轴.答案:(1)k=-3;(2)顶点坐标是(0,0),对称轴是y轴.分析:(1)根据二次函数的次数是二,可得方程,根据二次函数的性质,可得k+2<0,可得答案;(2)根据二次函数的解析式,可得顶点坐标,对称轴.解:(1)由y=(k+2)x k2+k−4是二次函数,且当x<0时,y随x的增大而增大,得{k 2+k−4=2k+2<0,解得k=-3;(2)由(1)得二次函数的解析式为y=-x2,y=-x2的顶点坐标是(0,0),对称轴是y轴.小提示:本题考查了二次函数的定义以及二次函数的性质,利用二次函数的定义得出方程是解题关键.17、如图,抛物线y=−x2+bx+c与x轴交于A,B两点,y与轴交于点C,抛物线的对称轴交x轴于点D.已知A(-1 ,0),C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点M ,使得MA +MC 的值最小,求此点M 的坐标;(3)在抛物线的对称轴上是否存在P 点,使△PCD 是等腰三角形,如果存在,求出点P 的坐标,如果不存在,请说明理由.答案:(1)y =−x 2+2x +3(2)点M 坐标(1,2)(3)存在,点P 坐标为(1,6),(1,√10),(1,−√10),(1,53) 分析:(1)把A 、C 两点的坐标代入y =-x 2+bx +c ,利用待定系数法即可求出二次函数的解析式;(2)由抛物线的对称性可知点A 与点B 关于对称轴对称,所以BC 与抛物线对称轴的交点为M ,此时MA+MC 最小,即MA+MC 最小值等于线段BC 长,求出直线BC 与抛物线对称轴交点M 坐标即可;(3)分两种情况讨论:i )当△PCD 是以CD 为腰的等腰三角形时,又可分两种情况讨论:①PC =CD ;②PD =CD .设出点P 的坐标,利用两点间的距离公式列出方程求解即可; ii )当△PCD 是以CD 为底的等腰三角形时,点P 在CD 的垂直平分线上,PC=PD ,利用两点间的距离公式列出方程求解即可.(1)解:把A (-1,0),C (0,3)代入y =-x 2+bx +c ,得:{−1−b +c =0c =3 ,解得:{b =2c =3, ∴抛物线的解析式为:y =-x 2+2x +3; (2)解:由抛物线的对称性可知点A 与点B 关于抛物线的对称轴对称,所以设BC 与抛物线对称轴的交点为M ,此时MA+MC 最小,即MA+MC 最小值=BC ,如图,∵y =-x 2+2x +3=-(x -1)2+4;∴抛物线的对称轴为直线x =1,∵A (-1,0),点A 与点B 关于抛物线的对称轴对称,∴B (3,0),设直线BC 解析式为y =kx +m ,则{−k +m =0m =3 ,解得{k =−1m =3, ∴直线BC 解析式为y =-x +3,当x =1时,y =2,∴M (1,2).(3)解:∵y =-x 2+2x +3=-(x -1)2+4,∴对称轴为直线x =1,∴D (1,0).设点P 的坐标为(1,t ),∵C (0,3),∴CD 2=12+32=10. 分两种情况讨论:i )当△PCD 是以CD 为腰的等腰三角形时,又可分两种情况讨论:①若PC =CD ,则12+(t -3)2=10,解得t =0(舍弃)或6,所以点P 的坐标为(1,6);②若PD =CD ,则t 2=10,解得t=±√10,所以点P 的坐标为(1,√10)或(1,-√10); ii )当△PCD 是以CD 为底的等腰三角形时,PC =PD ,则1+(t -3)2=t 2,解得:t =53, 所以点P 的坐标为(1,53);综上所述,点P 的坐标有三个,分别是(1,6)或(1,√10))或(1,-√10)或(1,53).小提示:本题是二次函数的综合题,考查了利用待定系数法求二次函数和一次函数的解析式、二次函数的性质、利用轴对称求最短距离;难度适中,在考虑构建等腰三角形时,采用了分类讨论的思想.18、园林部门计划在某公园建一个长方形苗圃ABCD .苗圃的一面靠墙(墙最大可用长度为14米).另三边用木栏围成,中间也用垂直于墙的木栏隔开,分成两个区域,并在如图所示的两处各留2米宽的门(门不用木栏),建成后所用木栏总长32米,设苗圃ABCD 的一边CD 长为x 米.(1)BC 长为________米(包含门宽,用含x 的代数式表示);(2)若苗圃ABCD 的面积为96m 2,求x 的值;(3)当x 为何值时,苗圃ABCD 的面积最大,最大面积为多少?答案:(1)(36-3x )(2)8(3)当x 为223米时,苗圃ABCD 的最大面积为3083平方米分析:(1)根据木栏总长32米,两处各留2米宽的门,设苗圃ABCD 的一边CD 长为x 米,即得BC 的长为(36-3x )米;(2)根据题意得,x ·(36−3x )=96,即可解得x 的值;(3)设苗圃ABCD 的面积为w ,w =x ·(36−3x )=−3(x −6)2+108,由二次函数的性质可得答案.(1)∵木栏总长32米,两处各留2米宽的门,设苗圃ABCD 的一边CD 长为x 米,BC 的长为32-3x +4=(36-3x )米,所以答案是:(36-3x );(2)根据题意得,x ·(36−3x )=96,解得,x =4或x =8,∵当x =4时,36-3x =24>14,∴x =4舍去,∴x 的值为8;(3)设苗圃ABCD 的面积为w ,w =x ·(36−3x )=−3(x −6)2+108,∵4<36-3x ≤14,∴223≤x <323,∵-3<0,图象开口向下,∴当x =223时,w 取得最大值,w 最大为3083; 答:当x 为223米时,苗圃ABCD 的最大面积为3083平方米.小提示:本题考查了二次函数的应用,解题的关键是读懂题意,根据已知列方程和函数关系式.。
九年级数学上册第二十二章二次函数知识点总结归纳完整版单选题1、已知实数a ,b 满足b −a =1,则代数式a 2+2b −6a +7的最小值等于( )A .5B .4C .3D .2答案:A分析:由已知得b =a +1,代入代数式即得a 2-4a +9变形为(a -2)2+5,再根据二次函数性质求解. 解:∵b -a =1,∴b =a +1,∴a 2+2b -6a +7=a 2+2(a +1)-6a +7=a 2-4a +9=(a -2)2+5,∵(a -2)2≥0,∴当a =2时,代数式a 2+2b -6a +7有最小值,最小值为5,故选:A .小提示:本题考查二次函数的最值,通过变形将代数式化成(a -2)2+5是解题的关键.2、点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上.若y 1<y 2,则m 的取值范围为()A .m >2B .m >32C .m <1D .32<m <2答案:B分析:根据y 1<y 2列出关于m 的不等式即可解得答案.解:∵点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上,∴y 1=(m -1-1)2+n =(m -2)2+n ,y 2=(m -1)2+n ,∵y 1<y 2,∴(m -2)2+n <(m -1)2+n ,∴(m-2)2-(m-1)2<0,即-2m+3<0,∴m>3,2故选:B.小提示:本题考查了二次函数图象上点的坐标特征,解题的关键是根据已知列出关于m的不等式.3、抛物线y=x2−x−1经过点(m,3),则代数式m2−m−1的值为()A.0B.1C.2D.3答案:D分析:将点(m,3)代入代数式中即可得到结果.解:将点(m,3)代入m2−m−1中得,m2−m−1=3,故代数式m2−m−1的值为3,故选:D.小提示:本题考查代数式的值,根据函数图象经过的点求函数解析式,能够掌握属性结合思想是解决本题的关键.4、小明在研究抛物线y=−(x−ℎ)2−ℎ+1(h为常数)时,得到如下结论,其中正确的是()A.无论x取何实数,y的值都小于0B.该抛物线的顶点始终在直线y=x−1上C.当−1<x<2时,y随x的增大而增大,则ℎ≥2D.该抛物线上有两点A(x1,y1),B(x2,y2),若x1<x2,x1+x2<2ℎ,则y1>y2答案:C分析:根据二次函数的对称轴、二次函数图象上点的坐标特征、二次函数的性质,判断即可.解:A.∵y=−(x−ℎ)2−ℎ+1,∴当x=ℎ时,y max=−ℎ+1,当ℎ<1时,y max=−ℎ+1>0,故错误;B.∵抛物线y=−(x−ℎ)2−ℎ+1的顶点坐标为(ℎ,−ℎ+1),当x=ℎ时,y=−ℎ−1≠−ℎ+1,故错误;C.∵抛物线开口向下,当−1<x<2时,y随x的增大而增大,∴ℎ≥2,故正确;D.∵抛物线上有两点A(x1,y1),B(x2,y2),若x1<x2,x1+x2<2ℎ,∴x1+x2<ℎ,∴点A到对称轴的距离大2于点B到对称轴的距离,∴y1<y2,故错误.故选C.小提示:本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.5、根据表格中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,可以判断方程ax2+bx+c=0的一个解x 的范围是()C.1<x<1.5D.1.5<x<2答案:B分析:利用二次函数和一元二次方程的性质.解:观察表格可知:当x=0.5时,y=-0.5;当x=1时,y=1,∴方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是0.5<x<1.故选:B.小提示:本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y由正变为负时,自变量的取值即可.6、某种产品按质量分为10个档次,生产最低档次产品,每件获利润8元,每提高一个档次,每件产品利润增加2元,用同样工时,最低档次产品每天可生产60件,提高一个档次将减少3件.如果用相同的工时生产,总获利润最大的产品是第k档次(最低档次为第一档次,档次依次随质量增加),那么k等于()A.5B.8C.9D.10答案:C分析:第k档次产品比最低档次产品提高了(k−1)个档次,则数量在60的基础上减少了3(k−1),每件产品利润在8的基础上增加2(k−1),据此可求出总利润关系,求出最值即可.解:设总利润为y元,∵第k档次产品比最低档次产品提高了(k−1)个档次,∴每天利润为y=[60−3(k−1)][8+2(k−1)]=−6(k−9)2+864,∴当k=9时,产品利润最大,每天获利864元,故选C.小提示:本题考查了二次函数的实际应用,借助二次函数解决实际问题是本题的关键.7、已知抛物线y=x2+bx+c与x轴的两个交点之间的距离为6,对称轴为x=3,则抛物线的顶点P关于x轴对称的点P′的坐标是()A.(3,9)B.(3,−9)C.(−3,9)D.(−3,−9)答案:A分析:根据抛物线y=x2+bx+c与x轴两个交点间的距离为6.对称轴为直线x=3,可以得到b、c的值,然后即可得到该抛物线的解析式,再将函数解析式化为顶点式,即可得到点P的坐标,然后根据关于x轴对称的点的特点横坐标不变,纵坐标互为相反数,即可得到点P关于x轴的对称点的坐标.解:设抛物线y=x2+bx+c与x轴两个交点坐标为(x1,0),(x2,0),∵抛物线y=x2+bx+c与x轴两个交点间的距离为6,对称轴为直线x=3,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=36,−b=3,2×1∴(﹣b)2﹣4×c=36,b=﹣6,解得:c=0,∴抛物线的解析式为y=x2﹣6x=(x﹣3)2﹣9,∴顶点P的坐标为(3,﹣9),∴点P关于x轴的对称点的坐标是(3,9),故选:A.小提示:本题考查抛物线与x轴的交点、二次函数的性质、关于x轴对称的点的坐标特点,解答本题的关键是求出点P的坐标,利用二次函数的性质解答.8、已知a是不为0的常数,函数y=ax和函数y=﹣ax2+a在同一平面直角坐标系内的图象可以是()A.B.C.D.答案:C分析:根据题意分a>0,a<0两种情况讨论,结合函数图象即可求解.解:A.正比例函数中a<0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故A 不正确;B.正比例函数中a>0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故B不正确;C.正比例函数中a>0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,故C正确;D. .正比例函数中a<0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,矛盾,故D不正确;故选C小提示:本题考查了正比例函数与二次函数的图象的性质,掌握正比例函数与二次函数的图象的性质是解题的关键.9、二次函数y=ax2+bx+c(a≠0)的图像如图所示,则关于x的一元二次方程ax2+bx+c=0的根的情况描述正确的是()A.有两个相等的实数根B.有两个异号的实数根C.有两个同号的实数根D.有两个无法确定符号的实数根答案:B分析:根据二次函数的图像判断与x轴有两个交点,且在原点两侧,故关于x的一元二次方程ax2+bx+c= 0有两个异号的实数根.解:∵二次函数的图像与x轴有两个交点,且在原点两侧,∴关于x的一元二次方程ax2+bx+c=0有两个异号的实数根,故选:B.小提示:本题考查二次函数图像与一元二次方程根的关系,掌握二次函数y=ax2+bx+c(a≠0)的图像与x 轴有交点的横坐标即为关一元二次方程ax2+bx+c=0的根是解答本题的关键.10、已知抛物线y=2(x−3)2−5,其对称轴是()A.直线x=−3B.直线x=3C.直线x=−5D.直线x=5答案:B分析:直接根据抛物线的顶点式进行解答即可.解:∵y=2(x−3)2−5,∴抛物线对称轴为直线x=3.故选:B.小提示:本题考查二次函数的性质,解题关键是掌握二次函数图像与系数的关系.填空题11、已知二次函数y=(x−1)2+3,当x=_______时,y取得最小值.答案:1分析:根据抛物线的顶点坐标和开口方向即可得出答案.解:∵y=(x−1)2+3,∴该抛物线的顶点坐标为(1,3),且开口方向向上,∴当x=1时,y取得最小值,所以答案是:1.小提示:本题考查二次函数的最值,求二次函数最大值或最小值有三种方法:第一种可有图象直接得出,第二种是配方法,第三种是公式法.12、如图,过点D(1,3)的抛物线y=-x2+k的顶点为A,与x轴交于B、C两点,若点P是y轴上一点,则PC+PD的最小值为____.答案:3√2分析:由两点之间线段最短可知,当D、P、B在同一直线上时就可使PC+PD的值最小,解答即可.解:连接PB,对于抛物线y=-x2+k,对称轴是y轴,∴PC=PB,∴当D、P、B在同一直线上时,PC+PD的值最小,最小值为BD的长,∵抛物线y=-x2+k过点D(1,3),∴把x=1,y=3代入y=-x2+k,解得:k=4,把y=0代入y=-x2+4,解得:x=2或x=-2,所以点B的坐标为(-2,0),所以BD=√(−2−1)2+32=3√2,所以答案是:3√2.小提示:本题考查了抛物线与x轴的交点,轴对称-最短路线问题,找到P点是本题的关键.13、已知实数a、b满足a-b2=4,则代数式a2-3b2+a-14的最小值是________.答案:6分析:根据a-b2=4得出b2=a−4,代入代数式a2-3b2+a-14中,通过计算即可得到答案.∵a-b2=4∴b2=a−4将b2=a−4代入a2-3b2+a-14中得:a2-3b2+a-14=a2−3(a−4)+a−14=a2−2a−2a2−2a−2=a2−2a+1−3=(a−1)2−3∵b2=a−4≥0∴a≥4当a=4时,(a−1)2−3取得最小值为6∴a2−2a−2的最小值为6∵a2-3b2+a-14=a2−2a−2∴a2-3b2+a-14的最小值6所以答案是:6.小提示:本题考查了代数式的知识,解题的关键是熟练掌握代数式的性质,从而完成求解.14、已知二次函数y =−x 2−2x +3,当a ⩽x ⩽12时,函数值y 的最小值为1,则a 的值为_______. 答案:−1−√3##−√3−1分析:先把函数解析式化为顶点式可得当x <−1时,y 随x 的增大而增大,当x >−1时,y 随x 的增大而减小,然后分两种情况讨论:若a ≥−1;若a <−1,即可求解.解:y =−x 2−2x +3=−(x +1)2+4,∴当x <−1时,y 随x 的增大而增大,当x >−1时,y 随x 的增大而减小,若a ≥−1,当a ⩽x ⩽12时,y 随x 的增大而减小, 此时当x =12时,函数值y 最小,最小值为74,不合题意,若a <−1,当x =a 时,函数值y 最小,最小值为1,∴−a 2−2a +3=1,解得:a =−1−√3或−1+√3(舍去);综上所述,a 的值为−1−√3.所以答案是:−1−√3小提示:本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.15、已知二次函数y =ax 2+bx +c(a ≠0)的图像的顶点为(2,−2),与x 轴交于点(1,0)、(3,0),根据图像回答下列问题:当x _______时,y 随x 的增大而减小:方程ax 2+bx +c =0的两个根是___________.答案: x <2 x 1=1,x 2=3分析:利用开口向上和对称轴以及二次函数与一元二次方程的联系即可得到答案.解(1)∵二次函数图像与x轴的两个交点坐标为(1,0)、(3,0),∴二次函数的对称轴为直线x=2,∵抛物线的开口向上,∴当x<2时,y随x的增大而减小;(2)∵二次函数图像与x轴的两个交点坐标为(1,0)、(3,0),∴方程ax2+bx+c=0的两个根是x1=1,x2=3.小提示:本题考查了二次函数的图像与性质以及二次函数与一元二次方程的联系,属于常考题型.解答题16、在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A处开始减速,此时白球在黑球前面70cm处.小聪测量黑球减速后的运动速度v(单位:cm/s)、运动距离y(单位:cm)随运动时间t(单位:s)变化的数据,整理得下表.y与运动时间t之间成二次函数关系.(1)直接写出v关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围)(2)当黑球减速后运动距离为64cm时,求它此时的运动速度;(3)若白球一直..以2cm/s的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.答案:(1)v=−12t+10,y=−14t2+10t(2)6cm/s(3)黑、白两球的最小距离为6cm,大于0,黑球不会碰到白球分析:(1)根据黑球的运动速度v与运动时间t之间成一次函数关系,设表达式为v=kt+b,代入两组数值求解即可;根据运动距离y与运动时间t之间成二次函数关系,设表达式为y=at2+bt+c,代入三组数值求解即可;(2)当黑球减速后运动距离为64cm时,代入(1)式中y关于t的函数解析式求出时间t,再将t代入v关于t的函数解析式,求得速度v即可;(3)设黑白两球的距离为w cm,得到w=70+2t−y=14t2−8t+70,化简即可求出最小值,于是得到结论.(1)根据黑球的运动速度v与运动时间t之间成一次函数关系,设表达式为v=kt+b,代入(0,10),(1,9.5)得,{10=b 9.5=k+b ,解得{k=−12b=10,∴v=−12t+10,根据运动距离y与运动时间t之间成二次函数关系,设表达式为y=at2+bt+c,代入(0,0),(1,9.75),(2,19)得{0=c9.75=a+b19=4a+2b,解得{a=−14b=10c=0,∴y=−14t2+10t;(2)依题意,得−14t2+10t=64,∴t2−40t+256=0,解得,t1=8,t2=32;当t1=8时,v=6;当t2=32时,v=−6(舍);答:黑球减速后运动64cm时的速度为6cm/s.(3)设黑白两球的距离为w cm,w=70+2t−y=14t2−8t+70=14(t−16)2+6,∵14>0,∴当t=16时,w的值最小为6,∴黑、白两球的最小距离为6cm,大于0,黑球不会碰到白球.小提示:本题考查一次函数和二次函数的实际应用,待定系数法求解析式,解决本题的关键是明确题意求出函数表达式.17、已知抛物线y=ax2−4ax+3(a≠0)的图象经过点A(−2,0),过点A作直线l交抛物线于点B(4,m).(1)求抛物线的函数表达式和顶点坐标.(2)将抛物线向下平移n(n>0)个单位,使顶点落在直线l上,求m,n的值.答案:(1)y=−14x2+x+3;(2,4)(2)3;2分析:(1)把点A(−2,0)代入y=ax2−4ax+3(a≠0),求出a的值即可;再运用顶点坐标公式求出顶点坐标即可;(2)把C(4,m)代入y=−14x2+x+3可求出m的值;再运用待定系数法求出直线AB的解析式,从而可求出平移后押物线的顶点坐标,进一步可得结论.(1)将A(−2,0)代入y=ax2−4ax+3得:0=4a+8a+3,解得a=−14,∴抛物线的函数表达式为y=−14x2+x+3,∵−b2a =−12×(−14)=2,4ac−b24a=4×(−14)×3−124×(−14)=4,∴顶点坐标为(2,4);(2)把C(4,m)代入y=−14x2+x+3得,m =−4+4+3=3,设直线AB 的解析式为y =kx +b ,将A (−2,0),B (4,3)代入y =kx +b 得{0=−2k +b 3=4k +b, 解得{k =12b =1, ∴直线AB 的解析式为y =12x +1, ∵顶点的横坐标为2,∴把x =2代入y =12x +1得:y =2,∴n =4−2=2.小提示:本题主要考查了运用待定系数法求函数关系式以及二次函数图象的平移,正确理解题意是解答本题的关键.18、戴口罩是阻断呼吸道病毒传播的重要措施之一,某商家对一款成本价为每盒50元的医用口罩进行销售,如果按每盒70元销售,每天可卖出20盒.通过市场调查发现,每盒口罩售价每降低1元,则日销售量增加2盒(1)若每盒售价降低x 元,则日销量可表示为_______盒,每盒口罩的利润为______元.(2)若日利润保持不变,商家想尽快销售完该款口罩,每盒售价应定为多少元?(3)当每盒售价定为多少元时,商家可以获得最大日利润?并求出最大日利润.答案:(1)(20+2x )盒,(20-x ) 元(2)每盒售价应定为60元(3)每盒售价应定为65元时,最大日利润是450元分析:(1)根据题意列出代数式即可;(2)设每盒售价x 元,则每件的销售利润为(x −50)元,日销售量为[20+2(70−x )]件,即可得出关于x 的一元二次方程,解之即可得出x 的值,再结合商家想尽快销售完该款商品,即可求解;(3)设日利润为y ,由(2)列出函数关系式,根据二次函数的性质即可求解.(1)设每盒售价降低x 元,则日销量可表示为(20+2x )盒,每盒口罩的利润为70−50−x =20−x (元)所以答案是:(20+2x);(20−x)(2)设每盒售价x元,则每件的销售利润为(x−50)元,日销售量为[20+2(70−x)]件,根据题意得,(x−50)[20+2(70−x)]=(70−50)×20解得x1=70,x2=60又∵商家想尽快销售完该款商品,∴x=60.答:每件售价应定为60元;(3)设日利润为y,则y=(x−50)[20+2(70−x)]=−2x2+260x−8000=−2(x−65)2+450∴x=65时,y的最大值为450,即每盒售价应定为65元时,最大日利润是450元.小提示:本题考查了一元二次方程的应用,二次函数的应用,根据题意列出方程和函数关系式是解题的关键.。
人教版数学九年级上学期《二次函数》章节知识点归纳总结一、二次函数概念:1.二次函数的概念:(1)一般地,形如2y ax bx c =++(a b c ,,是常数,a ≠0)的函数,叫做二次函数。
(2)这里需要强调:和一元二次方程类似,二次项系数a ≠0,而b c ,可以为零.二次函数的定义域(x)是全体实数.2. 二次函数 2y ax bx c =++ 的结构特征:(1)等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. (2)a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.3. 二次函数解析式的几种形式(1)一般式:y=ax 2+bx+c (a ,b ,c 为常数,a ≠0) (2)顶点式:y=a(x-h)2+k [抛物线的顶点P ( h ,k )](3)交点式:y=a(x-x 1)(x-x 2)[仅限于与x 轴有交点A (x 1,0)和 B (x 2,0)的抛物线]其中x 1,x 2是抛物线与x 轴的交点的横坐标,即一元二次方程ax 2+bx+c =0的两个根,a ≠0. x 1,x 2 = (-b ±ac 4b 2-)/2a在三种形式的互相转化中,有如下关系:h= -b / 2a ; k=(4ac-b 2) / 4a ; x 1,x 2 = (-b ±ac 4b 2-) / 2a说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k);(2) 当h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点;(3) 如果图像经过原点,并且对称轴是y轴,则设y=ax2;如果对称轴是y轴,但不过原点,则设y=ax2+k4.抛物线的性质(1).抛物线是轴对称图形。
对称轴为直线 x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
九年级数学上册第二十二章二次函数知识点梳理单选题1、已知点A(-2,y1),B(1,y2),C(3,y3)在二次函数y=−2x2图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y2<y1<y3D.y3<y1<y2答案:D分析:分别计算出自变量为-2、-1和3的函数值,然后比较函数值的大小.解:∵点A(-2,y1),B(1,y2),C(3,y3)在二次函数y=-2x2图象上,∴y1=-2×4=-8;y2=-2×1=-2;y3=-2×9=-18,∴y3<y1<y2.故选:D.小提示:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.2、已知抛物线y=x2+kx−k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是()A.−5或2B.−5C.2D.−2答案:B分析:根据二次函数图象左加右减,上加下减的平移规律进行解答即可.解:函数y=x2+kx−k2向右平移3个单位,得:y=(x−3)2+k(x−3)−k2;再向上平移1个单位,得:y=(x−3)2+k(x−3)−k2+1,∵得到的抛物线正好经过坐标原点∴0=(0−3)2+k(0−3)−k2+1即k2+3k−10=0解得:k=−5或k=2∵抛物线y=x2+kx−k2的对称轴在y轴右侧∴x=−k>02∴k<0∴k=−5故选:B.小提示:此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.3、在同一平面直角坐标系中,函数y=ax2+bx与y=ax+b的图象不可能是( )A.B.C.D.答案:D分析:根据二次函数与一次函数的图象与性质进行判断即可.解:当a>0,b>0时,y=ax2+bx的开口上,与x轴的一个交点在x轴的负半轴,y=ax+b经过第一、二、三象限,且两函数图象交于x的负半轴,无选项符合;当a>0,b<0时,y=ax2+bx的开口向上,与x轴的一个交点在x轴的正半轴,y=ax+b经过第一、三、四象限,且两函数图象交于x的正半轴,故选项A正确,不符合题意题意;当a<0,b>0时,y=ax2+bx的开口向下,与x轴的一个交点在x轴的正半轴,y=ax+b经过第一、二、四象限,且两函数图象交于x的正半轴,C选项正确,不符合题意;当a<0,b<0时,y=ax2+bx的开口向下,与x轴的一个交点在x轴的负半轴,y=ax+b经过第二、三、四象限,B选项正确,不符合题意;只有选项D的两图象的交点不经过x轴,故选D.小提示:本题考查二次函数与一次函数图象的性质,解题的关键是根据a、b与0的大小关系进行分类讨论.4、在平面直角坐标系中,若抛物线y=2(x+5)(x−3)经一次变换后得到抛物线y=2(x+3)(x−5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向上平移8个单位D.向下平移8个单位答案:B分析:先将两解析式化成顶点式,然后根据平移前后的两抛物线的顶点坐标即可解答.解:y=2(x+5)(x-3)=2x2+4x-30=2(x+1)2-32,顶点坐标是(-1,-32).y=2(x+3)(x-5)=2x2-4x-30=2(x-1)2-32,顶点坐标是(1,-32).所以将抛物线y=2(x+5)(x-3)向右平移2个单位长度得到抛物线y=2(x+3)(x-5).故选:B.小提示:本题主要考查了二次函数图像与平移变换,掌握平移的规律“左加右减,上加下减”是解答本题的关键.5、如图,已知抛物线y=ax2+bx−2的对称轴是x=−1,直线l∥x轴,且交抛物线于点P(x1,y1),Q(x2,y2),下列结论错误..的是()A.b2>−8a B.若实数m≠−1,则a−b<am2+bmC.3a−2>0D.当y>−2时,x1⋅x2<0答案:C分析:先根据抛物线对称轴求出b=2a,再由抛物线开口向上,得到a>0,则b2+8a=4a2+8a>0由此即可判断A;根据抛物线开口向上在对称轴处取得最小值即可判断B;根据当x=1时,y=a+b−2<0,即可判断C;根据y>−2时,直线l与抛物线的两个交点分别在y轴的两侧,即可判断D.解:∵抛物线y=ax2+bx−2的对称轴是x=−1,∴−b=−1,2a∴b=2a,∵抛物线开口向上,∴a>0,∴b2+8a=4a2+8a>0,∴b2>−8a,故A说法正确,不符合题意;∵抛物线开口向下,抛物线对称轴为直线x=-1,∴当x=-1时,y=a−b−2,最小值∴当实数m≠−1,则a−b−2<am2+bm−2,∴当实数m≠−1时,a−b<am2+bm,故B说法正确,不符合题意;∵当x=1时,y=a+b−2<0,∴a+2a-2<0,即3a-2<0,故C说法错误,符合题意;∵y>−2,∴直线l与抛物线的两个交点分别在y轴的两侧,∴x1⋅x2<0,故D说法正确,不符合题意;故选C.小提示:本题主要考查了根据二次函数的图象去判断式子符号,二次函数的系数与图象之间的关系等等,熟知二次函数的相关知识是解题的关键.6、二次函数y=x2+2x+2的图象的对称轴是()A.x=−1B.x=−2C.x=1D.x=2答案:A分析:将二次函数y=x2+2x+2写成顶点式,进而可得对称轴.解:∵y=x2+2x+2=(x+1)2+1.∴二次函数y=x2+2x+2的图象的对称轴是x=−1.故选A.小提示:本题考查了二次函数的性质,将一般式转化为顶点式是解题的关键.7、某商场降价销售一批名牌衬衫,已知所获利润y(元)与降价x(元)之间的关系是y=-2x2+60x+800,则利润获得最多为()A.15元B.400元C.800元D.1250元答案:D分析:将函数关系式转化为顶点式,然后利用开口方向和顶点坐标即可求出最多的利润.解:y=-2x2+60x+800=-2(x-15)2+1250∵-2<0故当x=15时,y有最大值,最大值为1250即利润获得最多为1250元故选:D.小提示:此题考查的是利用二次函数求最值,掌握将二次函数的一般式转化为顶点式求最值是解决此题的关键.8、抛物线y=ax2+bx+c经过点(−1,0)、(3,0),且与y轴交于点(0,−5),则当x=2时,y的值为()A.−5B.−3C.−1D.5答案:A分析:先利用待定系数法求出抛物线解析式,再求函数值即可.解:∵抛物线y=ax2+bx+c经过点(−1,0)、(3,0),且与y轴交于点(0,−5),∴{c=−5a−b+c=09a+3b+c=0,解方程组得{c=−5 a=53b=−103,∴抛物线解析式为y=53x2−103x−5,当x=2时,y=53×4−103×2−5=−5.故选择A.小提示:本题考查待定系数法求抛物线解析式,和函数值,掌握系数法求抛物线解析式方法和函数值求法是解题关键.9、如图,等腰Rt△ABC与矩形DEFG在同一水平线上,AB=DE=2,DG=3,现将等腰Rt△ABC沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF为止.等腰Rt△ABC与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为()A.B.C.D.答案:B分析:根据平移过程,可分三种情况,当0≤x<1时,当1≤x<3时,当3≤x≤4时,利用直角三角形的性质及面积公式分别写出各种情况下y与x的函数关系式,再结合函数图象即可求解.过点C作CM⊥AB于N,DG=3,在等腰Rt△ABC中,AB=2,∴CN=1,①当0≤x<1时,如图,CM=x,∴PQ=2x,∴y=12⋅PQ⋅CM=12×2x⋅x=x2,∴0≤x<1,y随x的增大而增大;②当1≤x<3时,如图,∴y=S△ABC=12×2×1=1,∴当1≤x<3时,y是一个定值为1;③当3≤x≤4时,如图,CM=x−3,∴PQ=2(x−3),∴y=12AB⋅CN−12PQ⋅CM=12×2×1−12×2×(x−3)2=1−(x−3)2,当x=3,y=1,当3<x<4,y随x的增大而减小,当x=4,y=0,结合ABCD选项的图象,故选:B.小提示:本题考查了动点函数问题,涉及二次函数的图象及性质,能够准确理解题意并分情况讨论是解题的关键.10、如图,在正方形ABCD中,AB=4,点P从点A出发沿路径A→B→C向终点C运动,连接DP,作DP的垂直平分线MN与正方形ABCD的边交于M,N两点,设点P的运动路程为x,△PMN的面积为y,则下列图象能大致反映y与x函数关系的是()A.B.C.D.答案:A分析:分点P在AB和BC上两种情况,分别求出MN和PF长,利用面积公式求解.解:(1)如图,当0≤x≤4时,点P在AB上,过点N作NE⊥AD于点E,设MN与PD交于点F,∴NE=DC=AD,则PD=√PA2+AD2=√x2+42=√x2+16,又∵MN垂直平分PD,∴PF=12PD=12√x2+16,∴∠MDF+∠FMD=∠MNE+∠FME=90°,∴∠MNE=∠PDA,在△MNE和△PDA中,{∠A=∠NEMAD=EN∠PDA=∠MNE∴△APD≌△EMN,∴PD=MN=√x2+16,∴y=12MN⋅PF=12√x2+16⋅12√x2+16=14x2+4 ,(2)如图,当4<x≤8时,点P在BC上,过点N作NE⊥CD于点E,设MN交PD于点F,则PD=√PC2+CD2=√(8−x)2+16 ,∴PF=12√(8−x)2+16用(1)的方法得MN=√(8−x)2+16,y=12√(8−x)2+16⋅12√(8−x)2+16=14(x−8)2+4,故y={14x2+4(0≤x≤4)14(x−8)2+4(4<x≤8)故选择A.小提示:本题考查分段函数,解决问题的关键是根据点P的位置确定自变量的取值范围得出函数解析式.填空题11、抛物线y=3−x2位于y轴左侧的部分是______的.(填“上升”或“下降”)答案:上升分析:根据二次函数图象的性质解答即可.解:∵二次项系数-1<0,∴抛物线开口向下,∵对称轴是直线y=0,∴抛物线y=3−x2位于y轴左侧的部分是上升的.所以答案是:上升.小提示:本题考查了二次函数图象的性质,熟练掌握二次函数y=ax2+k的性质是解答本题的关键.对于二次函数y=ax2+k (a,k为常数,a≠0),当a>0时,抛物线开口向上,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大;当a<0时,抛物线开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小.12、如图,平行四边形ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线经过x轴上的点A,B,则此抛物线的解析式为__________________.答案:y=−2x2+16x−24分析:根据平行四边形的性质得到CD=AB=4,即C点坐标为(4,8),进而得到A点坐标为(2,0),B点坐标为(6,0),利用待定系数法即可求得函数解析式.∵四边形ABCD为平行四边形∴CD=AB=4∴C点坐标为(4,8)∴A点坐标为(2,0),B点坐标为(6,0)设函数解析式为y=a(x−2)(x−6),代入C点坐标有8=a(4−2)(4−6)解得a=−2∴函数解析式为y=−2(x−2)(x−6),即y=−2x2+16x−24故答案为y=−2x2+16x−24.小提示:本题考查了平行四边形的性质,和待定系数法求二次函数解析式,问题的关键是求出A点或B点的坐标.13、如图,二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),它的对称轴为直线x=1,则下列结论中:①c=3;②2a+b=0;③8a-b+c>0;④方程ax2+bx+c=0的其中一个根在2,3之间,正确的有_______(填序号).答案:①②④分析:由二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),即可判断①;由抛物线的对称轴为直线x=1,即可判断②;抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,即可判断④,由抛物线开口向下,得到a<0,再由当x=-1时,a−b+c<0,即可判断③.解:∵二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),∴c=3,故①正确;∵抛物线的对称轴为直线x=1,∴−b=1,即2a+b=0,故②正确;2a∵抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,∴抛物线与x轴的另一个交点在2到3之间,故④正确;∵抛物线开口向下,∴a<0,∵当x=-1时,a−b+c<0,∴a−b+c+7a<0即8a−b+c<0,故③错误,所以答案是:①②④.小提示:本题主要考查了二次函数图像的性质,解题的关键在于能够熟练掌握二次函数图像的性质.14、如图,一位篮球运动员投篮,球沿抛物线y=−0.2x2+x+2.25运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m,则他距篮筐中心的水平距离OH是_________m.答案:4分析:将y=3.05代入y=−0.2x2+x+2.25中可求出x,结合图形可知x=4,即可求出OH.解:当y=3.05时,−0.2x2+x+2.25=3.05,解得:x=1或x=4,结合图形可知:OH=4m,所以答案是:4小提示:本题考查二次函数的实际应用:投球问题,解题的关键是结合函数图形确定x的值.15、如图,一次足球训练中,一球员从球门正前方将球射向球门,球射向球门的路线呈抛物线,当球飞行的水平距离为6米时,球达到最高点,此时球离地面3米,当足球下落到离地面53米时,足球飞行的水平距离为__________米.答案:10分析:设抛物线的解析式为y=a(x−6)2+3,代入原点,确定解析式为y=−112x2+x,当y=53米时,求得x的值即可.设抛物线的解析式为y=a(x−6)2+3,代入原点,得:0=a(0−6)2+3,解得a=−112,∴抛物线的解析式为y=−112x2+x,当y=53米时,−112x2+x=53,解得x=10,x=2(舍去),足球飞行的水平距离为10米,所以答案是:10.小提示:本题考查了抛物线的解析式,已知函数值求自变量值,熟练掌握待定系数法是解题的关键.解答题16、李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?答案:(1)y=−0.2x+8.4(1≤x≤10且x为整数).(2)李大爷每天应购进这种水果7箱,获得的利润最大,最大利润是140元.分析:(1)根据题意列出y=8.2−0.2(x−1),得到结果.(2)根据销售利润=销售量×(售价-进价),利用(1)结果,列出销售利润w与x的函数关系式,即可求出最大利润.(1)解:由题意得y=8.2−0.2(x−1)=−0.2x+8.4∴批发价y与购进数量x之间的函数关系式是y=−0.2x+8.4(1≤x≤10,且x为整数).(2)解:设李大爷销售这种水果每天获得的利润为w元则w=[12−0.5(x−1)−y]⋅10x=[12−0.5(x−1)−(−0.2x+8.4)]⋅10x=−3x2+41x∵a=−3<0∴抛物线开口向下∵对称轴是直线x=416∴当1≤x≤41时,w的值随x值的增大而增大6∵x为正整数,∴此时,当x=6时,w=138最大当41≤x≤10时,w的值随x值的增大而减小6∵x为正整数,∴此时,当x=7时,w=140最大∵140>138∴李大爷每天应购进这种水果7箱,获得的利润最大,最大利润是140元.小提示:本题考查了二次函数的性质在实际生活中的应用,最大销售利润的问题常利用二次函数的增减性来解答,解题关键是理解题意,确定变量,建立函数模型,然后结合实际选择最优方案进行解决.17、某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高x元.(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?答案:(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元分析:(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M元,结合题意,根据二次函数的性质,计算得利润最大值对应的x的值,从而得到答案.(1)由题意列方程得:(x+40-30)(300-10x)=3360解得:x1=2,x2=18∵要尽可能减少库存,∴x2=18不合题意,故舍去∴T恤的销售单价应提高2元;(2)设利润为M 元,由题意可得:M =(x +40-30)(300-10x )=-10x 2+200x +3000=−10(x −10)2+4000 ∴当x =10时,M 最大值=4000元 ∴销售单价:40+10=50元∴当服装店将销售单价50元时,得到最大利润是4000元.小提示:本题考查了一元二次方程、二次函数的知识;解题的关键是熟练掌握一元二次方程、二次函数的性质,从而完成求解.18、在平面直角坐标系中,设二次函数y =−12(x −2m )2+3−m (m 是实数). (1)当m =2时,若点A (8,n )在该函数图象上,求n 的值.(2)小明说二次函数图象的顶点在直线y =−12x +3上,你认为他的说法对吗?为什么?(3)已知点P(a +1,c),Q(4m −5+a,c)都在该二次函数图象上,求证:c ≤138.答案:(1)-7 (2)对,理由见解析 (3)见解析分析:(1)把m =2,点A (8,n )代入解析式即可求解;(2)由抛物线解析式,得顶点是(2m ,3-m ),把x =2m 代入y =−12x +3,求出y 值与3-m 比较,若相等则即可判断小明说法正确,否则说法错误;(3)由点P (a +1,c ),Q (4m -5+a ,c )的纵坐标相同,即可求得对称轴为直线x =a+1+4m−5+a2=a +2m -2,即可得出a +2m -2=2m ,求得a =2,得到P (3,c ),代入解析式即可得到 c =-12(3-2m )2+3-m =-2m 2+5m -32=-2(m -54)2+138,根据二次函数的性质即可证得结论.(1)解:当m =2时,y =-12(x -4)2+1 ∵A (8,n )在函数图象上, ∴n =-12(8-4)2+1=-7(2)解:由题意得,顶点是(2m,3-m)当x=2m时,y=-12×2m+3=-m+3∴顶点(2m,3-m)在直线y=-12x+3上(3)证明:∵P(a+1,c),Q(4m-5+a,c)都在二次函数的图象上∴对称轴是直线x=a+1+4m-5+a2=a+2m-2∴a+2m-2=2m,∴a=2,∴P(3,c),把P(3,c)代入抛物线解析式,得∴c=-12(3-2m)2+3-m=-2m2+5m-32=-2(m-54)2+138,∵-2<0,∴c有最大值为138,∴c≤138.小提示:本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键.。
九年级数学上册第二十二章二次函数考点大全笔记单选题1、已知实数x,y满足x+y=12,则xy−2的最大值为()A.10B.22C.34D.142答案:C分析:利用二次函数的性质求解即可.解:∵x+y=12,∴y=12-x,∴xy-2=x(12-x)-2=-x2+12x-2=-(x-6)2+34,∵-1<0,∴当x=6时,xy-2有最大值,最大值为34,故选:C.小提示:本题考查二次函数的性质,会利用二次函数的性质求最值是解答的关键.2、已知二次函数y=ax2+2ax+a−1的图象只经过三个象限,下列说法正确的是()A.开口向下B.顶点在第一象限C.a≥1D.当x>1时,y的最小值为-1答案:C分析:二次函数y=ax2+2ax+a−1的图象只经过三个象限,要满足条件,常数项大于等于0,解不等式即得.∵二次函数y=ax2+2ax+a−1的图象只经过三个象限,∴a-1≥0,∴a≥1.故选C.小提示:本题考查了二次函数y=ax2+2ax+a−1的图象只经过三个象限,运用函数图象与x轴的两个交点横坐标的积大于等于0,即常数项大于等于0,是解决此类问题的关键.3、已知a<−1,点(a−1,y1),(a,y2),(a+1,y3)都在函数y=3x2−2的图象上,则()A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y3<y2<y1答案:D分析:先求出抛物线的对称轴,抛物线y=3x2-2的对称轴为y轴,即直线x=0,图象开口向上,当a<-1时,a-1<a<a+1<0,在对称轴左边,y随x的增大而减小,由此可判断y1,y2,y3的大小关系.解:∵当a<-1时,a-1<a<a+1<0,而抛物线y=3x2-2的对称轴为直线x=0,开口向上,∴三点都在对称轴的左边,y随x的增大而减小,∴y1>y2>y3.故选:D.小提示:本题考查的是二次函数图象上点的坐标特点,当二次项系数a>0时,在对称轴的左边,y随x的增大而减小,在对称轴的右边,y随x的增大而增大;a<0时,在对称轴的左边,y随x的增大而增大,在对称轴的右边,y随x的增大而减小.4、某超市销售一种商品,每件成本为50元,销售人员经调查发现,该商品每月的销售量y(件)与销售单价x (元)之间满足函数关系式y=−5x+550,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?()A.90元,4500元B.80元,4500元C.90元,4000元D.80元,4000元答案:B分析:设每月所获利润为w,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可.解:设每月总利润为w,依题意得:w=y(x−50)=(−5x+550)(x−50)=−5x2+800x−27500=−5(x−80)2+4500∵−5<0,此图象开口向下,又x≥50,∴当x=80时,w有最大值,最大值为4500元.故选:B.小提示:本题考查了二次函数在实际生活中的应用,根据题意找到等量关系并掌握二次函数求最值的方法是解题的关键.5、下列函数中,是二次函数的是()A.y=8x2+1B.y=8x+1C.y=8x D.y=8x2答案:A分析:根据二次函数的定义:形如y=ax2+bx+c( a≠0)的函数叫二次函数,直接判断即可.解:A、y=8x2+1符合二次函数的定义,本选项符合题意;B、y=8x+1是一次函数,不符合题意;C、y=8x是反比例函数,不符合题意;D、y=8x2不是二次函数,不符合题意;故选:A.小提示:本题主要考查二次函数的定义,熟练掌握二次函数的定义是解题的关键.6、如图所示是二次函数y=ax2+bx+c(a≠0)的图象,以下结论:①abc<0;②3a+c=0;③ax2+ bx+c=0的两个根是x1=−1,x2=3;④4a+2b+c>0,其中正确的是()A.③④B.①②C.②③D.②③④答案:C分析:根据二次函数的图象与性质即可求出答案.解:①由图象可知:a>0,c<0,由对称轴可知:−b2a>0,∴b<0,∴abc>0,故①错误;=1,②由对称轴可知:−b2a∴b=−2a,∵抛物线过点(1,0),∴a−b+c=0,∴a+2a+c=0,∴3a+c=0,故②正确;③由对称轴为直线x=1,抛物线过点(−1,0),∴抛物线与x轴的另一个交点为(3,0),∴ax2+bx+c=0的两个根是x1=−1,x2=3,故③正确;④由图象可知,当x=2时,y<0,∴4a+2b+c<0,故④错误;故选:C.小提示:本题考查二次函数的图象与系数的关系,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.7、对于抛物线y=−3(x+1)2−2,下列说法正确的是()A.抛物线开口向上B.当x>−1时,y随x增大而减小C.函数最小值为﹣2D.顶点坐标为(1,﹣2)答案:B分析:根据二次函数图象的性质对各项进行分析判断即可.解:抛物线解析式y=−3(x+1)2−2可知,A、由于a=−3<0,故抛物线开口方向向下,选项不符合题意;B、抛物线对称轴为x=−1,结合其开口方向向下,可知当x>−1时,y随x增大而减小,选项说法正确,符合题意;C、由于抛物线开口方向向下,故函数有最大值,且最大值为-2,选项不符合题意;D、抛物线顶点坐标为(-1,-2),选项不符合题意.故选:B.小提示:本题主要考查了二次函数的性质,解题关键是熟练运用抛物线的开口方向、对称轴、顶点坐标以及二次函数图象的增减性解题.8、已知二次函数y=mx2−4m2x−3(m为常数,m≠0),点P(x p,y p)是该函数图象上一点,当0≤x p≤4时,y p≤−3,则m的取值范围是()A.m≥1或m<0B.m≥1C.m≤−1或m>0D.m≤−1答案:A分析:先求出抛物线的对称轴及抛物线与y轴的交点坐标,再分两种情况:m>0或m<0,根据二次函数的性质求得m的不同取值范围便可.解:∵二次函数y=mx2−4m2x−3,∴对称轴为x=2m,抛物线与y轴的交点为(0,−3),∵点P(x p,y p)是该函数图象上一点,当0≤x p≤4时,y p≤−3,∴①当m>0时,对称轴x=2m>0,此时,当x=4时,y≤−3,即m⋅42−4m2⋅4−3≤−3,解得m≥1;②当m<0时,对称轴x=2m<0,当0≤x≤4时,y随x增大而减小,则当0≤x p≤4时,y p≤−3恒成立;综上,m的取值范围是:m≥1或m<0.故选:A.小提示:本题考查了二次函数的性质,关键是分情况讨论.9、如图,已知抛物线y=ax2+bx−2的对称轴是x=−1,直线l∥x轴,且交抛物线于点P(x1,y1),Q(x2,y2),下列结论错误..的是()A.b2>−8a B.若实数m≠−1,则a−b<am2+bmC.3a−2>0D.当y>−2时,x1⋅x2<0答案:C分析:先根据抛物线对称轴求出b=2a,再由抛物线开口向上,得到a>0,则b2+8a=4a2+8a>0由此即可判断A;根据抛物线开口向上在对称轴处取得最小值即可判断B;根据当x=1时,y=a+b−2<0,即可判断C;根据y>−2时,直线l与抛物线的两个交点分别在y轴的两侧,即可判断D.解:∵抛物线y=ax2+bx−2的对称轴是x=−1,∴−b=−1,2a∴b=2a,∵抛物线开口向上,∴a>0,∴b2+8a=4a2+8a>0,∴b2>−8a,故A说法正确,不符合题意;∵抛物线开口向下,抛物线对称轴为直线x=-1,∴当x=-1时,y=a−b−2,最小值∴当实数m≠−1,则a−b−2<am2+bm−2,∴当实数m≠−1时,a−b<am2+bm,故B说法正确,不符合题意;∵当x=1时,y=a+b−2<0,∴a+2a-2<0,即3a-2<0,故C说法错误,符合题意;∵y>−2,∴直线l与抛物线的两个交点分别在y轴的两侧,∴x1⋅x2<0,故D说法正确,不符合题意;故选C.小提示:本题主要考查了根据二次函数的图象去判断式子符号,二次函数的系数与图象之间的关系等等,熟知二次函数的相关知识是解题的关键.10、二次函数y=x2+2x+2的图象的对称轴是()A.x=−1B.x=−2C.x=1D.x=2答案:A分析:将二次函数y=x2+2x+2写成顶点式,进而可得对称轴.解:∵y=x2+2x+2=(x+1)2+1.∴二次函数y=x2+2x+2的图象的对称轴是x=−1.故选A.小提示:本题考查了二次函数的性质,将一般式转化为顶点式是解题的关键.填空题11、已知函数y=mx2+2mx+1在−3⩽x⩽2上有最大值4,则常数m的值为 __.或−3答案:38分析:分两种情况:m>0和m<0分别求y的最大值即可.解:y=mx2+2mx+1=m(x+1)2+1−m.当m>0时,当x=2时,y有最大值,∴4m+4m+1=4,∴m=3;8当m<0时,当x =−1时,y 有最大值,∴m −2m +1=4,∴m =−3,综上所述:m 的值为38或−3.故答案是:38或−3.小提示:本题考查了二次函数的最值,熟练掌握二次函数的图象及性质,解题时,注意要分类讨论,以防漏解.12、对于任意实数a ,抛物线y =x 2+2ax +a +b 与x 轴都有公共点.则b 的取值范围是_______.答案:b ≤−14分析:由题意易得4a 2−4a −4b ≥0,则有b ≤a 2−a ,然后设t =a 2−a ,由无论a 取何值时,抛物线y =x 2+2ax +a +b 与x 轴都有公共点可进行求解.解:由抛物线y =x 2+2ax +a +b 与x 轴都有公共点可得:Δ≥0,即4a 2−4a −4b ≥0,∴b ≤a 2−a ,设t =a 2−a ,则b ≤t ,要使对于任意实数a ,抛物线y =x 2+2ax +a +b 与x 轴都有公共点,则需满足b 小于等于t 的最小值即可, ∴t =a 2−a =(a −12)2−14,即t 的最小值为−14,∴b ≤−14;故答案为b ≤−14. 小提示:本题主要考查二次函数的综合,熟练掌握二次函数的综合是解题的关键.13、如图,物体从点A 抛出,物体的高度y (m )与飞行时间t (s )近似满足函数关系式y =−15(t −3)2+5.(1)OA =______m .(2)在飞行过程中,若物体在某一个高度时总对应两个不同的时间,则t 的取值范围是________.答案: 165 0≤t ≤6且t ≠3分析:(1)当t =0时,求得y 的值,即可求解;(2)观察图象,当y ≥165,顶点除外时,物体在某一个高度时总对应两个不同的时间,据此求解即可. 解:(1)当t =0时,y =−15(t −3)2+5=-95+5=165;即OA =165(m );所以答案是:165; (2)当y =165时,−15(t −3)2+5=165,∴t =0或t =6,∴当0≤t ≤6且t ≠3时,物体在某一个高度时总对应两个不同的时间,所以答案是:0≤t ≤6且t ≠3.小提示:本题考查了二次函数的应用,准确读图是解答本题的关键.14、如图,在一块等腰直角三角形ABC 的铁皮上截取一块矩形铁皮,要求截得的矩形的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上.已知BC =30厘米,设DG 的长为x 厘米,矩形DEFG 的面积为y 平方厘米,那么y 关于x 的函数解析式为__________.(不要求写出定义域)答案:y =12(30−x )x 分析:根据题意,列出y 关于x 的函数解析式即可;解:∵ΔABC 是等腰直角三角形,∴∠B =45°,∵四边形DEFG 是矩形,∴BE ⊥DE ,∴BE =DE ,∴y=1(30−x)x2(30−x)x.所以答案是:y=12小提示:本题主要考查二次函数的应用,关键在于根据题意列出二次函数关系式.15、如图,在平面直角坐标系中,菱形ABCD的一边AB在x轴上,顶点B在x轴正半轴上.若抛物线y=x2﹣5x+4经过点C、D,则点B的坐标为______.答案:(2,0)分析:根据抛物线y=x2﹣5x+4经过点C、D和二次函数图象具有对称性,可以求得该抛物线的对称轴和CD 的长,然后根据菱形的性质和勾股定理可以求得AO的长,从而可以求得OB的长,进而写出点B的坐标.解:∵抛物线y=x2﹣5x+4,∴该抛物线的对称轴是直线x=5,点D的坐标为(0,4),2∴OD=4,∵抛物线y=x2﹣5x+4经过点C、D,∵四边形ABCD为菱形,AB在x轴上,∴CD∥AB,即CD∥x轴,∴CD=5×2=5,2∴AD=5,∵∠AOD=90°,OD=4,AD=5,∴AO=√AD2−OD2=√52−42=3,∵AB=5,∴OB=5﹣3=2,∴点B的坐标为(2,0),所以答案是:(2,0).小提示:本题考查二次函数的性质、二次函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.解答题16、在平面直角坐标系xOy中,二次函数y=x2−2mx+5m的图象经过点(1,−2).(1)求二次函数的表达式;(2)求二次函数图象的对称轴.答案:(1)m=−1;(2)直线x=−1分析:(1)利用待定系数法求解析式即可;(2)利用对称轴公式x=−b2a求解即可.解:(1)∵二次函数y=x2-2mx+5m的图象经过点(1,-2),∴-2=1-2m+5m,解得m=−1;∴二次函数的表达式为y=x2+2x-5.(2)二次函数图象的对称轴为直线x=−b2a =−22=−1;故二次函数的对称轴为:直线x=−1;小提示:本题考查了求二次函数解析式和对称轴,解题关键是熟练运用待定系数法求解析式,熟记抛物线对称轴公式.17、“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:①统计售价与需求量的数据,通过描点(图1),发现该蔬菜需求量y1(吨)关于售价x(元/千克)的函数图象可以看成抛物线,其表达式为y1=ax2+ c,部分对应值如表:221.③1~7月份该蔬菜售价x1(元/千克),成本x2(元/千克)关于月份t的函数表达式分别为x1=12t+2,x2=1 4t2−32t+3,函数图象见图2.请解答下列问题:(1)求a,c的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.答案:(1)a=−15,c=9(2)在4月份出售这种蔬菜每千克获利最大,见解析(3)该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元分析:(1)运用待定系数法求解即可;(2)设这种蔬菜每千克获利w元,根据w=x售价−x成本列出函数关系式,由二次函数的性质可得结论;(3)根据题意列出方程,求出x的值,再求出总利润即可.(1)把{x=3,y=7.2,{x=4,y=5.8代入y需求=ax2+c可得{9a+c=7.2,①16a+c=5.8.②②-①,得7a=−1.4,解得a=−15,把a=−15代入①,得c=9,∴a=−15,c=9.(2)设这种蔬菜每千克获利w元,根据题意,有w=x售价−x成本=12t+2−(14t2−32t+3),化简,得w=−14t2+2t−1=−14(t−4)2+3,∵−14<0,t=4在1≤t≤7的范围内,∴当t=4时,w有最大值.答:在4月份出售这种蔬菜每千克获利最大.(3)由y供给=y需求,得x−1=−15x2+9,化简,得x2+5x−50=0,解得x1=5,x2=−10(舍去),∴售价为5元/千克.此时,y供给=y需求=x−1=4(吨)=4000(千克),把x=5代入x售价=12t+2,得t=6,把t=6代入w=−14t2+2t−1,得w=−14×36+2×6−1=2,∴总利润=w⋅y=2×4000=8000(元).答:该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元.小提示:此题主要考查了函数的综合应用,结合函数图象得出各点的坐标,再利用待定系数法求出函数解析式是解题的关键.18、如图,抛物线y =x 2+bx +c 经过点A (−1,0),点B (2,−3),与y 轴交于点C ,抛物线的顶点为D .(1)求抛物线的解析式;(2)抛物线上是否存在点P ,使△PBC 的面积是△BCD 面积的4倍,若存在,请直接写出点P 的坐标:若不存在,请说明理由.答案:(1)y =x 2−2x −3(2)存在,P 1(1+√5,1),P 2(1−√5,1)分析:(1)将点A (−1,0),点B (2,−3),代入抛物线得{1−b +c =04+2b +c =−3,求出b ,c 的值,进而可得抛物线的解析式.(2)将解析式化成顶点式得y =x 2−2x −3=(x −1)2−4,可得D 点坐标,将x =0代入得,y =−3,可得C 点坐标,求出S △BCD =1的值,根据S △PBC =4S △BCD 可得S △PBC =4,设P (m,m 2−2m −3),则S △PBC =12×2×(m 2−2m −3+3)=4,求出m 的值,进而可得P 点坐标.(1)解:∵抛物线y =x 2+bx +c 过点A (−1,0),点B (2,−3),∴{1−b +c =04+2b +c =−3, 解得{b =−2c =−3, ∴抛物线的解析式为:y =x 2−2x −3.(2)解:存在.∵y =x 2−2x −3=(x −1)2−4,∴D (1,−4),将x =0代入得,y =−3,∴C(0,−3),又∵B(2,-3),∴BC//x轴,∴D到线段BC的距离为1,BC=2,∴S△BCD=1×2×1=1,2∴S△PBC=4S△BCD=4,设P(m,m2−2m−3),由题意可知点P在直线BC上方,则S△PBC=1×2×(m2−2m−3+3)=4,2整理得,m2−2m=4,解得m1=1+√5,或m2=1−√5,∴P1(1+√5,1),P2(1−√5,1),∴存在点P,使△PBC的面积是△BCD面积的4倍,点P的坐标为P1(1+√5,1),P2(1−√5,1).小提示:本题考查了待定系数法求二次函数解析式,二次函数顶点式,二次函数与三角形面积综合等知识.解题的关键在于对知识的熟练掌握与灵活运用.。
《二次函数》知识点总结【知识点1 二次函数的表达式】1. 一般式: . 顶点坐标: . 对称轴: .2. 顶点式: .顶点坐标: . 对称轴: . 【知识点2 二次函数的图象与性质】 1. 二次项系数a 决定抛物线的 开口方向 ;①当0>a 时,抛物线的 ; ②当0<a 时,抛物线的 ; ③ ||a 越大,抛物线的开口 .3.常数项c 决定抛物线 与y 轴 交点的位置 . ①当0=c ,抛物线与y 轴交于 ; ②当0>c ,抛物线与y 轴交于 ; ③当0<c ,抛物线与y 轴交于 .5.根据a 、b 、c 的符号,画出二次函数的草图:①已知 a <0、b <0、c <0 ②已知 a>0、b <0、c >0 6.描述下面二次函数c bx ax y ++=2的增减性: 【知识点3 抛物线与坐标轴的交点】 1. 抛物线c bx ax y ++=2与x 轴的交点个数,即02=++c bx ax . ①当 ,抛物线与x 轴有两个交点; ②当 ,抛物线与x 轴有1个交点; ③当 ,抛物线与x 轴有没有交点;2.求抛物线c bx ax y ++=2与x 轴的交点的过程: 3.求抛物线c bx ax y ++=2与y 轴的交点的过程:4.函数 y = ax 2 + bx + c 的图象如图,那么 ①方程 ax 2 + bx + c =2 的根是 ______________;2.系数a 和b 共同决定抛物线 对称轴的位置 . ①a 和b 同号,对称轴在原点的 ; ②a 和b 异号, .4.根据图象判断出a 、b 、c 的符号:方法总结:第一步:求出对称轴;第二步:用箭头在对称轴两侧标出上升和下降;第三步:描述增减性.①当 时,随的增大而减小; ②当 时, 随的增大而增大;∵轴上的点, 为零,∴ . ∵轴上的点, 为零,∴ .②不等式 ax 2 + bx + c >0 的解集是 ___________; ③不等式 ax 2 + bx + c <2 的解集是 _________.④ a + b + c 0 ,4a 2 b + c 0 , 9a +3 b + c 0 .【知识点4 抛物线的平移】二次函数 y = ax 2 + bx + c 的平移口诀:“上下平移, ;左右平移, .” 【 * *知识点5 抛物线的对称 ** 】抛物线c bx ax y ++=2关于x 轴对称的解析式为 . 抛物线c bx ax y ++=2关于y 轴对称的解析式为 . 【 * *知识点6 二次函数图象的画法 ** 】 画出二次函数3-2-2x x y =的的图象.【典型例题 】1.m2+1+2x −是二次函数,则m 的值为( )C. −1D. 1或−12.【求顶点坐标 】抛物线y =2(x −3)4的顶点坐标是( ) A. (3,4)B. (−3,4)C. (3,−4)D. (2,4)3.【与坐标轴的交点 】抛物线y =−x 2+4x −4与坐标轴的交点个数为( ) A. 0B. 1C. 2D. 34.【平移】将函数y =x 2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( ) A. 向左平移1个单位 B. 向右平移3个单位C. 向上平移3个单位D. 向下平移1个单位5.【平移】抛物线y =x 2+6x +7可由抛物线y =x 2如何平移得到的( )A. 先向左平移3个单位,再向下平移2个单位B. 先向左平移6个单位,再向上平移7个单位C. 先向上平移2个单位,再向左平移3个单位D. 先向右平移3个单位,再向上平移2个单位 6.【图象与性质】对于抛物线y =−3(x +1)2−2,下列说法正确的是( ) A. 抛物线开口向上 B. 当x >−1时,y 随x 的增大而减小 C. 函数最小值为−2D. 顶点坐标为(1,−2)7.【增减性】已知(−3,y 1),(−1,y 2),(2,y 3)是抛物线y =−3x 2+6x +m 上的三个点.则( ) A. y 1<y 3<y 2B. y 3<y 2<y 1C. y 1<y 2<y 3D. y 2<y 1<y 38.【最值】已知二次函数y=x2−4x+2,关于该函数在−1≤x≤3的取值范围内,下列说法正确的是( )A. 有最大值−1,有最小值−2B. 有最大值0,有最小值−1C. 有最大值7,有最小值−1D. 有最大值7,有最小值−29.【系数与图象】二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系中的图象大致为( )A. B. C. D.10.【求解析式】如图所示,已知二次函数y=ax2+bx+c的图象,求二次函数的解析式.11.如图,已知二次函数y=ax2−4x+c的图象经过点A(−1,−1)和点B(3,−9).(1)求该二次函数的解析式、对称轴及顶点坐标;(2)点C是抛物线与x轴的一个交点,点D是抛物线与y轴的交点,求三角形ACD 的面积;(3)已知点M(x1,y1)和N(1+x1,y2)在抛物线对称轴的右侧,判段y1和y2的大小.12.在运动会比赛时,九年级的一名男同学推铅球,已知铅球经过的路线是某二次函数图象的一部分(如图所示),如果这名男同学的出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为(6,5).(1)求出这个二次函数的解析式;(2)请求出这名男同学比赛时的成绩?13.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m.(1)建立平面直角坐标系,求抛物线的解析式;(2)如果水面下降1m,则水面宽度是多少米?14.某商场一种商品的进价为每件30元,售价为每件50元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件40.5元,求两次下降的百分率;(2)经调查,若该商品每降价2元,每天可多销售16件,那么每天要想获得最大利润,每件售价应多少元?最大利润是多少?。
第22章 二次函数知识点归纳及相关典型题第一部分 基础知识1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a . 3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线. 4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5. 二次函数由特殊到一般,可分为以下几种形式: ①2axy =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 越大,抛物线的开口越小;a 越小,抛物线的开口越大。
②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线ab x 2-=.(2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称点的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧;③0<a b(即a 、b 异号)时,对称轴在y 轴右侧,“左同右异”.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴.10.几种特殊的二次函数的图像特征如下: 函数解析式开口方向对称轴顶点坐标2ax y = 当0>a 时 开口向上 当0<a 时 开口向下0=x (y 轴)(0,0) k ax y +=2 0=x (y 轴) (0, k ) ()2h x a y -=h x =(h ,0) ()k h x a y +-=2h x = (h ,k )c bx ax y ++=2abx 2-= (ab ac a b 4422--,) 11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a ac b a c a b x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=444222122122121中考回顾1.(天津中考)已知抛物线y=x 2-4x+3与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M.平移该抛物线,使点M 平移后的对应点M'落在x 轴上,点B 平移后的对应点B'落在y 轴上,则平移后的抛物线解析式为( A )A.y=x 2+2x+1B.y=x 2+2x-1C.y=x 2-2x+1D.y=x 2-2x-12.(四川成都中考)在平面直角坐标系xOy 中,二次函数y=ax 2+bx+c 的图象如图所示,下列说法正确的是( B )A. abc<0, b 2-4ac>0B. abc>0, b 2-4ac>0C. abc<0, b 2-4ac<0D. abc>0, b 2-4ac<03.(内蒙古赤峰中考)如果关于x 的方程x 2-4x+2m=0有两个不相等的实数根,那么m 的取值范围是 m<2 .4.(内蒙古赤峰中考)如图,二次函数y=ax 2+bx+c (a ≠0)的图象交x 轴于A ,B 两点,交y 轴于点D ,点B 的坐标为(3,0),顶点C 的坐标为(1,4).备用图(1)求二次函数的解析式和直线BD 的解析式;(2)点P 是直线BD 上的一个动点,过点P 作x 轴的垂线,交抛物线于点M ,当点P 在第一象限时,求线段PM 长度的最大值;(3)在抛物线上是否存在异于B ,D 的点Q ,使△BDQ 中BD 边上的高为2,若存在求出点Q 的坐标;若不存在请说明理由.解:(1)设二次函数的解析式为y=a (x-1)2+4.∵点B (3,0)在该二次函数的图象上, ∴0=a (3-1)2+4,解得:a=-1.∴二次函数的解析式为y=-x 2+2x+3.∵点D 在y 轴上,所以可令x=0,解得:y=3. ∴点D 的坐标为(0,3).设直线BD 的解析式为y=kx+3,把(3,0)代入得3k+3=0,解得:k=-1. ∴直线BD 的解析式为y=-x+3.(2)设点P 的横坐标为m (m>0), 则P (m ,-m+3), M (m ,-m 2+2m+3),PM=-m 2+2m+3-(-m+3)=-m 2+3m=-, PM 最大值为(3)如图,过点Q 作QG ∥y 轴交BD 于点G ,作QH ⊥BD 于点H ,则QH=2设Q(x,-x2+2x+3),则G(x,-x+3),QG=|-x2+2x+3-(-x+3)|=|-x2+3x|.∵△DOB是等腰直角三角形,∴∠3=45°,∴∠2=∠1=45°.∴sin∠1=,∴QG=4.得|-x2+3x|=4,当-x2+3x=4时,Δ=9-16<0,方程无实数根.当-x2+3x=-4时,解得:x1=-1,x2=4,Q1(4,-5),Q2(-1,0).模拟预测1.已知二次函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是(D)A.k<3B.k<3,且k≠0C.k≤3D.k≤3,且k≠02.若点M(-2,y1),N(-1,y2),P(8,y3)在抛物线y=-x2+2x上,则下列结论正确的是(C)A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2解:x=-2时,y1=-x2+2x=-(-2)2+2×(-2)=-2-4=-6,x=-1时,y2=-x2+2x=-(-1)2+2×(-1)=--2=-2,x=8时,y3=-x2+2x=-82+2×8=-32+16=-16.∵-16<-6<-2,∴y3<y1<y2.故选C.3.已知一元二次方程ax2+bx+c=0(a>0)的两个实数根x1,x2满足x1+x2=4和x1·x2=3,则二次函数y=ax2+bx+c(a>0)的图象有可能是()解析:∵x1+x2=4,∴-=4.∴二次函数的对称轴为x=-=2.∵x1·x2=3,=3.当a>0时,c>0,∴二次函数图象交于y轴的正半轴.4.小明在用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x…-2 -1 0 1 2 …y…-6-4 -2-2 -2…根据表格中的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=-4.5.若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为k=0或k=-1.6.抛物线y=-x2+bx+c的图象如图,若将其向左平移2个单位长度,再向下平移3个单位长度,则平移后的解析式为.解析:由题中图象可知,对称轴x=1, 所以- =1,即b=2.把点(3,0)代入y=-x2+2x+c,得c=3.故原图象的解析式为y=-x2+2x+3,即y=-(x-1)2+4,然后向左平移2个单位,再向下平移3个单位,得y=-(x-1+2)2+4-3,即y=-x2-2x. 答案:y=-x2-2x7.如图①,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合),我们把这样的两抛物线L1,L2互称为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有很多条.(1)如图②,已知抛物线L3:y=2x2-8x+4与y轴交于点C,试求出点C关于该抛物线对称轴对称的对称点D的坐标;(2)请求出以点D为顶点的L3的“友好”抛物线L4的解析式,并指出L3与L4中y同时随x增大而增大的自变量的取值范围;(3)若抛物线y=a1(x-m)2+n的任意一条“友好”抛物线的解析式为y=a2(x-h)2+k,请写出a1与a2的关系式,并说明理由.解:(1)∵抛物线L3:y=2x2-8x+4,∴y=2(x-2)2-4.∴顶点为(2,-4),对称轴为x=2,设x=0,则y=4,∴C(0,4).∴点C关于该抛物线对称轴对称的对称点D的坐标为(4,4).(2)∵以点D(4,4)为顶点的L3的友好抛物线L4还过点(2,-4),∴L4的解析式为y=-2(x-4)2+4.∴L3与L4中y同时随x增大而增大的自变量的取值范围是2≤x≤4.(3)a1=-a2,理由如下:∵抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上, ∴可以列出两个方程由①+②,得(a1+a2)(m-h)2=0,∴a1=-a2.。
教学时间 课题 《二次函数》的小结与复习 课时
教学媒体
教 学 目 标
知识 技能
1.梳理本章知识,构建知识网络,掌握二次函数的定义、图象及性质,理解抛
物线的平移规律,会用待定系数法求二次函数解析式.
2.理解二次函数与一元二次方程、一元二次不等式之间的关系,能运用二次函数解决实际问题。
过程 方法 培养学生梳理知识、归纳总结的能力,进一步感受数形结合的数学思想,通过一题多解,训练学生思维的灵活性,提高综合解题能力.
情感 态度
在知识的梳理中让学生感受数学的简洁美,激发学生主动参与,让学生在探究、克服困难的过程中感受数学学习的快乐.
教学重点 本章知识结构梳理及其应用。
二次函数的图象、性质及其应用. 教学难点
灵活运用二次函数性质解决实际问题。
教学过程设计
教学程序及教学内容 一、复习导入
1. 比较下列二次函数的图象特征:开口方向、对称轴、顶点坐标,最值情况,函数单调性等。
2ax y =,y =ax 2+k ,y =a (x+h )2,k m x a y ++=2)(,y=ax 2+bx+c
二次函数y=ax 2
+bx+c 的图象的对称轴为x=-a
b
2 ,最值为y=a b ac 442-
2.二次函数解析式的求法:一般式与顶点式
一般式:)0(2
≠++=a c bx ax y 条件:抛物线上任意三点 顶点式:k m x a y ++=2
)(条件:顶点+抛物线上任意一点
二、自主学习
1.二次函数(1)(2)y x x =--的一般式是 ,二次项系数,一次项系数,常数项分别
是 。
2、抛物线()2
1252
y x =-
-+的顶点坐标是 ,对称轴是 ,开口向_____。
3、抛物线2
ax y =经过点(3,5),则a = ;
4、抛物线如图所示:当x = 时,y =0,当x 时,
y >0;当x 时,y <0;
5、函数 y =x 2
+bx +3 的图象经过点(-1, 0),则 b = 。
6、二次函数 y =(x -1)2
+2,∵a , ∴当 x = 时,y 有最 值是 。
7、函数 y =1
2
(x -1)2+3,当 x 时,函数值 y 随 x 的增大而增大, 当 x
时,函数值 y 随 x 的增大而减小。
8、将 y =x 2-2x +3 化成 y =a (x+m)2+k 的形式,则 y = 。
9、若点 A ( 2, m) 在函数 y =x 2-1 的图象上,则 A 点的坐标是 。
10、抛物线 y =2x 2+3x -4 与 y 轴的交点坐标是 。
11、请写出一个以(2, 3)为顶点,且开口向上的二次函数 12、将抛物线 y =2x 2
向下平移 2 个单位,所得的抛物线的解析式为
13、把抛物线y=3x 2先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式是 14、把抛物线y =
122
12
-+x x 先向 平移 个单位,再向 平移 个单位的2
3212--=
x x y
三、合作探究
1.若函数23)1(1
2
+--=+x x m y m
为二次函数,则m 的值为 .
2.用配方法将二次函数241222
+-=x x y 化为顶点式为 ,它的开口向 ,顶点坐标是 ,对称轴是 ,当x _____时, y 随着x 的增大而增大,当x _____时,y 随着x 的增大而减小,当x = 时,函数y 有最 值为 .
3.对于抛物线2
2x y -=:
(1)把它向上平移5个单位,得到抛物线=y ; (2)把它向右平移3个单位,得到抛物线=y ;
(3)把它向下平移5个单位,再向左平3个单位,得到抛物线=y .
4. 如图是二次函数c bx ax y ++=2图像的一部分,其对称轴是1-=x ,且过点(-3,0),下列说法:①0<abc ;②02=-b a ;③024<++c b a ;④若),2
5
(),,5(21y y -是抛物线上两点,则
21y y >,其中说法正确的是( )
A .①②
B .②③
C . ①②④
D .②③④
5.抛物线c bx ax y ++=2
的部分图象如图所示,请根据图象回答: (1)当x _____ 时, y =0; (2)当 _____ 时, y >0;(3)当 _____ 时, y <0.
第5
第4
6.求出上面第5题中的二次函数的解析式,你能想出几种方法呢?
四、成果展示
1.定义:一般地,形如 (a 、b 、c 是常数,a ≠ )的函数叫做二次函数.
2. 二次函数的图象和性质:
抛物线
2
ax y =
k ax y +=2
()2
h x a y -=
()k
h x a y +-=2
c bx ax y ++=2
开口方向 当a >0时,开口向 ; 当a <0时,开口向 . 顶点坐标 对称轴
最
值 a >0
a <0
增减性
a >0 在对称轴左侧,y 随x 的增大而
在对称轴右侧,y 随x 的增大而 a <0
在对称轴左侧,y 随x 的增大而
在对称轴右侧,y 随x 的增大而
【点拨】注意2ax y =、k ax y +=2、()2
h x a y -=是()k h x a y +-=2
的特殊情况,要结合函数
图象理解二次函数的有关性质.
3.二次函数的平移:
k ax y +=2
2ax y = ()k h x a y +-=2
()2
h x a y -=
【点拨】二次函数的平移,先把c bx ax y ++=2
化为()k h x a y +-=2
,当h 为正.向右(x 轴正.
【拓展一】:将原抛物线x 轴下方的图象变换成它关于x 轴对称的图形,求所得图象的函数解析式. 【拓展二】:m 是什么实数时,方程 m x =--3)2(32恰有三个互不相等的实数根? 2. 例2:如图,抛物线)0(22
3
2
≠--=a x ax y 的图象与x 轴交于A 、B 两点,与y 轴交于C 点,已知A 点坐标为(-1,0). (1)求抛物线的解析式;
(2)若点M 是线段BC 下方的抛物线上一点,求△MBC 的面积的最大值,并求出此时M 点的坐标.
第二问解题思路如下:
【分析一】:从“形”的角度分析,如图1,由h BC S MBC ⨯=
∆2
1
,要求面积的最大值,需要使h 取最大值,即点M 到BC 的距离最大,作一条平行于BC 的直线l ,当直线l 与抛物线有且只有一个公共点时,该点就是点M ,具体解法略. 【分析二】: 从“函数”的角度分析,设M )22
3
21,
(2--m m m ,求出MBC S ∆关于m 的函数关系式,从而求出最值.如图2,基于“补全图形”思考,过点M 、B 分别作y 轴、x 轴垂线交于点E ,与y 轴垂足为点D ,则
m m S S S S S BEM CDM OBC OBED MBC 42+-=---=∆∆∆∆矩形,具体解法略.
【分析三】: 从“函数”的角度分析,设M )22
3
21,
(2--m m m ,求出MBC S ∆关于m 的函数关系式,从而求出最值.如图3,基于“分割图形”思考,过点M 作MH ⊥x 轴,垂足为点G ,交BC 于
点N ,则m m y y MN S S S M N BMN CMN MBC 4)(222
+-=-==+=∆∆∆,具体解法略.
备用图
3.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m。
(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)
(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;
(3)若球一定能越过球网,又不出边界,求h的取值范围。
六、课堂总结
我的收获有………我感兴趣的是…………我的疑惑有………………
七、布置作业
P56练习T4、5、6、8. 教材练习册
八、板书设计
《二次函数》的小结与复习
九、反思与回顾。