数学第一章集合1.2子集全集补集学案无答案苏教版必修
- 格式:doc
- 大小:150.50 KB
- 文档页数:3
2019-2020年高中数学1.2子集、全集、补集教学案(无答案)苏教版必修1二、教学目标1、了解集合之间的包含关系的含义;2、理解子集、真子集的概念;3、了解全集的意义,理解补集的概念;4、了解空集的含义。
三、教学重点子集与空集的概念;全集与补集的概念;用Venn图表达集合间的关系。
四、教学难点弄清元素与集合、集合与集合之间的关系。
五、教学过程1、情境设置:复习元素与集合的关系观察下列各组集合,A与B之间具有怎样的关系?如何用语言来表述这种关系?(1)A={-1,1},B={-1,0,1,2};(2)A=N,B=R;(3)A={x|x为丹阳人 },B={x|x为中国人}(4) A={x|x>3}, B={x|3x-6>0}.(5)A={正方形},B={四边形}.2、探索研究:(一)子集的概念:。
符号表示:。
图形表示:(二)集合与集合之间的“相等”关系;(书中思考题)(三)空集的概念及性质(四)真子集的概念练习:下列表示是否正确:(1)a{a}; (2){a}∈{a,b}; (3){a,b}{b,a};(4){-1,1}{-1,0,1}; (5) Φ{-1,1}.小结:属于与包含于的区别。
3、例题讲解例1:写出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。
结合练习1思考:一个集合A有n个元素,则它有多少个子集?多少个真子集?例2:A={x2+x-4, 3x2+3x-4,-2},B={-2,2},若BA,求x*例3 :(1)、设A={x|2<x<3},B={x|x<a},若AB,则a的取值范围为。
(2)、已知集合P={x|x2+x-6=0},Q={x|ax+1=0}满足QP,求a所取的一切值组成的集合。
.例4:下列各组的三个集合中,哪两个集合之间具有包含关系?(1)S={-2,-1,1,2},A={-1,1},B={-2,2};(2)S=R,A={x|x≤0,x∈ R},B= {x|x>0,x∈ R}(3)S={x|x为地球人},A= {x|x为中国人},B={x|x为外国人}。
§1.2 .2 子集、真子集(预习部分)一、教学目标了解全集的意义,理解补集的概念二、教学重点全集、补集的含义三、教学难点求集合的补集四、教学过程(一)、创设情境,引入新课下列各组的3个集合中,哪2个集合之间具有包含关系?(1){}{}{}2,2-=B-S=A-,1,12,1,1,=,2-(2){}{}R=≤==,0|,>,0,|∈BxS∈xRxxARxx(3){}{}{},S|x|==|=,x为地球人x为中国人为外国人AxxxB(二)、推进新课1.全集:2.补集文字语言:;符号语言:;图形语言:3.补集性质(三)、预习巩固见必修一教材第9页练习2,3,第10页练习5第一章集合§1.2.2 全集、补集(课堂强化) (四)、典型例题题型一 求给定集合的补集例1.不等式组{012063>-≤-x x 的解集为A ,U=R ,试求A 及A C U ,并把它们分别表示在数轴上.例2. 已知{}{}{},10,9,8,7,6,8,7,6,5,4,5,4,3,2,1==B =A A C U 求B C U题型 二 补集的性质的应用例3. 1.已知{}{}2,1,,2,122-=+=x A x x U ,{}6=A C U ,求实数x 的值. 2.已知全集{}{}a x x A <≤=≤≤=1|,5x 1|x U ,若{}5x 2|x A C U ≤≤=, 则=a题型三 已知集合之间的包含关系求参数的取值范围例4. 设全集{}{}0|,1|,<+=>==a x x B x x A R U ,B 是A C R 的真子集,求实数a 的取值范围.变1 :若A C R B ⊆,求实数a 的取值范围.变2:若{}1|≥=x x A 呢?B 是A C R 的真子集,求实数a 的取值范围. 变3:{}21|≤<=x x A 呢?B 是A C R 的真子集,求实数a 的取值范围.(五)、 随堂练习1. 已知{}{}22|,20|≤≤-=<≤=x x U x x A ,求A C U .2. 已知{}{}a x x P x x U <<=<<-=1|,51|,{}11|≤<-=x x P C U ,求a 的取值范围.3. 设{}4,3,2,1=U 且{}0|2=++=n mx x x A ,若{}3,1=A C U ,求m,n 的值.4. 已知全集{}{}{}5,7,2,32,3,22=+=-+=A C a A a a U U ,求a 的值.(六)、 课堂小结(七)、课后作业课本第18页第6,7,8题。
子集、全集、补集(一)教学目标:使学生理解子集、真子集概念,会判断和证明两个集合包含关系,会判断简单集合的相等关系;通过概念教学,提高学生逻辑思维能力,渗透等价转化思想;渗透问题相对论观点. 教学重点:子集的概念,真子集的概念.教学难点:元素与子集,属于与包含间的区别;描述法给定集合的运算.教学过程:Ⅰ.复习回顾1.集合的表示方法列举法、描述法2.集合的分类有限集、无限集由集合元素的多少对集合进行分类,由集合元素的有限、无限选取表示集合的方法.故问题解决的关键主要在于寻求集合中的元素,进而判断其多少.Ⅱ.讲授新课[师]同学们从下面问题的特殊性,去寻找其一般规律.[生]通过观察上述集合间具有如下特殊性(1)集合A的元素1,2,3同时是集合B的元素.(2)集合A中所有大于3的元素,也是集合B的元素.(3)集合A中所有正方形都是集合B的元素.(4)A中没有元素,而B中含有一个元素0,自然A中“元素”也是B中元素.(5)所有直角三角形都是三角形,即A中元素都是B中元素.(6)集合A中元素A、B都是集合B中的元素.[师]由上述特殊性可得其一般性,即集合A都是集合B的一部分.从而有下述结论.A B[师]请同学们各自举两个例子,互相交换看法,验证所举例子是否符合定义.[师]当集合A不包含于集合B,或集合B不包含集合A时,则记作A B(或B A).如:A={2,4},B={3,5,7},则A B.[师]依规定,空集∅是任何集合子集.请填空:∅_____A(A为任何集合).[生]∅⊆A[师]由A ={正三角形},B ={等腰三角形},C ={三角形},则从中可以看出什么规律? [生]由题可知应有A ⊆B ,B ⊆C.这是因为正三角形一定是等腰三角形,等腰三角形一定是三角形,那么正三角形也一定是三角形.故A ⊆C.[师]从上可以看到,包含关系具有“传递性”.(1)任何一个集合是它本身的子集[师]如A ={9,11,13},B ={20,30,40},那么有A ⊆A ,B ⊆B.师进一步指出:如果A ⊆B ,并且A ≠B ,则集合A 是集合B 的真子集.这应理解为:若A ⊆B ,且存在b ∈B ,但b ∉A ,称A 是B 的真子集.A 是B 的真子集,记作A B (或B A )真子集关系也具有传递性若A B ,BC ,则A C.那么_______是任何非空集合的真子集.[生]应填∅2.例题解析[例1]写出{a 、b }的所有子集,并指出其中哪些是它的真子集.分析:寻求子集、真子集主要依据是定义.解:依定义:{a ,b }的所有子集是∅、{a }、{b }、{a ,b },其中真子集有∅、{a }、{b }. 注:如果一个集合的元素有n 个,那么这个集合的子集有2n 个,真子集有2n -1个. [例2]解不等式x -3>2,并把结果用集合表示.解:由不等式x -3>2知x >5所以原不等式解集是{x |x >5}[例3](1)说出0,{0}和∅的区别;(2){∅}的含义Ⅲ.课堂练习1.已知A ={x |x <-2或x >3},B ={x |4x +m <0},当A ⊇B 时,求实数m 的取值范围.分析:该题中集合运用描述法给出,集合的元素是无限的,要准确判断两集合间关系.需用数形结合.解:将A 及B 两集合在数轴上表示出来要使A ⊇B ,则B 中的元素必须都是A 中元素即B 中元素必须都位于阴影部分内那么由x <-2或x >3及x <-m 4 知 -m 4<-2即m >8 故实数m 取值范围是m >82.填空:{a } {a },a {a },∅ {a },{a ,b } {a },0 ∅,{0} ∅,1 {1,{2}},{2} {1,{2}},∅ {∅}Ⅳ.课时小结1.能判断存在子集关系的两个集合谁是谁的子集,进一步确定其是否是真子集.2.清楚两个集合包含关系的确定,主要靠其元素与集合关系来说明.Ⅴ.课后作业(一)课本P10习题1.2 1,2补充:1.判断正误(1)空集没有子集()(2)空集是任何一个集合的真子集()(3)任一集合必有两个或两个以上子集()(4)若B⊆A,那么凡不属于集合a的元素,则必不属于B ()分析:关于判断题应确实把握好概念的实质.解:该题的5个命题,只有(4)是正确的,其余全错.对于(1)、(2)来讲,由规定:空集是任何一个集合的子集,且是任一非空集合的真子集.对于(3)来讲,可举反例,空集这一个集合就只有自身一个子集.对于(4)来讲,当x∈B时必有x∈A,则x∉A时也必有x∉B.2.集合A={x|-1<x<3,x∈Z},写出A的真子集.分析:区分子集与真子集的概念.空集是任一非空集合的真子集,一个含有n个元素的子集有2n,真子集有2n-1个.则该题先找该集合元素,后找真子集.解:因-1<x<3,x∈Z,故x=0,1,2即a={x|-1<x<3,x∈Z}={0,1,2}真子集:∅、{1}、{2}、{0}、{0,1}、{0,2}、{1,2},共7个3.(1)下列命题正确的是()A.无限集的真子集是有限集B.任何一个集合必定有两个子集C.自然数集是整数集的真子集D.{1}是质数集的真子集(2)以下五个式子中,错误的个数为()①{1}∈{0,1,2} ②{1,-3}={-3,1} ③{0,1,2}⊆{1,0,2}④∅∈{0,1,2} ⑤∅∈{0}A.5B.2C.3D.4(3)M={x|3<x<4},a=π,则下列关系正确的是()A.a MB.a∉MC.{a}∈MD.{a}M解:(1)该题要在四个选择支中找到符合条件的选择支.必须对概念把握准确,并不是所有有限集都是无限集子集,如{1}不是{x|x=2k,k∈Z}的子集,排除A.由于∅只有一个子集,即它本身,排除B.由于1不是质数,排除D.故选C.(2)该题涉及到的是元素与集合,集合与集合关系.①应是{1}⊆{0,1,2},④应是∅⊆{0,1,2},⑤应是∅⊆{0}故错误的有①④⑤,选C.(3)M={x|3<x<4},a=π因3<a<4,故a是M的一个元素.{a}是{x|3<x<4}的子集,那么{a}M.选D.4.判断如下a与B之间有怎样的包含或相等关系:(1)A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z}(2)A={x|x=2m,m∈Z},B={x|x=4n,n∈Z}解:(1)因A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z},故A、B都是由奇数构成的,即A=B.(2)因A={x|x=2m,m∈Z},B={x|x=4n,n∈Z},又 x =4n =2·2n在x =2m 中,m 可以取奇数,也可以取偶数;而在x =4n 中,2n 只能是偶数.故集合A 、B 的元素都是偶数.但B 中元素是由A 中部分元素构成,则有B A .评述:此题是集合中较抽象题目.注意其元素的合理寻求.5.已知集合P ={x |x 2+x -6=0},Q ={x |ax +1=0}满足Q P ,求a 所取的一切值. 解:因P ={x |x 2+x -6=0}={2,-3}当a =0时,Q={x |ax +1=0}=∅,Q P 成立.又当a ≠0时,Q ={x |ax +1=0}={-1a}, 要Q P 成立,则有-1a =2或-1a =-3,a =-12 或a =13. 综上所述,a =0或a =-12 或a =13评述:这类题目给的条件中含有字母,一般需分类讨论.本题易漏掉a =0,ax +1=0无解,即Q 为空集情况.而当Q =∅时,满足Q P .6.已知集合A ={x ∈R |x 2-3x +4=0},B ={x ∈R |(x +1)(x 2+3x -4=0},要使A P ⊆B ,求满足条件的集合P .解:由题A ={x ∈R |x 2-3x +4=0}=∅B ={x ∈R |(x +1)(x 2+3x -4)=0}={-1,1,-4}由A P ⊆B 知集合P 非空,且其元素全属于B ,即有满足条件的集合P 为:{1}或{-1}或{-4}或{-1,1}或{-1,-4}或{1,-4}或{-1,1,-4}评述:要解决该题,必须确定满足条件的集合P 的元素.而做到这点,必须化简A 、B ,充分把握子集、真子集的概念,准确化简集合是解决问题的首要条件.7.已知A ⊆B ,A ⊆C ,B ={0,1,2,3,4},C ={0,2,4,8},则满足上述条件的集合A 共有多少个?解:因A ⊆B ,A ⊆C ,B ={0,1,2,3,4},C ={0,2,4,8},由此,满足A ⊆B ,有∅,{0},{1},{2},{3},{4},{0,1},{0,2},{2,3},{2,4},{0,3},{0,4},{1,2},{1,3},{1,4},{3,4},{0,2,4},{0,1,2},{0,1,3},{0,1,4},{1,2,3},{1,2,4},{2,3,4},{0,3,4},{0,1,2,3},{1,2,3,4},{0,1,3,4},{0,2,3},{1,3,4},{0,1,2,4},{0,2,3,4},{0,1,2,3,4},共25=32个.又满足A ⊆C 的集合A 有∅,{0},{2}{4},{8},{0,2},{0,4},{0,8}{2,4},{2,8},{4,8},{0,2,4},{0,2,8},{0,4,8},{2,4,8},{0,2,4,8},共24=8×2=16个.其中同时满足A ⊆B ,A ⊆C 的有8个∅,{0},{2},{4},{0,2},{0,4},{2,4},{0,2,4},实际上到此就可看出,上述解法太繁.由此得到解题途径.有如下思路:题目只要A 的个数,而未让说明A 的具体元素,故可将问题等价转化为B 、C 的公共元素组成集合的子集数是多少.显然公共元素有0、2、4,组成集合的子集有23=8 (个)8.设A ={0,1},B ={x |x ⊆A },则A 与B 应具有何种关系?解:因A ={0,1},B ={x |x ⊆A }故x 为∅,{0},{1},{0,1},即{0,1}是B 中一元素.故A ∈B.评注:注意该题的特殊性,一集合是另一集合的元素.9.集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},(1)若B ⊆A ,求实数m 的取值范围. (2)当x ∈Z 时,求A 的非空真子集个数.(3)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.解:(1)当m +1>2m -1即m <2时,B =∅满足B ⊆A .当m +1≤2m -1即m ≥2时,要使B ≤A 成立,需⎩⎨⎧m +1≥-22m -1≤5,可得2≤m ≤3 综上m ≤3时有B ⊆A(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5}所以,A 的非空真子集个数为:28-2=254(3)∵x ∈R ,且A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},又没有元素x 使x ∈A 与x ∈B 同时成立.则①若B =∅即m +1>2m -1,得m <2时满足条件.②若B =∅,则要满足条件有:⎩⎨⎧m +1≤2m -1m +1>5 或⎩⎨⎧m +1≤2m -12m -1<2解之m >4 综上有m <2或m >4评述:此问题解决:(1)不应忽略∅;(2)找A 中的元素;(3)分类讨论思想的运用.(二)1.预习内容:课本P 92.预习提纲:(1)求一个集合补集应具备的条件.(2)能正确表示一个集合的补集.子集、全集、补集(一)1.判断正误(1)空集没有子集()(2)空集是任何一个集合的真子集()(3)任一集合必有两个或两个以上子集()(4)若B⊆A,那么凡不属于集合a的元素,则必不属于B ()2.集合A={x|-1<x<3,x∈Z},写出A的真子集.3.(1)下列命题正确的是()A.无限集的真子集是有限集B.任何一个集合必定有两个子集C.自然数集是整数集的真子集D.{1}是质数集的真子集(2)以下五个式子中,错误的个数为()①{1}∈{0,1,2} ②{1,-3}={-3,1} ③{0,1,2}⊆{1,0,2}④∅∈{0,1,2} ⑤∅∈{0}A.5B.2C.3D.4(3)M={x|3<x<4},a=π,则下列关系正确的是()A.a MB.a∉MC.{a}∈MD.{a}M4.判断如下a与B之间有怎样的包含或相等关系:(1)A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z}(2)A={x|x=2m,m∈Z},B={x|x=4n,n∈Z}5.已知集合P={x|x2+x-6=0},Q={x|ax+1=0}满足Q P,求a所取的一切值.6.已知集合A={x∈R|x2-3x+4=0},B={x∈R|(x+1)(x2+3x-4=0),要使A P⊆B,求满足条件的集合P.7.已知A⊆B,A⊆C,B={0,1,2,3,4},C={0,2,4,8},则满足上述条件的集合A 共有多少个?8.设A={0,1},B={x|x⊆A},则A与B应具有何种关系?9.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},(1)若B⊆A,求实数m的取值范围. (2)当x∈Z时,求A的非空真子集个数.(3)当x∈R时,没有元素x使x∈A与x∈B同时成立,求实数m的取值范围.子集、全集、补集(二)教学目标:使学生了解全集的意义,理解补集的概念;通过概念教学,提高学生逻辑思维能力和分析、解决问题能力;渗透相对的观点.教学重点:补集的概念.教学难点:补集的有关运算.教学过程:Ⅰ.复习回顾1.集合的子集、真子集如何寻求?其个数分别是多少?2.两个集合相等应满足的条件是什么?Ⅱ.讲授新课[师]事物都是相对的,集合中的部分元素与集合之间关系就是部分与整体的关系.请同学们由下面的例子回答问题:即为如图阴影部分由此借助上图总结规律如下:S2.全集如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,记作U.[师]解决某些数学问题时,就可以把实数集看作全集U,那么有理数集Q的补集C U Q 就是全体无理数的集合.举例如下:请同学们思考其结果.例(1)解:C S A={2}评述:主要是比较A及S的区别.例(2)解:C S B={直角三角形或钝角三角形}评述:注意三角形分类.例(3)解:C S A=3评述:空集的定义运用.例(4)解:a2+2a+1=5,a=-1± 5评述:利用集合元素的特征.例(5)解:利用文恩图由A及C U A先求U={-1,0,1,2,4},再求B={1,4}.例(6)解:由题m2+2m-3=5且|m+1|=3解之m=-4或m=2例(7)解:将x=1、2、3、4代入x2-5x+m=0中,m=4或m=6当m=4时,x2-5x+4=0,即A={1,4}又当m=6时,x2-5x+6=0,即A={2,3}故满足题条件:C U A={1,4},m=4;C U B={2,3},m=6.评述:此题解决过程中渗透分类讨论思想.Ⅲ.课堂练习课本P10练习1,2,3,4Ⅳ.课时小结1.能熟练求解一个给定集合的补集.2.注意一些特殊结论在以后解题中的应用.Ⅴ.课后作业(一)课本P10习题1.2 3,43.解:因有一组对边平行的四边形是梯形.故S集合是由梯形、平行四边形构成,而A ={x|x是平行四边形},那么C S A={x|x是梯形}.补充:1.(1)若S={1,2,3},A={2,1},则C S A={2,3} ()(2)若S={三角形},A={直角三角形},则C S A={锐角或钝角三角形} ()(3)若U={四边形},A={梯形},则C U A={平行四边形} ()(4)若U={1,2,3},A=∅,则C U A=A ()(5)若U={1,2,3},A=5,则C U A=∅()(6)若U={1,2,3},A={2,3},则C U A={1} ()(7)若U是全集且A⊆B,则C U A⊆C U B ()解:紧扣定义,利用性质求解相关题目.(2)(5)(6)正确,其余错误.在(1)中,因S={1,2,3},A={2,1},则C S A={3}.(2)若S={三角形},则由A={直角三角形}得C S A={锐角或钝角三角形}.(3)由梯形及平行四边形构成的图形集合不一定是四边形的全部.如既不是梯形,也不是平行四边形.(4)因U={1,2,3},A=∅,故C U A=U.(5)U={1,2,3},A=5,则C U A=∅.(6)U={1,2,3},A={2,3},则C U A={1}.(7)若U是全集且A=B,则C U A⊇C U B.评述:上述题目涉及补集较多,而补集问题解决前提必须考虑全集,故一是先看全集U,二是由A找其补集,应有A∪(C U A)=U.2.填空题(1)A={x∈R|x≥3},U=R,C U A=_____________________.(2)A={x∈R|x>3},U=R,C U A=_____________________.(3)已知U中有6个元素,C U A=∅,那么A中有_______个元素.(4)U=R,A={x|a≤x≤b},C U A={x|x>9或x<3=,则a=_______,b=_________ 解:由全集、补集意义解答如下:(1)由U=R及A={x|x≥3},知C U A={x|x<3=(可利用数形结合).对于(2),由U=R 及A={x|x>3},知C U A={x|x≤3},注意“=”成立与否.对于(3),全集中共有6个元素,A的补集中没有元素,故集合A中有6个元素.对于(4),全集为R因A={x|a≤x≤B},其补集C U A ={x |x >9或x <3},则A =3,B =9.3.已知U ={x ∈N |x ≤10},A ={小于10的正奇数},B ={小于11的质数},求C U A 、C U B . 解:因x ∈N ,x ≤10时,x =0、1、2、3、4、5、6、7、8、9、10A ={小于10的正奇数}={1,3,5,7,9},B ={小于11的质数}={2,3,5,7},那么C U A ={0,2,4,6,8,10},C U B ={0,1,4,6,8,9,10}.4.已知A ={0,2,4,6},C U A ={-1,-3,1,3},C U B ={-1,0,2},用列举法写出B . 解:因A ={0,2,4,6},C U A ={-1,-3,1,3},故U =A ∪(C U A )={0,1,2,3,4,6,-3,-1}而C U B ={-1,0,2},故B ={-3,1,3,4,6}.5.已知全集U ={2,3,a 2-2a -3},A ={2,|a -7|},C U A ={5},求a 的值.解:由补集的定义及已知有:a 2-2a -3=5且|a -7|=3,由a 2-2a -3=5有a =4或a =-2,当a =4时,有|a -7|=3,当a =-2时|a -7|=9(舍)所以符合题条件的a =4评述:此题和第4题都用C U A ={x |x ∈5,且x ∉A },有U 中元素或者属于A ,或者属于C U A .二者必居其一,也说明集合A 与其补集相对于全集来说具有互补性,这一点在解题过程中常会遇到,但要针对全集而言.6.定义A -B ={x |x ∈A ,且x ∉B },若M ={1,2,3,4,5},N ={2,4,8},求N -M 的表达式.分析:本题目在给出新定义的基础上,应用定义解决问题.要准确把握定义的实质,才能尽快进入状态.解:由题所给定义:N -M ={x |x ∈N ,且x ∉M }={8}评述:从所给定义看:类似补集但又区别于补集,A -B 与C A B 中元素的特征相同,后者要求B ⊆A .而前者没有这约束,问题要求学生随时接受新信息,并能应用新信息解决问题.7.已知集合M ={x 2+x -2=0},N ={x |x <a },使M C R N 的所有实数a 的集合记为A ,又知集合B ={y |y =-x 2-4x -6},试判断A 与B 的关系.分析:先找M 中元素,后求B 中元素取值范围.解:因x 2+x -2=0的解为-2、1,即M ={-2,1},N ={x |x <a },故C R N ={x |x ≥a },使M C R N 的实数a 的集合A ={a |a ≤-2},又y =-x 2-4x -6=-(x +2)2-2≤-2那么B ={y |y ≤-2},故A =B8.已知I =R ,集合A ={x |x 2-3x +2≤0},集合B 与C R A 的所有元素组成全集R ,集合B 与C R A 的元素公共部分组成集合{x |0<x <1或2<x <3},求集合B .解:因a ={x |x 2-3x +2≤0}={x |1≤x ≤2},所以C R A ={x |x <1或x >2}B 与C R A 的所有元素组成全集R,则A ⊆B .B 与C R A 的公共元素构成{x |0<x <1或2<x <3},则{x |0<x <1或2<x <3}⊆B在数轴上表示集合B 为A 及{x |0<x <1或2<x <3}的元素组成,即B ={x |0<x <3}.评述:研究数集的相互关系时,可将题设通过数轴示意,借助直观性探究,既易于理解.又能提高解题速度.上面提到的所有元素与公共元素是后面将要研究的交集、并集,就是B ∪C R A =R B A ⊆⇒,B ∩C R A ={x |0<x <1或2<x <3}.9.设U ={(x ,y )|x ,y ∈R },A ={(x ,y )|y -3x -2=1},B ={(x ,y )|y =x +1},求C U A 与B 的公共元素.解:a ={(x ,y )|y =x +1,x ≠2},它表示直线y =x +1去掉(2,3)的全体,从而C U A ={(2,3)},而B ={(x ,y )|y =x +1}表示直线y =x +1上的全体点的集合.如图所示,C U A与B 的公共元素就是(2,3).评述:关于点集问题通常将其转化为直角坐标平面上的图形的问题来加以研究可以得到直观形象,简捷明了的效果.(二)1.预习内容:课本P 10~P 112.预习提纲:(1)交集与并集的含义是什么?能否说明?(2)求两个集合交集或并集时如何借助图形.子集、全集、补集(二)1.(1)若S={1,2,3},A={2,1},则C S A={2,3} ()(2)若S={三角形},A={直角三角形},则C S A={锐角或钝角三角形} ()(3)若U={四边形},A={梯形},则C U A={平行四边形} ()(4)若U={1,2,3},A=∅,则C U A=A ()(5)若U={1,2,3},A=5,则C U A=∅()(6)若U={1,2,3},A={2,3},则C U A={1} ()(7)若U是全集且A⊆B,则C U A⊆C U B ()2.填空题:(1)A={x∈R|x≥3},U=R,C U A=_____________________.(2)A={x∈R|x>3},U=R,C U A=_____________________.(3)已知U中有6个元素,C U A=∅,那么A中有_______个元素.(4)U=R,A={x|a≤x≤b},C U A={x|x>9或x<3},则a=_______,b=_________ 3.已知U={x∈N|x≤10},A={小于10的正奇数},B={小于11的质数},求C U A、C U B.4.已知A={0,2,4,6},C U A={-1,-3,1,3},C U B={-1,0,2},用列举法写出B.5.已知全集U={2,3,a2-2a-3},A={2,|a-7|},C U A={5},求a的值.6.定义A-B={x|x∈A,且x∉B},若M={1,2,3,4,5},N={2,4,8},求N-M的表达式.7.已知集合M={x2+x-2=0},N={x|x<a},使M C R N的所有实数a的集合记为A,又知集合B ={y |y =-x 2-4x -6},试判断A 与B 的关系.8.已知I =R ,集合A ={x |x 2-3x +2≤0},集合B 与C R A 的所有元素组成全集R ,集合B 与C R A 的元素公共部分组成集合{x |0<x <1或2<x <3},求集合B .9.设U ={(x ,y )|x ,y ∈R },A ={(x ,y )|y -3x -2=1},B ={(x ,y )|y =x +1},求C U A 与B 的公共元素.。
1.2.1 子集课堂导学三点剖析一、正确理解子集、真子集的概念,准确掌握集合之间包含与相等关系【例1】 写出满足{a,b}A ⊆{a,b,c,d}的所有集合A.思路分析:由题设的包含关系知,一方面A 是集合{a,b,c,d}的子集,与此同时集合{a,b}又是A 的真子集,故A 中必含有元素a 、b,而c 、d 两个元素至少含有一个.解:满足条件的集合A 有{a,b,c},{a,b,d},{a,b,c,d}.温馨提示正确理解有关符号是解决此题的关键.本题是利用子集和真子集的定义解题,根据元素个数来进行分类讨论.二、运用集合间的相互关系解题【例2】 如果S={x|x=2n+1,n ∈Z},T={x|x=4k ±1,k ∈Z},那么( )A.S ⊆TB.T ⊆SC.S=TD.S ≠T解法一:由2n+1=⎩⎨⎧-=-=+.12,14,2,14k n k k n k (k ∈Z),所以S=T.解法二:S 为奇数集,而T 中元素是奇数,故T ⊆S ;又任取x ∈S ,则x=2n+1,当n 为偶数2k 时,x=4k+1∈T ,其中k ∈Z,当n 为奇数2k-1时,x=4k-1∈T ,故S ⊆T ,从而S=T. 答案:C温馨提示利用元素的特征来研究集合元素的构成,从而确定集合之间的关系是解集合问题的常用方法.三、有关子集性质的综合应用【例3】 若集合A={x|x 2+x-6=0},B={x|mx+1=0},且B A,求m 的值.思路分析:解带字母参数的问题,若满足题意的情况不唯一,一般都要对参数或主元素进行分类讨论.解:A={x|x 2+x-6=0}={-3,2},∵B A,当B=∅时,m=0适合题意.当B ≠∅时,方程mx+1=0的解为x=-m 1,则-m 1=-3或-m 1=2, ∴m=31或m=-21. 综上可知,所求m 的值为0或31或-21. 温馨提示此题中B A,一定不要忘记B 可以是空集,此种情况决不能丢掉.各个击破类题演练 1满足{1,2}A ⊆{1,2,3,4,5}的集合A 的个数为( )A.4个B.6个C.7个D.8个解析:根据题意求集合A 的个数可以转化为求集合{3,4,5}的非空子集的个数,即为23-1=7,故选C.答案:C变式提升 1已知集合A 中有m 个元素,若在A 中增加一个元素,则它的子集个数将增加_________个. 解析:子集个数应增加2m+1-2m =2m .答案:2m类题演练 2集合M={x|x=2k +41,k∈Z},N={x|x=4k +21,k∈Z},则( ) A.M=N B.M N C.M N D.M∩N=∅解析:M 中,x=2k +41=42k +41;N 中,x=4k +21=41+k +41.只要看42k 与41+k的关系即可,显然{42k }{41+k }.答案:B变式提升 2用适当的符号(∉、∈、=、、)填空.(1)0_________{0},0__________∅,∅__________{0};(2)∅_________{x|x 2+1=0,x∈R},{0}_________{x|x 2+1=0,x∈R}.答案:(1)∈ ∉ (2)=类题演练 3集合M={x|x 2+2x-a=0},若∅M ,则实数a 的范围是( )A.a ≤-1B.a ≤1C.a ≥-1D.a ≥1解:∅M ,即方程x 2+2x-a=0有至少一实数解,故Δ=22-4(-a)≥0,即a ≥-1.答案:C变式提升 3已知集合S={(x,y)|x-y=1},T={(x,y)|x+y=3},那么M={x|x ∈S,且x ∈T}为() A.x=2,y=1 B.(2,1) C.{2,1} D.{(2,1)}解析:由⎩⎨⎧=+=-,3,1y x y x 得⎩⎨⎧==,1,2y x 故选D.答案:D。
第2课时全集、补集1.了解全集与空集的意义,理解补集的含义.(重点)2.能在给定全集的基础上求已知集合的补集.(难点)[基础·初探]教材整理补集、全集的概念阅读教材P9思考至例3,完成下列问题.1.补集(1)定义:设A⊆S,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记为∁S A(读作“A在S中的补集”).(2)符号表示∁S A={x|x∈S,且x∉A}.(3)图形表示:图1222.全集如果集合S包含我们所要研究的各个集合,那么这时S可以看做一个全集,全集通常记作U.1.判断(正确的打“√” ,错误的打“×”)(1)一个集合的补集中一定含有元素.( )(2)研究A在U中的补集时,A必须是U的子集.( )(3)一个集合的补集的补集是其自身.( )【答案】(1)×(2)√(3)√2.U={x|-1<x<2},集合A={x|0<x<2},则∁U A=________.【解析】根据补集的定义,所求为在U中但不在A中的元素组成的集合,所以∁U A={x|-1<x≤0}.【答案】{x|-1<x≤0}[小组合作型](1)已知集合U={x|-2≤x≤3},集合A={x|-1<x<0或2<x≤3},则∁U A等于________;(2)已知集合U={x∈N|x≤10},A={小于10的正奇数},B={小于11的素数},则∁U A =__________,∁U B=________.【精彩点拨】(1)利用数轴将集合表示出来再求补集;(2)利用列举法表示出全集U,集合A,B,再求A,B的补集.【自主解答】(1)在数轴上表示出全集U,集合A,如图所示,根据补集的概念可知∁U A ={x|-2≤x≤-1或0≤x≤2}.(2)U={0,1,2,3,4,5,6,7,8,9,10},因为A={小于10的正奇数}={1,3,5,7,9},所以∁U A={0,2,4,6,8,10}.因为B={小于11的素数}={2,3,5,7},所以∁U B={0,1,4,6,8,9,10}.【答案】(1){x|-2≤x≤-1或0≤x≤2}(2){0,2,4,6,8,10} {0,1,4,6,8,9,10}1.求补集∁U A的关键是确定全集U及集合A的元素.常见补集的求解方法有:(1)列举求解.适用于全集U和集合A可以列举的简单集合.(2)画数轴求解.适用于全集U和集合A是不等式的解集.(3)利用Venn图求解.2.补集是以全集为前提建立的,即A一定是U的子集,∁U A也一定是U的子集,求解有关问题时,一定要充分利用这种包含关系.[再练一题]1.已知全集U={x|x≥-3},集合A={x|-2<x≤4},则∁U A=________.【解析】将全集U,集合A表示在数轴上,如图所示.∴∁U A={x|-3≤x≤-2或x>4}.【答案】{x|-3≤x≤-2或x>4}[探究共研型]探究1 若M U U【提示】由Venn图可知,若M⊆N,∁U M⊇∁U N.反之,若∁U M⊇∁U N,则M⊆N,即M⊆N⇔∁U M⊇∁U N.探究2 若M⊆N,针对M应考虑的两种情况是什么?【提示】两种情况是M=∅和M≠∅.已知全集U=R,集合A={x|-2≤x≤5},B={x|a+1≤x≤2a-1}且A⊆∁U B,求实数a的取值范围.【精彩点拨】首先应对B是否为空集进行讨论,得出∁U B,然后再利用A⊆∁U B得关于a的不等式求解即可.【自主解答】若B=∅,则a+1>2a-1,∴a<2.此时∁U B=R,∴A⊆∁U B;若B≠∅,则a+1≤2a-1,即a≥2,此时∁U B={x|x<a+1,或x>2a-1},由于A⊆∁U B,如图,则a+1>5,∴a>4,∴实数a的取值范围为a<2或a>4.解决此类问题应注意以下几点:(1)空集作为特殊情况,不能忽略;(2)数形结合方法更加直观易懂,尽量使用;(3)端点值能否取到,应注意分析.[再练一题]2.设全集U=R,M={x|x<2},N={x|x≤a},若∁U M∁U N,则a的取值范围是________.【解析】因为∁U M={x|x≥2},∁U N={x|x>a},于是由∁U M∁U N,得a<2,所以a的取值范围是a<2.【答案】a<21.设集合U={1,2,3,4,5},B={3,4,5},则∁U B=________.【解析】根据补集的定义∁U B={x|x∈U且x∉B}={1,2}.【答案】{1,2}2.若全集U=R,集合A={x|x≥1},则∁U A=________.【解析】A={x|x≥1},∴∁U A={x|x<1}.【答案】{x|x<1}3.已知全集U={x|-4≤x<5},集合A={x|-3<x≤2},则∁U A=________.【解析】∁U A={x|-4≤x≤-3,或2<x<5}.【答案】{x|-4≤x≤-3,或2<x<5}4.设S={x∈N|0≤x≤4},A={x∈N|0<x<4},则∁S A=________.【解析】S={0,1,2,3,4},A={1,2,3},∴∁S A={0,4}.【答案】{0,4}5.全集U=R,A={x|3≤x<10},B={x|2<x≤7}.(1)求∁U A,∁U B;(2)若集合C={x|x>a},A⊆C,求a的取值范围.【解】(1)∵A={x|3≤x<10},B={x|2<x≤7},∴借助于数轴知∁U A={x|x<3,或x≥10},∁U B={x|x≤2,或x>7}.∴a的取值范围为{a|a<3}.。
1.2子集、全集、补集学习目标:1.了解集合之间的包含、相等关系的含义;理解子集、真子集的概念;能利用Venn 图表达集合间的关系;了解全集与空集的含义.2.类比实数的大小关系引入集合的包含与相等关系.3.从分析具体的集合入手,通过对集合及其元素之间关系的分析,得到子集与真子集的概念.4.渗透特殊到一般的思想,注意利用Vene图,从“形”的角度帮助分析.5.通过概念教学,提高学生逻辑思维能力,渗透等价转化思想;渗透问题相对论观点. 教学重点:子集与空集的概念;用Venn图表达集合间的关系.教学难点:弄清元素与子集、属于与包含之间的区别.教学方法:尝试指导法教学过程:一、情境设置1.复习元素与集合的关系——属于与不属于的关系,填以下空白:⑴0 N;⑶-1.5 R2.类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(板书课题:子集、全集、补集)二、学生活动问题1.观察下列各组集合,A与B具有怎样的关系?如何用数学语言来表达这种关系?⑴A={-1,1}, B={-1,0,1,2}⑵A=N,B=R⑶A={x|x为高一⑶班的男生},B={y|y为高一⑶班的团员}⑷A={x|x为高一年级的男生},B={y|y为高一年级的女生}生:⑴、⑵集合A是集合B的部分元素构成的集合,⑶A中有些元素在B中,有些元素不在B中,⑷集合A与集合B没有相同元素三、建构数学1.集合与集合之间的“包含”关系;子集的定义:如果集合A的任何一个元素都是集合B的元素,则称集合A是集合B的子集(subset),记为A⊆B或B⊇A,读作:A包含于(is contained in)集合B”,或“集合B包含(contains)集合A”.用Venn图表示两个集合间的“包含”关系A⊆B或B⊇A问题2.⑴A⊆A;⑵Φ⊆A;⑶Φ⊆Φ.生:根据集合子集的定义,上面三个式子都成立.任何一个集合是它本身的子集,空集是任何集合的子集.S B A 问题3. A ⊆B 与B ⊇A 能否同时成立?你能举出一个例子吗?如:A ={1,2,3},B ={3,2,1}或A =B =R.2.集合与集合之间的 “相等”关系;若A ⊆B 或B ⊇A ,则A =B.3.真子集的概念若集合A ⊆B ,存在元素x ∈B 且x ∉A ,则称集合A 是集合B 的真子集(proper subset )。
1.2 子集、全集、补集课堂导学三点剖析一、运用补集的概念解题【例1】设集合A={|2a-1|,2},B={2,3,a2+2a-3},且A={5},求实数a的值.解:由符号A,知A B,由A={5},知5∈B且5A,所以a2+2a-3=5,即a=2或-4.当a=2时,|2a-1|=3,这时A={3,2},B={2,3,5},所以A={5},适合题意,所以a=2.当a=-4时,|2a-1|=9,这时A={2,9},B={2,3,5},A B,所以A无意义,a=-4应舍去.综上讨论可知a=2.温馨提示在由A={5}求得a=2或a=-4之后,验证其是否符合隐含条件A B是必要的,否则就会把a=-4误认为是本题的答案了.集合是一种数学语言,如果不能从这种语言中破译出它的全部含义,那么就会造成各种各样的错误.二、利用数形结合的思想求补集【例2】已知全集U=R,当集合A分别取下列集合时,写出A的补集.(1)A={x|x>0};(2)A={x|x>2或x≤-1};(3)A={5}.解析:利用数轴求A的补集,(1)A={x|x≤0};(2)A={x|-1<x≤2};(3)A={x>5或x<5}.温馨提示利用数轴的直观性来解决此类抽象的问题具有明显的优势,务必学会这种方法.三、利用补集的性质解题【例3】设全集U(U≠)和集合M、N、P,且M=N,N=P,则M与P的关系是( ) A.M=P B.M=P C.M P D.M P解析:直接利用补集的性质,得M=N=(P)=P.故选B.答案:B温馨提示本题也可利用Venn图求解.其中竖线部分表示N,横线部分表示P.各个击破类题演练 1设U={x|x≤8,且x∈N},A={1,2},B={2,3,6},求A, B.解:由题意知U={0,1,2,3,4,5,6,7,8},所以A={0,3,4,5,6,7,8},B={0,1,4,5,7,8}.变式提升 1定义集合A*B={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},求(1)A*B的子集;(2)A*(A*B).解析:(1)∵A*B={x|x∈A且x B},∴A*B={1,7},∴A*B的子集有,{1},{7},{1,7}.(2)∵A*B={1,7},∴A*(A*B)={3,5}.类题演练 2已知全集U={x|0<x≤10}当集合A取下列集合时,写出A的补集. (1)A={x|1<x<10};(2)A={x|0<x≤2}.答案:(1)A={x|0<x≤1或x=10=;(2)A={x|2<x≤10}.变式提升 2若集合A={x|x>2},当全集U分别取下列集合时,写出 A.(1)U={x|x∈R};(2)U={x|x≥0};(3)U={x|x≥2}.答案:(1)A={x|x≤2};(2)A={x|0≤x≤2};(3)A={x|x=2}.类题演练 3设A、B为任意两个集合,I为全集,且A B,则集合A、B的包含关系为( )A.B AB.B AC.A BD.A B解析:利用韦恩图得出A与B集合的关系A B,故选B.答案:B变式提升 3设全集U和集合A、B、P,A=B,P=B,则A与P的关系是_____________.解析:由韦恩图可知A=P.答案:A=P。
1.2+子集、全集、补集+教学设计-苏教版高中数学必修第一册
一、解答题
(★) 1. 指出下列集合之间的关系:
(1),;
(2),;
(3),;
(4)是等边三角形,是三角形;
(5),.
(★★) 2. (1)写出集合{ a, b, c, d}的所有子集;
(2)若一个集合有n( n∈ N)个元素,则它有多少个子集?多少个真子集?
(★★) 3. 在下列各组集合中, U为全集, A为 U的子集,求 .
(1)已知全集 U={ x| x是至少有一组对边平行的四边形}, A={ x| x是平行四边形};
(2) U= R, A={ x|-1≤ x<2};
(★★) 4. 已知 A={0,2,4,6},,,用列举法写出集合 B. (★★) 5. 已知 M={ x| x>1}, N={ x| x> a}且MÜ N,求实数 a取值范围.
(★★) 6. 已知集合, ,且,求实数的值.
(★) 7. 已知集合,,且,求实数的取值范围.
(★★) 8. 已知集合,若 A中至多只有一个元素,求 a取值范围.
二、填空题
(★★★) 9. 满足的集合 M有 ______ 个.
(★★) 10. 已知集合 M={ x∈ Z|1≤ x≤ m},若集合 M有4个子集,则实数 m的取值范围为________.
(★) 11. 已知全集 U= R,集合 M={ x| x<-2或x≥2},则________.。
1.2子集、全集、补集学习目标:1.了解集合之间的包含、相等关系的含义;理解子集、真子集的概念;能利用Venn 图表达集合间的关系;了解全集与空集的含义.2.类比实数的大小关系引入集合的包含与相等关系.3.从分析具体的集合入手,通过对集合及其元素之间关系的分析,得到子集与真子集的概念.4.渗透特殊到一般的思想,注意利用Vene图,从“形”的角度帮助分析.5.通过概念教学,提高学生逻辑思维能力,渗透等价转化思想;渗透问题相对论观点. 教学重点:子集与空集的概念;用Venn图表达集合间的关系.教学难点:弄清元素与子集、属于与包含之间的区别.教学方法:尝试指导法教学过程:一、情境设置1.复习元素与集合的关系——属于与不属于的关系,填以下空白:⑴0 N;⑶-1.5 R2.类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(板书课题:子集、全集、补集)二、学生活动问题1.观察下列各组集合,A与B具有怎样的关系?如何用数学语言来表达这种关系?⑴A={-1,1}, B={-1,0,1,2}⑵A=N,B=R⑶A={x|x为高一⑶班的男生},B={y|y为高一⑶班的团员}⑷A={x|x为高一年级的男生},B={y|y为高一年级的女生}生:⑴、⑵集合A是集合B的部分元素构成的集合,⑶A中有些元素在B中,有些元素不在B中,⑷集合A与集合B没有相同元素三、建构数学1.集合与集合之间的“包含”关系;子集的定义:如果集合A的任何一个元素都是集合B的元素,则称集合A是集合B的子集(subset),记为A⊆B或B⊇A,读作:A包含于(is contained in)集合B”,或“集合B包含(contains)集合A”.用Venn图表示两个集合间的“包含”关系A⊆B或B⊇A问题2.⑴A⊆A;⑵Φ⊆A;⑶Φ⊆Φ.生:根据集合子集的定义,上面三个式子都成立.任何一个集合是它本身的子集,空集是任何集合的子集.S B A 问题3. A ⊆B 与B ⊇A 能否同时成立?你能举出一个例子吗?如:A ={1,2,3},B ={3,2,1}或A =B =R.2.集合与集合之间的 “相等”关系;若A ⊆B 或B ⊇A ,则A =B.3.真子集的概念若集合A ⊆B ,存在元素x ∈B 且x ∉A ,则称集合A 是集合B 的真子集(proper subset )。
1.2 子集、全集、补集1.了解集合之间包含关系的意义.2.理解子集、真子集的概念.3.了解全集的意义,理解补集的概念.1.子集(1)如果集合A的任意一个元素都是集合B的元素(若a∈A,则a∈B),则称集合A是集合B的子集,记为A B(或B⊇A).读作“集合A包含于集合B”或“集合B包含集合A”.(2)A B可用Venn图表示为:(3)根据子集的定义,我们知道A A,也就是说任何集合是它本身的子集.(4)对于空集,我们规定A,即空集是任何集合的子集(其中A为任意集合,包含).“∈”与“”的区别.符号“∈”表示元素与集合之间的从属关系,即个体与总体之间的关系;而符号“”表示集合与集合之间的包含关系,即部分与总体之间的关系.如0∈{0},但不能写成0{0},但∈{},此时式子左边的“”表示一个元素,又{},此时式子左边的“”表示空集,它是任何一个集合的子集.【做一做1】{1,3}________{1,3,5,6},{x|x是菱形}________{x|x是正方形}.(填“”或“⊇”)答案:⊇2.真子集(1)如果A B,并且A≠B,这时称集合A是集合B的真子集,记为A B(或B A).读作“A真包含于B”或“B真包含A”.如:{1}{1,2,3}.(2)A B可用Venn图表示为:(3)根据真子集的定义,我们知道空集是任何非空集合的真子集,即A(其中A为任意非空集合,不包含).A B有三种可能:①A是;②A是B的一部分,即A B;③A与B是同一集合.【做一做2】用适当的符号表示下列各组对象之间的关系.(1)0__________;(2)0__________{0,1};(3){0,1}__________{1,0};(4){0,1}__________{0,1,-1}.答案:(1)(2)∈(3)=(4)3.补集、全集(1)设A S,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记为S A(读作“A在S中的补集”),即S A={x|x∈S,且x A}.(2)S A可用下图中的阴影部分表示.(3)如果集合S中包含我们所要研究的各个集合,这时S可以看做一个全集,全集通常记作U.在有关补集的运算中,若元素有有限个,则可通过画Venn图来求之;若元素有无限个,如不等式解集的补集,则可通过画数轴而求之.【做一做3-1】已知全集U={x|x≥3},则集合A={x|x>5}的补集U A=________.答案:{x|3≤x≤5}【做一做3-2】已知全集U={不大于10的正整数},写出集合A={x|x=2n,n∈N*,n≤5}的补集U A=__________.答案:{1,3,5,7,9}1.对真子集的理解剖析:(1)集合A是集合B的真子集的前提是集合A必须是集合B的子集.(2)在集合B中至少有一个元素不在集合A中.(3)空集是任何非空集合的真子集.(4)真子集也具有传递性,即若集合C是集合B的真子集,集合B是集合A的真子集,则集合C是集合A的真子集.(5)任何一个集合是它本身的子集,而不是它本身的真子集.2.对补集与全集概念的理解剖析:(1)全集是相对于所研究问题而言的一个相对概念,它含有与所研究问题有关的各个集合的全部元素,因此,全集因研究的问题而异.例如在研究实数问题时,常常把实数集R看做全集,而在研究平面几何问题时,整个平面可以看做一个全集.(2)补集必须要有全集的限制,即必须在全集的基础上才能够求得补集,同一个集合在不同全集下的补集是不同的.例如,设集合A={1,2,3},若全集U={1,2,3,4,5,6,7},则U A={4,5,6,7};若全集U ={1,2,3,4,5,8,9,10},则U A ={4,5,8,9,10}.(3)补集既是集合之间的一种关系,又是集合的一种运算,利用定义可直接求出已知集合的补集,应注意补集符号的书写.(4)求补集必须做到了解“是什么”“为什么”“怎样做”.“是什么”即全集是什么;“为什么”即要了解补集是为了求什么的运算;“怎样做”是在求补集时,如何去求“剩余元素”的集合.题型一 子集的概念【例1】已知集合A ={1,2},B ={1,2,3,4,5},且A M B ,写出满足上述条件的集合M :________________________________________________________________________________________________________________________________________________. 解析:要解决这个问题,关键是要搞清满足条件A M B 的集合M 是由哪些元素组成的.∵AM ,∴M 中一定含有A 的全部元素1,2,且至少含有一个不属于A 的元素.又∵M B ,∴M 中的元素除了含有元素1,2外,还有元素3,4,5中的1个、2个或3个.故求M 的问题转化为研究集合{3,4,5}的非空子集的问题,显然所求集合M 有23-1=7(个),按元素的多少把它们一一列举出来即可.答案:{1,2,3}、{1,2,4}、{1,2,5}、{1,2,3,4}、{1,2,3,5}、{1,2,4,5}、{1,2,3,4,5} 反思:求有限集的子集个数问题,有以下结论:结论1:设集合A ={a 1,a 2,…,a n }(n ∈N *),则集合A 的子集个数为2n;非空子集个数为2n -1;真子集个数为2n -1;非空真子集个数为2n-2.结论2:设m ,n ∈N *,m <n ,B ={a 1,a 2,…,a n },则:①满足条件{a 1,a 2,…,a m }A B的集合A 的个数是2n -m;②满足条件{a 1,a 2,…,a m }A B 的集合A 的个数是2n -m -1; ③满足条件{a 1,a 2,…,a m }A B 的集合A 的个数是2n -m -1; ④满足条件{a 1,a 2,…,a m }AB 的集合A 的个数是2n -m -2.【例2】设集合A ={-1,1},集合B ={x |x 2-2ax +b =0},若B ≠,B A ,求a ,b 的值.分析:由B ≠,B A ,可见B 是A 的非空子集.而A 的非空子集有三个:{-1}、{1}和{-1,1}.所以B 要分三种情况讨论.解:由BA ,知B 中的所有元素都属于集合A .又B ≠,故集合B 有三种情况:B ={-1},B ={1}或B ={-1,1}.当B ={-1}时,B ={x |x 2+2x +1=0},故a =-1,b =1;当B ={1}时,B ={x |x 2-2x +1=0},故a =b =1;当B ={-1,1}时,B ={x |x 2-1=0},故a =0,b =-1.综上所述,可知a ,b 的值为⎩⎨⎧ a =-1,b =1或⎩⎨⎧ a =1,b =1或⎩⎨⎧a =0,b =-1.反思:利用分类讨论的思想,考虑到集合B 的所有可能的情况,这是处理集合与其子集之间关系的常用方法.题型二 补集的概念及运算【例3】已知全集U ={1,3,x 3+3x 2+2x }和它的子集A ={1,|2x -1|},如果UA ={0},则x 的值是多少?分析:思路一:由UA ={0}求得x 的值,再验证其是否符合隐含条件A U 以及是否满足集合元素的互异性.思路二:充分挖掘A U,0∈U,0A 这些隐含条件,利用集合的性质直接列方程组解题.解法一:由U A ={0},得0∈U ,但0A ,U ={0,1,3}.∴x 3+3x 2+2x =0. 解得x 1=0,x 2=-1,x 3=-2.当x 1=0时,|2x 1-1|=1,不满足集合元素的互异性; 当x 2=-1时,|2x 2-1|=3,3∈U ; 当x 3=-2时,|2x 3-1|=5,5U . 因此所求的x 的值为-1.解法二:由已知,有0∈U ,且0A ,因此 ⎩⎨⎧x 3+3x 2+2x =0,|2x -1|=3.解得x =-1. 反思:本题易错点在于不能充分挖掘补集的含义找出集合A 、UA 与全集U 的关系,另外易忽略集合中元素的互异性,不能检验结论的正确性.题型三 巧用数形结合思想【例4】已知集合A ={x |x <3},B ={x |x <a }.(1)若A B ,求a 的取值范围; (2)若BA ,求a 的取值范围;(3)若R A R B ,求a 的取值范围.分析:解与不等式有关的集合问题,通常可以借助数轴来进行探究. 解:(1)因为A B ,所以A 是B 的子集,如图①,可得a ≥3.(2)因为BA ,所以B 是A 的子集,如图②,可得a ≤3.(3)因为R A ={x |x ≥3},R B ={x |x ≥a },R A RB ,所以RA 是RB 的真子集,如图③,可得a <3.反思:本题第(3)小题RARB 等价于AB ,这可从Venn 图来判断.对于补集来说,下列结论必须记牢:S(SA )=A ,S=S ,SS =.1已知集合M ={-1,1},则满足N M 的集合N 的个数是________.解析:若集合M 中的元素有n 个,则集合M 的子集个数为2n. 答案:42下列四种说法:①={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中正确的个数为________.解析:只有④正确. 答案:1 3已知集合M ={x |5<x <10},集合P ={x |x <m +1},且M P ,则实数m 的取值范围是__________.解析:由题意得m +1≥10,所以m ≥9. 答案:m ≥9已知全集U ={2,0,3-a 2},U 的子集P ={2,a 2-a -2},U P ={-1},求实数a 的值. 分析:根据补集的定义及元素的互异性列出方程组,然后解得a 的值. 解:由已知,得-1∈U ,且-1P,0∈P ,因此⎩⎨⎧3-a 2=-1,a 2-a -2=0.解得a =2.因此实数a 的值为2. 5已知集合A ={x |mx +1=0},B ={x |x 2-2x -3=0},且AB ,求m 的值.分析:集合的包含关系在解题中应用广泛,但解题时绝不能忽略A =的情形.解:因为B ={x |x 2-2x -3=0}={-1,3},且A B ,所以A =或A ={-1}或A ={3}.当A =时,m =0;当A ={-1}时,m =1;当A ={3}时,m =-13.综上所述,m 的值为0或1或-13.。
子集、全集、补集
一、教学重、难点
1.教学重点:集合之间包含关系;理解子集、真子集、全集、补集的概念和意义。
2.教学难点:全集、补集的理解
二、新课导航
1.问题展示
(1)子集的定义:如果集合A 的 (若a A ∈,则a B ∈),那么集合A 称为集合B 的子集,记为 或 ,读作“ ”或“ ”;
(2)结论:①A A ⊆(任何一个集合是它本身的子集)
②A ∅⊆规定:(空集是任何集合的子集)
(3)真子集的定义:如果 ,那么集合A 称为集合 B 的真子集,记为 或 ,读作___ ______或 .
(4)结论:一般地,含有n 个不同元素的集合},,,{21n a a a ,子集个数为2n , 真子集个数为_________,非空真子集个数为_________.
(5)补集的定义:设S A ⊆,由 组成的集合称为S 的 子集A 的补集,记为__________,读作:________,即_______ ______.
(6)全集的定义: 全集,全集通常记作U .
2.基础测评
(1)写出集合{}1的所有子集 ;
(2)已知全集{}0,1,2,3,4,5,6U =,写出集合{}0,2,4,6A =的补集U A C = ;
(3)全集U R =,集合{}|1A x x =>的补集是 ;
(4)下列式子正确的序号有
①{}a a ⊆; ②{}{},a a b ∈; ③{}{},,a b b a ⊆④{}1,1-≠⊂{}1,0,1-;
⑤0∈∅;⑥{}0=∅;⑦{}0∅⊆;⑧{}1,1⊂∅-≠
三、合作探究
活动1 {,}.a b 写出集合的所有子集
活动2 下列各组的3个集合中,哪两个集合之间具有包含关系?
(1);
,,,,,,,}2 2{ }1 1{ }2 1 12{-=-=--=B A S (2);
,,},0{},0{R R R ∈>=∈≤==x x x B x x x A S (3)}{}{}{为外国人,为中国人,为地球人x x B x x A x x S ===
思考:观察例2中每一组的3个集合,它们之间还有什么关系?
210,360U x A U A C A x ->⎧=⎨-≤⎩
活动3 不等式组的解集为,试求及,并把它们分别表示在 数轴上。
R
活动4 已知集合}31{},21{≤≤=≤≤+=x x B k x k x A ,根据下列条件分别求出实数k 的取值
范围:
(1)φ=A (2)A B ⊆ (3)B A ⊆
四、提高拓展
1.若集合} ,0{}, ,2 ,0{2a B a A ==,且A B ⊆,则___________,
==B A ;
2.若U Z =,{}|2,A x x k k Z ==∈,{}|21,B x x k k Z ==+∈,则U C A = , U B C = ;
3.若集合}01{},082{2=-==--=ax x B x x x A ,且A B ⊆,则实数=a ________;
4.若集合22{1},{45}A x x a B y y a a ==+==-+,R a ∈,则集合B A ,的关系表示为
______________.
五、知识网点。