重庆一中初2013级2010-2011学年七年级下期末数学试题
- 格式:doc
- 大小:221.42 KB
- 文档页数:11
一、选择题1.点M(2,-3)关于原点对称的点N的坐标是: ( ) A.(-2,-3) B.(-2, 3) C.(2, 3) D.(-3, 2)2.不等式组213312xx+⎧⎨+≥-⎩<的解集在数轴上表示正确的是()A .B .C .D .3.116的平方根是( )A.±12B.±14C.14D.124.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.70°5.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是() A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知{x=1y=2是关于x,y的二元一次方程x-ay=3的一个解,则a的值为()A.1B.-1C.2D.-27.已知关于x,y的二元一次方程组231ax byax by+=⎧⎨-=⎩的解为11xy=⎧⎨=-⎩,则a﹣2b的值是()A.﹣2B.2C.3D.﹣38.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20°B.30°C.40°D.50°9.已知关于x 的不等式组321123x x x a --⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a 的取值范围为( ) A .12a <≤B .12a <<C .12a ≤<D .12a ≤≤10.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm11.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°12.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )A .2B .3C .23 D .3213.在平面直角坐标系中,点B 在第四象限,它到x 轴和y 轴的距离分别是2、5,则点B的坐标为( ) A .()5,2- B .()2,5- C .()5,2- D .()2,5-- 14.过一点画已知直线的垂线,可画垂线的条数是( ) A .0B .1C .2D .无数15.若x <y ,则下列不等式中不成立的是( ) A .x 1y 1-<-B .3x 3y <C .x y 22< D .2x 2y -<-二、填空题16.如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形的两条对边上,如果∠1=27°,那么∠2=______°17.已知二元一次方程2x-3y=6,用关于x的代数式表示y,则y=______.18.如图8中图①,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置得到图②,则阴影部分的周长为_________.19.如图5-Z-11是一块长方形ABCD的场地,长AB=102 m,宽AD=51 m,从A,B 两处入口的中路宽都为1 m,两小路汇合处路宽为2 m,其余部分种植草坪,则草坪的面积为________m2.20.若二元一次方程组3354x yx y+=⎧⎨-=⎩的解为x ay b=⎧⎨=⎩,则a﹣b=______.21.若不等式(a+1)x>a+1的解集是x<1,则a的取值范围是_________.22.不等式3x134+>x3+2的解是__________.23.3的平方根是_________.24.对一个实数x技如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到判断结果是否大于190?“为一次操作,如果操作恰好进行三次才停止,那么x的取值范围是__________.25.如图,直线//a b,点B在直线上b上,且AB⊥BC,∠1=55°,则∠2的度数为______.三、解答题26.诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况,举办了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绩(x为整数,总分100分),绘制了如下尚不完整的统计图表.组别成绩分组(单位:分)频数A50≤x<6040B60≤x<70aC70≤x<8090D80≤x<90bE90≤x<100100合计c根据以上信息解答下列问题:(1)统计表中a=,b=,c=;(2)扇形统计图中,m的值为,“E”所对应的圆心角的度数是 (度);(3)若参加本次大赛的同学共有4000人,请你估计成绩在80分及以上的学生大约有多少人?27.解不等式组523(1)13222x xx x+>-⎧⎪⎨≤-⎪⎩,并求出它的所有整数解的和.28.如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,点P是直线CD上的一个动点。
重庆一中初2010级08—09学年度下期期末考试数学试卷(满分150分,时间120分钟)一.选择题:(每小题4分,共40分)在每小题给出的四个选项中,只有一项符合题目要求,请将正确答案的代号填在下列方格内.1.方程24x x =的解是 ( )A. 4x =B. 2x =C. 4x =或0x =D. 0x =2.下列调查,适合普查的调查方式是 ( )A .某工厂质检员检测某批灯泡的使用寿命B .了解某班学生某次数学测验成绩C .检测某城市的空气质量D .了解夏季冷饮市场上一种饮料的质量情况3.“站得离,看得远”指的是一种什么现象 ( )A .盲区减小,视野范围增大B .盲区增大,视野范围减小C .盲区增大,视野范围增大D .盲区减小,视野范围减小4.下面四幅图是同一标杆不同时刻在太阳光下的影子.按照时间先后顺序正确的是 ( )A.(1)(2)(3)(4)B.(2)(3)(1)(4)C.(1)(4)(2)(3)D.(4)(1)(3)(2)5.已知:如图,ABC ∆中,AD 2DE //BC,,AB 3=则ADE ∆与ABC ∆的面积比为 ( ) A. 2:3 B. 2:5 C. 4:9 D. 4 :256.若函数=k y x的图象经过点(3,-4),则它的图象一定还经过点 ( ) A. (3, 4) . (2, 6)B C. (12, 1)- . (3, 4)D --7.一个家庭有两个孩子,两个孩子均为女孩的概率为 ( )A. 1 1B.2 1C.3 1D.4 8.一元二次方程2410x x --=配方后正确的是 ( )2A. (2)1x -= 2B. (2)5x -= 2C. (4)1x -= 2D. (4)5x -=9.甲、乙两人各打靶5次,甲所中的环数是8,7,9,7,9;乙所中环数的平均数为8x =乙,方差为20.5S =乙.比较甲、乙的成绩,则 ( )A .甲的成绩较稳定B .乙的成绩较稳定C .甲、乙的成绩一样稳定D .甲、乙的成绩无法比较10.如图,梯形ABCD 中,AB //CD, AB a, BD b, CD c ===,A DBC ∠=∠,判断关于x 的一元二次方程220ax bx c ++=的根的情况是 ( )A .有两个相等的实数根B .有两个不相等的实数根C .有两个实数根D .没有实数根二.填空题:(每小题4分,共24分)请将正确答案填在下面对应的表格中.11.若a 2a b , b 3a b+==- . 12.一组数据3,-2,2,0,-2,-4的中位数是 . 13.在函数6y x =的图象上有三个点的坐标分别为1231(3,)(1,)(,),2y y y --、函数值123y y y 、、的大小关系是 .14.若等腰三角形的底和腰的长是方程2320x x -+=的两根,则这个三角形的周长为 .15.已知:如图,矩形DEFG 内接于ABC, AH BC ∆⊥于H ,若AH=4cm ,BC=12cm, ED:EF=1:2,则EF = .16.如图,直线=y x 与反比例函数的图象(0)k y k x=> 相交于点A ,点C 是反比例函数图象上位于点A 右侧的点,BC//OA 交x 轴子点E (2,0),交y 轴于点B ,且点C 的纵坐标为1. 则四边形AOEC 的面积为 .三,解答题(17~20小题每小题6分,21~25小题每小题10分,26小题12分,共86分)17.(6分)解下列方程:(1)210x x --= (2)244170x x +-=18.(6分)左面是一几何体,右面是三视图,请补全右面不完整韵图形,并在括号内填上它属于哪种视图.19.(6分)在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为周一至周四,评委会把同学们上交作品的件数按一天一组分组统计,绘制了扇形统计图和频数分布直方图(如图).根据图中信息填空.(1)本次活动该班共收到 件产品.(2)图中a = ,b = .20.(6分)已知:如图Rt ABC Rt BDC ∆∆~,若AB=3,AC=4.(1)求BD 、CD 的长.(2)过B 作BE DC ⊥于E ,求BE 的长.21.(10分)制作一种产品,需先将材料加热达到60(℃),再进行操作.设该材料温度为y (℃),从加热开始计算的时间为x (min).据了解,该材料加热时,温度y 与时间x 成一次函数关系,停止加热进行操作时,温度y 与时间x 成反比例函数关系(如图).已知该材料在操作加工前的温度为15℃,加热 5min 后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系式.(2)根据工艺要求,当材料的温度低于15℃时,须停止操作. 那么从开始加热到停止操作,共经历了多少时间?22.(10分)如图是两个可以自由转动的转盘,甲转盘被等分成4份,分别标有0,-1,-2,-3四个数字,乙转盘被等分成3份,分别标有1,2,3三个数字.自由转动两个转盘,转盘停止后,计算两个转盘指针所指区域内的数字之和.如果指针恰好指在分界线上,那么重转一次,直到指针指向一个数字为止.(1)请你用画树状图或列表的方法,求出这两数之和为0的概率.(2)小明和小亮想用以上两个转盘做游戏,若两数之和为+1,则小明赢;若两数之和为-1, 则小亮赢.你认为游戏公平吗?请说明理由.23.(10分)如图,马路MN 上有一路灯O ,小明沿着马路MN 散步,当他在距路灯灯柱6米远的B 处时,他在地面上的影长是3米,问当他在距路灯灯柱10米远的D 处时,他的影长DF 是多少米?24.(10分)已知:如图,一次函数的图象1y x =-+与反比例函数=k y x的图象相交于点A 、B ,过A 作AC x ⊥轴于C ,且AOC S 1∆=,连结BC.求:(1)点A 和点B 的坐标.(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.(3)求ABC ∆的面积.25.(10分)随着人们生活水平的提高,对水果的需求量越来越大.某农户决定栽植果树,2005年该农户承包荒山若干亩,投资1万元种果树2000棵,其成活率为90%. 在2008年夏季全部结果时,随意摘下10棵果树的水果,称得重量如下(单位:千克):8、 9、 12、 13、 8、 9、 10、 11、 12、 8.(1)根据样本平均数估计该农户2008年水果的总产量是多少千克?(2)若此水果运到市场出售每千克10元,在果园直接出售每千克8元. 该农户用农用车将水果拉到市场出售,到售完为止,需付出各种费用2万元,若两种出售方式都在相同的时间内售完全部水果,选择哪种出售方式划算?为什么?除去投资成本,2008年该农户纯收入最多可以是多少元?(3)该农户加强果园管理,力争2008年、2009年、2010年三年合计纯收入达546000元,则2009年、2010年平均每年的增长率是多少?26. (12分)如图,已知点A(2,4)在反比例函数(0)k y x x =>的图象S 1上,将双曲线S 1沿y 轴翻折后得到的是反比例函数k y x=-的图象S 2,直线AB 交y 轴于点B(0,3),交x 轴于点C ,P 为线段BC 上的一个动点(点P 与B 、C 不重合),过P 作x 轴的垂线与双曲线S 2在第二象限相交于点E .(1)求双曲线S 2和直线AB 的解析式.(2)设点P 的横坐标为m ,线段PE 的长为h ,求h 与m 之间的函数关系,并写出自变量m 的取值范围.(3)在线段BC 上是否存在点P ,使得P 、E 、A 为顶点的三角形与BOC ∆相似?若存在,请求出点P 的坐标;若不存在,请说明理由.重庆一中初2010级08—09学年度下期期末考试数学试卷答案(满分150分,时间120分钟)一.选择题:(每小题4分,共40分)住每小题给出的四个选项中,只有一项符合题目要求, 请将正确答案的代号填在下列方格内.二.解答题(l7~20小题每小题6分,21~25小题每小题10分,26小题12分,共86分)17.解下列方程:(1)解:这里a=1, b=-1, c=-122b 4ac=(1)41(1)∆=---⨯⨯-14=+5= …………………………1分(1)122x --±∴= …………………………2分1211, =22x x = …………………………3分 (2)解:2441171x x ++=+ 18)12(2=+x …………………………1分21x +=±…………………………2分1211 22x x -+--== …………………………3分 18.补全下列图形,并在括号内填上它属于哪种视图.。
重庆一中初一下数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -3B. 0C. 5D. -5答案:C2. 绝对值等于5的数是:A. 5B. -5C. 5或-5D. 以上都不对答案:C3. 两个负数相加,结果为:A. 正数B. 负数C. 0D. 无法确定答案:B4. 下列哪个分数是最简分数?A. 3/4B. 6/8C. 4/6D. 2/3答案:D5. 下列哪个方程的解是x=2?A. 2x-4=0B. 3x+6=12C. 4x-8=0D. x+3=5答案:A6. 一个数的平方等于9,这个数是:A. 3B. -3C. 3或-3D. 以上都不对答案:C7. 一个数的立方等于-8,这个数是:A. 2B. -2C. 8D. -8答案:B8. 下列哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形答案:C9. 下列哪个图形是中心对称图形?A. 等边三角形B. 矩形C. 菱形D. 扇形答案:B10. 下列哪个图形是旋转对称图形?A. 正方形B. 等边三角形C. 矩形D. 圆答案:D二、填空题(每题3分,共30分)11. 一个数的相反数是-7,这个数是________。
答案:712. 一个数的绝对值是8,这个数是________。
答案:±813. 一个数的倒数是2,这个数是________。
答案:1/214. 一个数的平方根是4,这个数是________。
答案:1615. 一个数的立方根是3,这个数是________。
答案:2716. 两个数的和是10,其中一个数是3,另一个数是________。
答案:717. 两个数的差是6,其中一个数是9,另一个数是________。
答案:318. 一个数的1/3等于4,这个数是________。
答案:1219. 一个数的2/5等于8,这个数是________。
答案:2020. 一个数的3/4等于15,这个数是________。
重庆市一中七年级下册数学期末试卷专题练习(解析版)一、解答题1.如图,直线HD//GE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,∠DAB=120°.(1)如图1,若∠BCG=40°,求∠ABC的度数;(2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小;(3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N 的数量关系,并说明理由.2.已知,AB∥DE,点C在AB上方,连接BC、CD.(1)如图1,求证:∠BCD+∠CDE=∠ABC;(2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系;(3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.3.如图1,已知直线m∥n,AB是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q.我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB.(1)如图1,若∠OPQ=82°,求∠OPA的度数;(2)如图2,若∠AOP =43°,∠BQP =49°,求∠OPA 的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m 和n 上,另一块在两直线之间,四块平面镜构成四边形ABCD ,光线从点O 以适当的角度射出后,其传播路径为 O→P→Q→R→O→P→…试判断∠OPQ 和∠ORQ 的数量关系,并说明理由.4.如图,已知直线12//l l ,点A B 、在直线1l 上,点C D 、在直线2l 上,点C 在点D 的右侧,()80,2,ADC ABC n BE ∠=︒∠=︒平分,ABC DE ∠平分ADC ∠,直线BE DE 、交于点E .(1)若20n =时,则BED ∠=___________;(2)试求出BED ∠的度数(用含n 的代数式表示);(3)将线段BC 向右平行移动,其他条件不变,请画出相应图形,并直接写出BED ∠的度数.(用含n 的代数式表示)5.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,求证:90A C ∠+∠=︒;(2)如图2,过点B 作BD MA ⊥的延长线于点D ,求证:ABD C ∠=∠;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,且BF 平分DBC ∠,BE 平分ABD ∠,若AFC BCF ∠=∠,3BFC DBE ∠=∠,求EBC ∠的度数.二、解答题6.如图,直线//PQ MN ,一副三角板(90ABC CDE ∠=∠=︒,30ACB ∠=︒,60,45EAC DCE DEC ∠=︒∠=∠=︒)按如图①放置,其中点E 在直线PQ 上,点,B C 均在直线MN 上,且CE 平分ACN ∠.(1)求DEQ ∠的度数.(2)如图②,若将三角形ABC 绕B 点以每秒5︒的速度按逆时针方向旋转(,A C 的对应点分别为,F G ).设旋转时间为t 秒(036)t ≤≤. ①在旋转过程中,若边//BG CD ,求t 的值;②若在三角形ABC 绕B 点旋转的同时,三角形CDE 绕E 点以每秒4︒的速度按顺时针方向旋转(,C D 的对应点分别为,H K ).请直接写出当边//BG HK 时t 的值.7.如图1,由线段,,,AB AM CM CD 组成的图形像英文字母M ,称为“M 形BAMCD ”.(1)如图1,M 形BAMCD 中,若//,50AB CD A C ∠+∠=︒,则M ∠=______; (2)如图2,连接M 形BAMCD 中,B D 两点,若150,B D AMC α∠+∠=︒∠=,试探求A ∠与C ∠的数量关系,并说明理由;(3)如图3,在(2)的条件下,且AC 的延长线与BD 的延长线有交点,当点M 在线段BD 的延长线上从左向右移动的过程中,直接写出A ∠与C ∠所有可能的数量关系.8.问题情境(1)如图1,已知//, 125155AB CD PBA PCD ︒︒∠=∠=,,求BPC ∠的度数.佩佩同学的思路:过点P 作//PN AB ,进而//PN CD ,由平行线的性质来求BPC ∠,求得BPC ∠︒;问题迁移(2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合90,//,ACB DF CG AB ︒∠=与FD 相交于点E ,有一动点P 在边BC 上运动,连接, PE PA ,记,PED PAC αβ∠=∠∠=∠.①如图2,当点P 在,C D 两点之间运动时,请直接写出APE ∠与,αβ∠∠之间的数量关系;②如图3,当点P 在,B D 两点之间运动时,APE ∠与,αβ∠∠之间有何数量关系?请判断并说明理由.9.综合与探究(问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动.(1)如图1,EF∥MN,点A、B分别为直线EF、MN上的一点,点P为平行线间一点,请直接写出∠PAF、∠PBN和∠APB之间的数量关系;(问题迁移)(2)如图2,射线OM与射线ON交于点O,直线m∥n,直线m分别交OM、ON于点A、D,直线n分别交OM、ON于点B、C,点P在射线OM上运动.①当点P在A、B(不与A、B重合)两点之间运动时,设∠ADP=∠α,∠BCP=∠β.则∠CPD,∠α,∠β之间有何数量关系?请说明理由;②若点P不在线段AB上运动时(点P与点A、B、O三点都不重合),请你画出满足条件的所有图形并直接写出∠CPD,∠α,∠β之间的数量关系.10.已知,如图①,∠BAD=50°,点C为射线AD上一点(不与A重合),连接BC.(1)[问题提出]如图②,AB∥CE,∠BCD=73 °,则:∠B= .(2)[类比探究]在图①中,探究∠BAD、∠B和∠BCD之间有怎样的数量关系?并用平行....线的性质....说明理由.(3)[拓展延伸]如图③,在射线BC上取一点O,过O点作直线MN使MN∥AD,BE平分OG BE交AD于G点,当C点沿着射∠ABC交AD于E点,OF平分∠BON交AD于F点,//线AD方向运动时,∠FOG的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值.三、解答题11.在ABC中,射线AG平分BAC∠交BC于点G,点D在BC边上运动(不与点G重DE AC交AB于点E.合),过点D作//(1)如图1,点D在线段CG上运动时,DF平分EDB∠.①若100BAC ︒∠=,30C ︒∠=,则AFD ∠=_____;若40B ︒∠=,则AFD ∠=_____; ②试探究AFD ∠与B 之间的数量关系?请说明理由;(2)点D 在线段BG 上运动时,BDE ∠的角平分线所在直线与射线AG 交于点F .试探究AFD ∠与B 之间的数量关系,并说明理由.12.如图①,AD 平分BAC ∠,AE ⊥BC ,∠B=450,∠C=730. (1) 求DAE ∠的度数;(2) 如图②,若把“AE ⊥BC ”变成“点F 在DA 的延长线上,FE BC ⊥”,其它条件不变,求DFE ∠ 的度数;(3) 如图③,若把“AE ⊥BC ”变成“AE 平分BEC ∠”,其它条件不变,DAE ∠的大小是否变化,并请说明理由.13.模型与应用. (模型)(1)如图①,已知AB ∥CD ,求证∠1+∠MEN +∠2=360°.(应用)(2)如图②,已知AB ∥CD ,则∠1+∠2+∠3+∠4+∠5+∠6的度数为 .如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为.(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CM n M n-1的角平分线M n O交于点O,若∠M1OM n=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示)14.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.15.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处. (1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论. ②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【参考答案】一、解答题1.(1)∠ABC =100°;(2)∠ABC >∠AFC ;(3)∠N =90°﹣∠HAP ;理由见解析. 【分析】(1)过点B 作BMHD ,则HDGEBM ,根据平行线的性质求得∠ABM 与∠CBM ,便可求得最后解析:(1)∠ABC =100°;(2)∠ABC >∠AFC ;(3)∠N =90°﹣12∠HAP ;理由见解析. 【分析】(1)过点B 作BM //HD ,则HD //GE //BM ,根据平行线的性质求得∠ABM 与∠CBM ,便可求得最后结果;(2)过B 作BP //HD //GE ,过F 作FQ //HD //GE ,由平行线的性质得,∠ABC =∠HAB +∠BCG ,∠AFC =∠HAF +∠FCG ,由角平分线的性质和已知角的度数分别求得∠HAF ,∠FCG ,最后便可求得结果;(3)过P作PK//HD//GE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果.【详解】解:(1)过点B作BM//HD,则HD//GE//BM,如图1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)过B作BP//HD//GE,过F作FQ//HD//GE,如图2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)过P作PK//HD//GE,如图3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=12∠HAP+12∠PCG,∵∠PCE =180°﹣∠PCG ,CN 平分∠PCE , ∴∠PCN =90°﹣12∠PCG , ∵∠N +∠NPC +∠PCN =180°,∴∠N =180°﹣12∠HAP ﹣12∠PCG ﹣90°+12∠PCG =90°﹣12∠HAP , 即:∠N =90°﹣12∠HAP . 【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.2.(1)证明见解析;(2);(3). 【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2)90ABC F ∠-∠=︒;(3)45︒. 【分析】(1)过点C 作CF AB ∥,先根据平行线的性质可得180ABC BCF ∠+∠=︒,再根据平行公理推论可得CF DE ,然后根据平行线的性质可得180CDE BCF BCD ∠+∠+∠=︒,由此即可得证;(2)过点C 作CG AB ∥,同(1)的方法,先根据平行线的性质得出180ABC BCG ∠+∠=︒,180F BCG BCF ∠+∠+∠=︒,从而可得ABC F BCF ∠-∠=∠,再根据垂直的定义可得90BCF ∠=︒,由此即可得出结论;(3)过点G 作GM AB ,延长FG 至点N ,先根据平行线的性质可得ABH MGH ∠=∠,MGN DFG ∠=∠,从而可得MGH MGN ABH DFG ∠-∠=∠-∠,再根据角平分线的定义、结合(2)的结论可得45MGH MGN ∠=-∠︒,然后根据角的和差、对顶角相等可得BGD CG MGH MGN F ∠-∠=∠-∠,由此即可得出答案.【详解】证明:(1)如图,过点C 作CF AB ∥,180ABC BCF ∴∠+∠=︒,AB DE , CFDE ∴,180CDE DCF ∴∠+∠=︒,即180CDE BCF BCD ∠+∠+∠=︒,CDE BCF BCD ABC BCF ∴∠+∠+∠=∠+∠, BCD CDE ABC ∴∠+∠=∠;(2)如图,过点C 作CG AB ∥,180ABC BCG ∴∠+∠=︒,AB DE , CG DE ∴,180F FCG ∴∠+∠=︒,即180F BCG BCF ∠+∠+∠=︒, F BCG BCF ABC BCG ∴∠+∠+∠=∠+∠, ABC F BCF ∴∠-∠=∠, CF BC ⊥,90BCF ∴∠=︒,90ABC F ∴∠-∠=︒;(3)如图,过点G 作GM AB ,延长FG 至点N ,ABH MGH ∴∠=∠,AB DE , GM DE ∴,MGN DFG ∴∠=∠,BH 平分ABC ∠,FN 平分CFD ∠,11,22ABH AB D C CF DFG ∴∠=∠∠∠=,由(2)可知,90ABC CFD ∠-∠=︒,411225MGH MGN ABH DFG CF B D A C ∠-∠=∠-∠∠∠-==∴︒, 又BGD MGH MGD CGF DGN MGN MGD∠=∠+∠⎧⎨∠=∠=∠+∠⎩, 45MGH BGD GF MGN C ∠-∠∴-==∠∠︒.【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.3.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QPB .可求出∠OPA 的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ 的度数,转化为(1)来解 解析:(1)49°,(2)44°,(3)∠OPQ =∠ORQ【分析】(1)根据∠OPA =∠QP B .可求出∠OPA 的度数;(2)由∠AOP =43°,∠BQP =49°可求出∠OPQ 的度数,转化为(1)来解决问题; (3)由(2)推理可知:∠OPQ =∠AOP +∠BQP ,∠ORQ =∠DOR +∠RQC ,从而∠OPQ =∠ORQ .【详解】解:(1)∵∠OPA =∠QPB ,∠OPQ =82°,∴∠OPA =(180°-∠OPQ )×12=(180°-82°)×12=49°,(2)作PC ∥m ,∵m ∥n ,∴m ∥PC ∥n ,∴∠AOP =∠OPC =43°,∠BQP =∠QPC =49°,∴∠OPQ =∠OPC +∠QPC =43°+49°=92°,∴∠OPA =(180°-∠OPQ )×12=(180°-92°)×1244°,(3)∠OPQ =∠ORQ .理由如下:由(2)可知:∠OPQ =∠AOP +∠BQP ,∠ORQ =∠DOR +∠RQC ,∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.4.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;(2)同(1)中方法求解解析:(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;(2)同(1)中方法求解即可;(3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EF∥AB,由角平分线的定义,平行线的性质,以及角的和差计算即可.【详解】解:(1)当n=20时,∠ABC=40°,过E作EF∥AB,则EF∥CD,∴∠BEF=∠ABE,∠DEF=∠CDE,∵BE平分∠ABC,DE平分∠ADC,∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=60°;(2)同(1)可知:∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=n°+40°;(3)当点B在点A左侧时,由(2)可知:∠BED=n°+40°;当点B在点A右侧时,如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=12∠ABC=n°,∠CDG=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=12∠ABC=n°,∠CDG=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=12∠ABC=n°,∠CDE=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;综上所述,∠BED的度数为n°+40°或n°-40°或220°-n°.【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键.5.(1)见解析;(2)见解析;(3).【分析】(1)先根据平行线的性质得到,然后结合即可证明;(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可; (3)设∠DBE=a ,则∠BFC=3解析:(1)见解析;(2)见解析;(3)︒=∠105EBC .【分析】(1)先根据平行线的性质得到C BDA ∠=∠,然后结合AB BC ⊥即可证明;(2)过B 作//BH DM ,先说明ABD CBH ∠=∠,然后再说明//BH NC 得到CBH C ∠=∠,最后运用等量代换解答即可;(3)设∠DBE =a ,则∠BFC =3a ,根据角平分线的定义可得∠ABD =∠C =2a ,∠FBC =12∠DBC =a +45°,根据三角形内角和可得∠BFC +∠FBC +∠BCF =180°,可得∠AFC =∠BCF 的度数表达式,再根据平行的性质可得∠AFC +∠NCF =180°,代入即可算出a 的度数,进而完成解答.【详解】(1)证明:∵//AM CN ,∴C BDA ∠=∠,∵AB BC ⊥于B ,∴90B ∠=︒,∴90A BDA ∠+∠=︒,∴90A C ∠+∠=︒;(2)证明:过B 作//BH DM ,∵BD MA ⊥,∴90ABD ABH ∠+∠=︒,又∵AB BC ⊥,∴90ABH CBH ∠+∠=︒,∴ABD CBH ∠=∠,∵//BH DM ,//AM CN∴//BH NC ,∴CBH C ∠=∠,∴ABD C ∠=∠;(3)设∠DBE=a,则∠BFC=3a,∵BE平分∠ABD,∴∠ABD=∠C=2a,又∵AB⊥BC,BF平分∠DBC,∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=12∠DBC=a+45°又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180°∴∠BCF=135°-4a,∴∠AFC=∠BCF=135°-4a,又∵AM//CN,∴∠AFC+∠NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,∴135°-4a+135°-4a+2a=180,解得a=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键.二、解答题6.(1)60°;(2)①6s;②s或s【分析】(1)利用平行线的性质角平分线的定义即可解决问题.(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.②分两种情形:如图③中,当解析:(1)60°;(2)①6s;②103s或703s【分析】(1)利用平行线的性质角平分线的定义即可解决问题.(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.②分两种情形:如图③中,当BG∥HK时,延长KH交MN于R.根据∠GBN=∠KRN构建方程即可解决问题.如图③-1中,当BG∥HK时,延长HK交MN于R.根据∠GBN+∠KRM=180°构建方程即可解决问题.【详解】解:(1)如图①中,∵∠ACB=30°,∴∠ACN=180°-∠ACB=150°,∵CE平分∠ACN,∴∠ECN=1∠ACN=75°,2∵PQ∥MN,∴∠QEC+∠ECN=180°,∴∠QEC=180°-75°=105°,∴∠DEQ=∠QEC-∠CED=105°-45°=60°.(2)①如图②中,∵BG∥CD,∴∠GBC=∠DCN,∵∠DCN=∠ECN-∠ECD=75°-45°=30°,∴∠GBC=30°,∴5t=30,∴t=6s.∴在旋转过程中,若边BG∥CD,t的值为6s.②如图③中,当BG∥HK时,延长KH交MN于R.∵BG∥KR,∴∠GBN=∠KRN,∵∠QEK=60°+4t,∠K=∠QEK+∠KRN,∴∠KRN=90°-(60°+4t)=30°-4t,∴5t=30°-4t,∴t=103s.如图③-1中,当BG∥HK时,延长HK交MN于R.∵BG∥KR,∴∠GBN+∠KRM=180°,∵∠QEK=60°+4t,∠EKR=∠PEK+∠KRM,∴∠KRM=90°-(180°-60°-4t)=4t-30°,∴5t+4t-30°=180°,∴t=703s.综上所述,满足条件的t的值为103s或703s.【点睛】本题考查几何变换综合题,考查了平行线的性质,旋转变换,角平分线的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.7.(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.(2)延长BA,DC交于E,解析:(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.(2)延长BA,DC交于E,应用四边形的内角和定理与平角的定义即可解决问题.(3)分两种情形分别求解即可;【详解】解:(1)过M作MN∥AB,∵AB∥CD,∴AB∥MN∥CD,∴∠1=∠A,∠2=∠C,∴∠AMC=∠1+∠2=∠A+∠C=50°;故答案为:50°;(2)∠A+∠C=30°+α,延长BA,DC交于E,∵∠B+∠D=150°,∴∠E=30°,∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;即∠A+∠C=30°+α;(3)①如下图所示:延长BA 、DC 使之相交于点E ,延长MC 与BA 的延长线相交于点F ,∵∠B +∠D =150°,∠AMC =α,∴∠E =30°由三角形的内外角之间的关系得:∠1=30°+∠2∠2=∠3+α∴∠1=30°+∠3+α∴∠1-∠3=30°+α即:∠A -∠C =30°+α.②如图所示,210-∠A =(180°-∠D CM )+α,即∠A -∠DCM =30°-α.综上所述,∠A -∠DCM =30°+α或30°-α.【点睛】本题考查了平行线的性质.解答该题时,通过作辅助线准确作出辅助线l ∥AB ,利用平行线的性质(两直线平行内错角相等)将所求的角∠M 与已知角∠A 、∠C 的数量关系联系起来,从而求得∠M 的度数.8.(1)80;(2)①;②【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数; (2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;解析:(1)80;(2)①APE αβ∠=∠+∠;②APE βα∠=∠-∠【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数;(2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;②过P作PQ∥DF,依据平行线的性质可得∠β=∠QPA,∠α=∠QPE,即可得到∠APE=∠APQ-∠EPQ=∠β-∠α.【详解】解:(1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠B+∠BPG=180°,∠C+∠CPG=180°,又∵∠PBA=125°,∠PCD=155°,∴∠BPC=360°-125°-155°=80°,故答案为:80;(2)①如图2,过点P作FD的平行线PQ,则DF∥PQ∥AC,∴∠α=∠EPQ,∠β=∠APQ,∴∠APE=∠EPQ+∠APQ=∠α+∠β,∠APE与∠α,∠β之间的数量关系为∠APE=∠α+∠β;②如图3,∠APE与∠α,∠β之间的数量关系为∠APE=∠β-∠α;理由:过P作PQ∥DF,∵DF∥CG,∴PQ∥CG,∴∠β=∠QPA,∠α=∠QPE,∴∠APE=∠APQ-∠EPQ=∠β-∠α.【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.9.(1)∠PAF +∠PBN +∠APB =360°;(2)①,见解析;②或【分析】(1)作PC ∥EF ,如图1,由PC ∥EF ,EF ∥MN 得到PC ∥MN ,根据平行线的性质得∠PAF +∠APC =180°,∠解析:(1)∠PAF +∠PBN +∠APB =360°;(2)①CPD αβ∠=∠+∠,见解析;②CPD βα∠=∠-∠或CPD αβ∠=∠-∠【分析】(1)作PC ∥EF ,如图1,由PC ∥EF ,EF ∥MN 得到PC ∥MN ,根据平行线的性质得∠PAF +∠APC =180°,∠PBN +∠CPB =180°,即有∠PAF +∠PBN +∠APB =360°;(2)①过P 作PE ∥AD 交ON 于E ,根据平行线的性质,可得到EPD α∠=∠,CPE β∠=∠,于是CPD αβ∠=∠+∠;②分两种情况:当P 在OB 之间时;当P 在OA 的延长线上时,仿照①的方法即可解答.【详解】解:(1)∠PAF +∠PBN +∠APB =360°,理由如下:作PC ∥EF ,如图1,∵PC ∥EF ,EF ∥MN ,∴PC ∥MN ,∴∠PAF +∠APC =180°,∠PBN +∠CPB =180°,∴∠PAF +∠APC +∠PBN +∠CPB =360°,∴∠PAF +∠PBN +∠APB =360°;(2)①CPD αβ∠=∠+∠,理由如下:如答图,过P 作PE ∥AD 交ON 于E ,∵AD ∥BC ,∴PE ∥BC ,∴EPD α∠=∠,CPE β∠=∠,∴CPD αβ∠=∠+∠②当P 在OB 之间时,CPD αβ∠=∠-∠,理由如下:如备用图1,过P 作PE ∥AD 交ON 于E ,∵AD ∥BC ,∴PE ∥BC ,∴EPD α∠=∠,CPE β∠=∠,∴CPD αβ∠=∠-∠;当P 在OA 的延长线上时,CPD βα∠=∠-∠,理由如下:如备用图2,过P 作PE ∥AD 交ON 于E ,∵AD ∥BC ,∴PE ∥BC ,∴EPD α∠=∠,CPE β∠=∠,∴CPD βα∠=∠-∠;综上所述,∠CPD ,∠α,∠β之间的数量关系是CPD βα∠=∠-∠或CPD αβ∠=∠-∠.【点睛】本题考查了平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.难点是分类讨论作平行辅助线.10.(1);(2),见解析;(3)不变,【分析】(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数;(2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用解析:(1)23︒;(2)BCD A B ∠=∠+∠,见解析;(3)不变, 25FOG ∠=︒【分析】(1)根据平行线的性质求出50A DCE ∠=∠=︒,再求出BCE ∠的度数,利用内错角相等可求出角的度数;(2)过点C 作CE ∥AB ,类似(1)利用平行线的性质,得出三个角的关系;(3)运用(2)的结论和平行线的性质、角平分线的性质,可求出FOG ∠的度数,可得结论.【详解】(1)因为CE ∥AB ,所以50A DCE ∠=∠=︒,B BCE ∠=∠因为∠BCD =73 °,所以23BCE BCD DCE ∠=∠-∠=︒,故答案为:23︒(2)BCD A B ∠=∠+∠,如图②,过点C 作CE ∥AB ,则A DCE ∠=∠,B BCE ∠=∠.因为BCD DCE BCE ∠=∠+∠,所以BCD BAD B ∠=∠+∠,(3)不变,设ABE x ∠=,因为BE 平分ABC ∠,所以CBE ABE x ∠=∠=.由(2)的结论可知BCD BAD ABC ∠=∠+∠,且50BAD ︒∠=,则:502BCD x ∠=︒+.因为MN ∥AD ,所以502BON BCD x ∠=∠=︒+,因为OF 平分BON ∠, 所以1252COF NOF BON x ∠=∠=∠=︒+. 因为OG ∥BE ,所以COG CBE x ∠=∠=,所以2525FOG COF COG x x ∠=∠-∠=+-=︒︒.【点睛】本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系.三、解答题11.(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②1902AFD B ︒∠=+∠,证明见解析;(2)1902AFD B ︒∠=-∠,证明见解析. 【解析】【分析】(1)①根据角平分线的定义求得∠CAG=12∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD 的度数即可;已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG ;由DE//AC ,根据平行线的性质可得∠EDG=∠C ,∠FMD=∠GAC ;即可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C )=12×140°=70°;再由三角形的内角和定理可求得∠AFD=110°;②∠AFD=90°+12∠B ,已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG ;由DE//AC ,根据平行线的性质可得∠EDG=∠C ,∠FMD=∠GAC ;由此可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C )=12×(180°-∠B )=90°-12∠B ;再由三角形的内角和定理可得∠AFD=90°+12∠B ; (2)∠AFD=90°-12∠B ,已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠NDE=12∠EDB ,即可得∠FDM=∠NDE=12∠EDB ;由DE//AC ,根据平行线的性质可得∠EDB=∠C ,∠FMD=∠GAC ;即可得到∠FDM=∠NDE=12∠C ,所以∠FDM +∠FMD =12∠C+12∠BAC=12(∠BAC+∠C )=12×(180°-∠B )=90°-12∠B ;再由三角形外角的性质可得∠AFD=∠FDM +∠FMD=90°-12∠B. 【详解】(1)①∵AG 平分∠BAC ,∠BAC=100°,∴∠CAG=12∠BAC=50°; ∵//DE AC ,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF 平分∠EDB ,∴∠FDM=12∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×140°=70°;∴∠AFD=180°-(∠FDM +∠FMD)=180°-70°=110°;故答案为115°,110°;②∠AFD=90°+12∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=180°-(∠FDM +∠FMD)=180°-(90°-12∠B)=90°+12∠B;(2)∠AFD=90°-12∠B,理由如下:如图,射线ED交AG于点M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠NDE=12∠EDB,∴∠FDM=∠NDE=12∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=12∠C,∴∠FDM +∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=∠FDM +∠FMD=90°-12∠B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.12.(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE=14°,证明详见解析.【分析】(1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE解析:(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.【分析】(1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE的度数.(2)求出∠ADE的度数,利用∠DFE=90°-∠ADE即可求出∠DAE的度数.(3)利用AE平分∠BEC,AD平分∠BAC,求出∠DFE=15°即是最好的证明.【详解】(1)∵∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∴∠BAD=∠CAD=31°,∴∠ADE=∠B+∠BAD=45°+31°=76°,∵AE⊥BC,∴∠AEB=90°,∴∠DAE=90°-∠ADE=14°.(2)同(1),可得,∠ADE=76°,∵FE⊥BC,∴∠FEB=90°,∴∠DFE=90°-∠ADE=14°.(3)DAE∠=14°∠的大小不变.DAE理由:∵ AD平分∠ BAC,AE平分∠BEC∴∠BAC=2∠BAD,∠BEC=2∠AEB∵∠BAC+∠B+∠BEC+∠C =360°∴2∠BAD+2∠AEB=360°-∠B-∠C=242°∴∠BAD+∠AEB=121°∵∠ADE=∠B+∠BAD∴∠ADE=45°+∠BAD∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD)=135°-121°=14°【点睛】本题考查了三角形内角和定理和三角形外角的性质,熟练掌握性质是解题的关键. 13.(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【详解】【模型】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【详解】【模型】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【应用】(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°, 180°(n-1);(3)过点O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠C M n O=∠M n OR∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,∴∠A M1O+∠CM n O=∠M1OM n=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠A M1O,同理∠CM n M n-1=2∠CM n O,∴∠AM1M2+∠CM n M n-1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CM n M n-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.14.(1),理由见解析;(2)当点P在B、O两点之间时,;当点P在射线AM上时,.【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C∠=∠+∠,理由见解析;解析:(1)CPDαβ∠=∠-∠;(2)当点P在B、O两点之间时,CPDαβ∠=∠-∠.当点P在射线AM上时,CPDβα【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【详解】解:(1)∠CPD=∠α+∠β,理由如下:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;当点P在B、O两点之间时,∠CPD=∠α-∠β.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.15.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′解析:(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG )以及(∠C'DE+∠C'ED )和(∠A'HL+∠A'LH ),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE =180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE -∠AED-∠A′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.。
初中数学试卷桑水出品重庆一中初2013级10—11学年度下期末考试数 学 试 题 2011.6同学们注意:本试题共28个小题,满分150分,考试时间120分钟一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将各小题所选答案的标号填写在下表的相应位置上.1、下列各式计算正确的是( )A .8442x x x =+ B .()326x y x y =C .()325xx = D .()853x x x =-⋅-2.下列各式中,不能用平方差公式计算的是( )A.)43)(34(x y y x ---B.)2)(2(2222y x y x +- C.))((a b c c b a +---+ D .))((y x y x -+-3.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546 400 000吨,用科学记数法表示为( )A .5.464×107吨 B .5.464×108吨C .5.464×109吨D .5.464×1010吨4.将图甲中阴影部分的小长方形变换到图乙位置,根据两个图形的面积关系可以得到一个 关于a 、b 的恒等式为( ) A.()222b 2ab a b a +-=-B.()2222b ab a b a ++=+C.()()22b a b -a b a -=+D.()ab a b a a -=-25.柿子熟了从树上自然掉落下来,下面哪一幅图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况( ).6. 如图,在△ABC 中,AC AB =,︒=∠36A ,BD 、CE 分别 是△ABC 、△BCD 的角平分线,则图中的等腰三角形有( ) A 、5个 B 、4个 C 、3个 D 、2个7.如图,在Rt △ABC 中,∠C =90°,以AC 、BC 为直径的半圆面积分别是12.5πcm 2和π5.4cm 2,则Rt △ABC 的面积为( )cm 2.A .24B .30C .48D .60 8.如下图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 交AB 于a 甲乙(第4题)点E ,DF ⊥AC 交AC 于点F .若S △ABC =7,DE =2,AB =4, 则AC =( )A .4B .3C .6D .59. 如下图所示,以OA 为斜边作等腰直角三角形OAB ,再以OB 为斜边在△OAB 外侧作等腰直角三角形OBC ,如此继续,得到8个等腰直角三角形,则图中△OAB 与△OHI 的面积比值是( )A. 32B. 64C. 128D. 256 10. 如图,△ABC 的外角平分线CP 和内角平分线BP 相较于点P ,若∠BPC=35°,则∠CAP=( )A.45°B.50°C.55°D.65° 二、填空题:(本大题共10个小题,每小题3分,共30分)请将每小题的正确答案填入下面的表格中.11.长方形面积是a ab a 6332+-,一边长为3a ,则它的另一边长是 。
重庆一中初一下数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是不等式2x-3>6的解集?A. x>9B. x<9C. x>4.5D. x<4.5答案:C2. 已知a=2,b=3,c=4,那么表达式a+b-c的值是多少?A. 2B. 3C. 1D. 0答案:C3. 计算下列哪个选项是正确的?A. (-3)×(-2)=-6B. (-3)×(-2)=6C. (-3)×(-2)=-9D. (-3)×(-2)=3答案:B4. 一个数的平方是25,那么这个数是多少?A. 5B. -5C. 5或-5D. 以上都不对答案:C5. 一个数的倒数是它本身,这个数是?A. 1B. -1C. 1或-1D. 0答案:C6. 计算下列哪个选项是正确的?A. √16=4B. √16=-4C. √16=±4D. √16=2答案:D7. 一个等腰三角形的底角是60°,那么顶角是多少度?A. 60°B. 120°C. 30°D. 90°答案:B8. 一个数的绝对值是5,那么这个数可以是?A. 5B. -5C. 5或-5D. 以上都不对答案:C9. 下列哪个选项是方程2x+3=7的解?A. x=1B. x=2C. x=3D. x=4答案:A10. 一个数的立方是-8,那么这个数是?A. -2B. 2C. -2或2D. 以上都不对答案:A二、填空题(每题4分,共20分)1. 如果一个数的平方是36,那么这个数是______。
答案:±62. 一个数的绝对值是8,那么这个数可以是______。
答案:8或-83. 一个等腰三角形的底边长为6cm,腰长为5cm,那么这个三角形的周长是______。
答案:16cm4. 计算(-2)×(-3)+(-4)的结果是______。
答案:25. 一个数的立方是27,那么这个数是______。
重庆一中初一下数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是不等式?A. 3x + 2 = 7B. 2x - 3 > 5C. 4x - 6 = 8D. 5x + 3 ≤ 12答案:B2. 计算下列哪个表达式的结果大于0?A. -3 - 2B. 4 + (-2)C. 5 - (-3)D. -7 + 4答案:C3. 一个数的相反数是-5,这个数是:A. 5B. -5C. 0D. 10答案:A4. 计算下列哪个表达式的结果是负数?A. 3 × 2B. (-3) × (-2)C. 3 × (-2)D. (-3) × 25. 下列哪个选项是二次方程?A. x^2 + 2x + 1 = 0B. x^2 - 4x + 4 = 0C. 2x + 3 = 0D. x + 5 = 0答案:B6. 一个数的绝对值是4,这个数可能是:A. 4B. -4C. 4或-4D. 以上都不是答案:C7. 计算下列哪个表达式的结果是0?A. 3 + (-3)B. 2 × 0C. 5 - 5D. 7 ÷ 7答案:C8. 一个数的平方是9,这个数是:A. 3B. -3C. 3或-3D. 以上都不是答案:C9. 计算下列哪个表达式的结果是正数?B. (-2)^2C. -2 × (-2)D. 2 × (-2)答案:B10. 下列哪个选项是等式?A. 3x + 2 > 7B. 2x - 3 = 5C. 4x - 6 ≠ 8D. 5x + 3 ≤ 12答案:B二、填空题(每题3分,共30分)11. 一个数的立方是-8,这个数是 -2 。
12. 计算2 × (-3) + 4的结果是 -2 。
13. 一个数的绝对值是5,这个数可能是±5 。
14. 计算(-3)^2的结果是 9 。
15. 一个数的相反数是-7,这个数是 7 。
2011年重庆一中高2013级高一下期半期考试数 学 试 题 卷2011.5数学试题共4页。
满分150分。
考试时间120分钟。
注意事项:1、答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2、答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3、答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4、所有题目必须在答题卡上作答,在试题卷上答题无效。
一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项符合题目要求的。
1、已知1,,,,16a b c 成等比数列,则正数b 等于( )A 、4B 、8C 、12D 、1722、等差数列{}n a 中,42a =,则7S 等于( )A 、7B 、14C 、18D 、283、若0a b <<,则下列各式正确..的是( ) A 、11a b < B 、11a b a>- C 、a b > D 、22a b <4、不等式2601x x x -->-的解集为( ) A 、{}2,3x x x <->或 B 、{}2,3x x x <-<或1<C 、{}21,3x x x -<<<或1<D 、{}21,3x x x -<<>或5、“1x >”是“21x >”的( )A 、充分而不必要条件B 、必要而不充分条件C 、充分必要条件D 、既不充分也不必要条件6、执行如右图所示的程序框图,若输入x 的值为2,则输出的x 值为( )A 、25B 、24C 、23D 、227、已知各项不为0的等差数列{}n a ,满足23711220a a a -+=,数列{}n b是等比数列,且77b a =,则68b b =( )A 、2B 、4C 、8D 、168、若等比数列的各项均为正数,前n 项的和为S ,前n 项的积为P ,前n 项倒数的和为M ,则有( )A 、s p m =B 、s p m >C 、2n s p m ⎛⎫= ⎪⎝⎭D 、2n s p m ⎛⎫> ⎪⎝⎭9、为响应学校“学雷锋,树新风”活动,高一某班发动同学们捐零花钱,为贫困地区学生买书活动。
重庆一中初2016级13—14学年度上期期末考试数学试题(满分:150分;考试时间:120分钟)一、选择题 (每小题4分,共40分)1.-2013的相反数是()A.12013B.12013C.3102 D.20132. 如图是由几个相同的小正方体搭成的一个几何体,它的左视图为()(第2题图) A B C D3. 下列去括号正确的是 ( )A.()a b c a b c--=-- B.[]22()x x y x x y---+=-+C.2()2m p q m p q--=-+ D.(2)2a b c d a b c d+--=+-+4.为了了解2013年重庆市九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩.下列说法正确的是()A.2013年重庆市九年级学生是总体B.每一名九年级学生是个体C.1000名九年级学生是总体的一个样本D.样本容量是10005.2449x yπ的系数与次数分别为()A.94,7 B.π94,6 C. π4,6 D. π94,4 6. 已知x=2是方程02232=-ax的一个根,则2a-1的值是()A. 3B. 4C. 5D. 67. 下列说法错误..的是()A. 直线没有端点B.两点之间的所有连线中,线段最短C. 0.5°等于30分D.角的两边越长,角就越大8. 如图,将长方形纸片ABCD的角C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部点E处,若FH平分∠BFE,设∠GFH的度数是α,则()A.90180α<< B.090α<<C.90α= D.α随折痕GF位置的变化而变化9. 某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件.设原计划每小时生产x个零件,则所列方程为( )A.()13121060x x=++B.()12101360x x+=+C.60101312x x+-=D.60101213x x+-=ABCDGE H第18题图10.按下面的程序计算:当输入100x =时,输出结果是299;当输入50x =时,输出结果是466;如果输入x 的值是正整数,输出结果是257,那么满足条件的x 的值最多有( )A .1个B .2个C .3个D .4个 二、填空题(每小题4分,共32分)11.四川芦山发生7.0级地震后,一周之内,通过铁路部门已运送救灾物资15810吨. 将15810用科学记数法表示为 .12.如果数轴上的点A 对应的数为-1,那么数轴上与点A 相距3个单位长度的点所对应的有理数为 .13.单位换算:57.37︒ = _______︒ _______′ ______ ". 14.12点15分时,钟表的时针和分针所成夹角是 度. 15.若代数式2245--x x 的值为6,则2522--x x 的值为_________.16.某商品每件的标价是330元,按标价的八折销售仍可获利10%,则这种商品每件的进价为 . 17.已知有理数a 、b 、c 在数轴上的对应点如图所示,那么代数式2-++--b a a c c b 的化简结果是 .18.点O 在直线AB 上,点A 1,A 2,A 3,……在射线OA 上,点B 1, B 2,B 3,……在射线OB 上,图中的每一个实线段和虚线段的长 均为1个单位长度.一个动点M 从O 点出发,以每秒1个单位 长度的速度按如图所示的箭头方向沿着实线段和以点O 为圆心的 半圆匀速运动,即从O →A 1→B 1→B 2→A 2……按此规律, 则动点M 到达A 10点处所需时间为 秒.(结果保留π) 三、解答题(本大题包括19~23题,共5个小题,共42分) 19.计算题(每小题5分,共10分) (1)316(34)124----⨯-(2) ()2223(3)(1)4454⎛⎫⎡⎤---÷-⨯-- ⎪⎣⎦⎝⎭251>是否x 输入31x -计算的值输出结果20.解下列方程(每小题5分,共10分)(1) 44(3)2(9)x x --=- (2)335252--=--x x x21.(本题6分)列方程解应用题一学生队伍以4千米/时的速度从学校出发步行前往某地参加劳动.出发半小时后,学校有紧急通知要传给队长,立即派了一名通讯员骑自行车以14千米/时的速度原路去追,该通讯员要用多少时间才能追上学生队伍?22. (本题8分)先化简,再求值:已知2222(3)[23(52)]xy x x xy x xy -+----,其中x ,y 满足0)3(22=-++y x .23.(本题8分)垃圾的分类处理与回收利用可以减少污染,节省资源. 某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:3025 20 15 10 5数量/吨A 54%B 30%C D 10%A B C D可回收物 Recyclable 厨余垃圾 Kitchen waste有害垃圾 Harmful waste 其它垃圾 Other waste垃 圾 分 类①②③…………(生活垃圾分类统计图1)(生活垃圾分类统计图2)根据图表解答下列问题:(1)请将条形统计图补充完整;(2)在抽样数据中,产生的有害垃圾共吨;(3)调查发现,在可回收物中塑料类垃圾占51,若每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?四、解答题(本大题共4个小题,24、25各 8分,26、27各10分,共36分)24.(本题8分)已知如图, ∠AOB∶∠BOC=3∶2, OD是∠BOC的平分线,OE是∠AOC的平分线,且∠BOE=12°,求∠DOE的度数.25.(本题8分)某数学兴趣小组在用黑色围棋进行摆放图案的游戏中,小雨同学摆放了如下的图案,请根据图中的信息完成下列的问题:(1)填写下表:EDOCBA(个图形中棋子为(3)小雨同学如果继续摆放下去,那么第n个图案就要用颗围棋;(4)如果小雨同学手上刚好有90颗围棋子,那么他按照这种规律从第①个图案摆放下去,是否可以摆放成完整的图案后刚好90颗围棋子一颗不剩?如果可以,那么刚好摆放完成几个完整的图案?如果不行,那么最多可以摆放多少个完整图案,还剩余几颗围棋子?(只答结果,不说明理由)26.列方程解应用题(本题10分):某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的1倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)2(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品.其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售.第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售?27.(本题10分)随着我市经济的快速发展,家庭经济收入不断提高,汽车已越来越多地进入到普通家庭.据重庆市交通部门统计,2010年底我市私人轿车拥有量约为80万辆,2010年底至2012年底我市每年私人轿车拥有量的增长率均为25%.(1)求截止到2012年底我市的私人轿车拥有量约为多少万辆?(2)碳排放是关于温室气体排放的一个总称或简称.目前国内的温室气体污染源中,汽车排放是主要方式之一,关于汽车二氧化碳排放量的计算方法,可以参照互联网上流传的计算公式:二氧化碳排放量(公斤)=油耗消耗数(升)×2.7公斤/升.根据国际上通行的办法,对于那些无法避免而产生的碳排放进行碳补偿,植树是最为普遍的形式.如果以一辆私家车每年行驶1.5万公里,每百公里油耗10升来计算:作为参照,一棵树一年光合作用吸收的二氧化碳大约是18公斤,每一亩地的植树量大约为90棵.根据这一参数,请你计算:一辆私家车每年排放的二氧化碳大约是多少公斤?需要植树多少亩才能抵消这一年开车所产生的二氧化碳对环境的影响?(3)为缓解汽车拥堵状况和环境污染问题,市交通部门拟控制私人轿车总量,要求到2014年底全市私人轿车拥有量最多为158.25万辆.另据估计,从2013年初起,我市此后每年报废的私人轿车数量是上年底私人轿车拥有量的10%.假定从2013年开始,每年新增私人轿车数量相同,请你计算出我市每年新增私人轿车数量最多为多少万辆?命题:谭泽林审题:付黎重庆一中初2016级13—14学年度上期期末考试数学答案一、选择题 (每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,将答案填写在下面方框里)三、解答题(本大题包括19~23题,共5个小题,共42分)19.计算题(每小题5分,共10分)(1)316(34)124----⨯-解:3=16+34124--⨯原式………………2分=16+349--………………3分=9………………5分(2) ()2223(3)(1)4454⎛⎫⎡⎤---÷-⨯-- ⎪⎣⎦⎝⎭原式[]349()4(16)53=-⨯-⨯--………………………2分 49()205=--⨯ ………………………3分 916=+ ………………………4分25= ………………………5分20.解下列方程(每小题5分,共10分)(1) 44(3)2(9)x x --=-(1)4412182x x -+=-解:…………………………2分 4218412x x -+=-- …………………………3分 22x -= …………………………4分1x =- …………………………5分(2)335252--=--x x x 解: 153(2)5(25)45x x x --=-- …………………………2分1536102545x x x -+=-- …………………………3分276x =- …………………………4分38x =- …………………………5分21.解:设通讯员要用x 小时才能追上学生队伍. 根据题意得 …………………………1分1144()2x x =+ …………………………3分102x =15x =解得 …………………………5分答:通讯员要用15小时(或12分钟)才能追上学生队伍. …………………………6分 22. 解:原式=22262[215+6]xy x x xy x xy -+--- …………………………2分 222622+156xy x x xy x xy =-+--+ …………………………3分 2610x xy =-+ …………………………5分221(3)0x y ++-=∴132x y=-=,…………………………6分∴2116()10()322=-⨯-+⨯-⨯原式3152=--1162=-…………………………8分23.解:(1)如图 ··················································································2分(2)3 ···························································································5分(3)3787.051%545000=⨯⨯⨯(吨)答:每月回收的塑料类垃圾可以获得378吨二级原料. ···································8分四、解答题(本大题共4个小题,24、25各 8分,26、27各10分,共36分)24.解:设∠AOB=3x, ∠BOC=2x.则∠AOC=∠AOB+∠BOC=5x. …………1分∵OE是∠AOC的平分线,∴∠AOE=1522AOC x=∠=…………2分BOE AOB AOE∴∠=∠-∠51322x x x=-=………4分∵∠BOE=12°∴1122x=︒24x=︒解得,……………5分∵OD是∠BOC的平分线,1242BOD BOC x∠=∠==︒∴……………7分241236DOE DOB BOE∴∠=∠+∠=︒+︒=︒……………8分25.解:(1) 6 10 (2分)EDOCBA(2) 1326 (4分) (3)2)2)(1(++n n (6分)(4) 不可以,刚好摆放完成11个完整图案,还剩下12个棋子. (8分)26.解:(1)设第一次购进甲种商品x 件,则乙的件数为(1152x +)件,根据题意得 …1分 1223015)60002x x +⨯+=(. …………………………3分解得 150x =. …………………………4分 则1157515902x +=+=(件) (2922)150(4030)901950-⨯+-⨯= (元) ………………………5分答:两种商品全部卖完后可获得1950元利润.(2)设第二次甲种商品的售价为每件y 元,由题意,有()292215040309031950+18010y ⎛⎫-⨯+⨯-⨯⨯= ⎪⎝⎭. …………………8分 解得 y 8.5=. ……………………9分 答:第二次乙种商品是按原价打8.5折销售 ……………………………10分27.解:(1) 280(125%)125⨯+=(万辆) …………………2分∴2012年底我市的私人轿车拥有量约为125万辆(2)一辆私家车每年排放的二氧化碳大约是:1500010 2.7=4050(100⨯⨯公斤) …………………4分 需要植树:4050=2.51890⨯(亩) …………………5分∴一辆私家车每年排放的二氧化碳大约是4050公斤,需要植树2.5亩才能抵消这一年开车所产生的二氧化碳对环境的影响. …………………6分(3)设我市每年新增私人轿车数量最多为x 万辆,根据题意得.[125(110%)](110%)158.25x x ⨯-+-+= …………………8分 整理,得 1.957x =解得 30x = …………………9分∴从2013年开始,我市每年新增私人轿车数量最多为30万辆。
重庆一中初2013级2010-2011年七年级下学期期末数学试题同学们注意:本试题共28个小题,满分150分,考试时间120分钟一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了 代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将各小题所选答案的标号填写在下表的相应位置上.1、下列各式计算正确的是( D )A .8442x x x =+ B .()326x yx y =C .()325xx =D .()853x x x =-⋅-2.下列各式中,不能用平方差公式计算的是( D )A.)43)(34(x y y x ---B.)2)(2(2222y x y x +- C.))((a b c c b a +---+ D .))((y x y x -+-3.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546 400 000吨,用科学记数法表示为( B )A .5.464×107吨 B .5.464×108吨C .5.464×109吨D .5.464×1010吨4.将图甲中阴影部分的小长方形变换到图乙位置,根据两个图形的面积关系可以得到一个 关于a 、b 的恒等式为( ) A.()222b 2ab a b a +-=-B.()2222b ab a b a ++=+C.()()22b a b -a b a -=+D.()ab a b a a -=-25.柿子熟了从树上自然掉落下来,下面哪一幅图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况( ).6. 如图,在△ABC 中,AC AB =,︒=∠36A ,BD 、CE 分别是△ABC 、△BCD的角平分线,则图中的等腰三角形有( )A 、5个B 、4个C 、3个D 、2个7.如图,在Rt △ABC中,∠C =90°,以AC 、BC 为直径的 ( C ) 时间( D ) 时间 ( B )时间 时间( A ) C(第6题)Ba a 甲乙(第4题)半圆面积分别是12.5πcm 2和π5.4cm 2,则Rt △ABC 的面积为( )cm 2. A .24 B .30 C .48 D .608.如下图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 交AB 于点E ,DF ⊥AC 交AC 于点F .若S △ABC=7,DE =2,AB =4,则AC =( )A .4B .3C .6D .5 9. 如下图所示,以OA 为斜边作等腰直角三角形OAB ,再以OB 为斜边在△OAB 外侧作等腰直角三角形OBC ,如此继续,得到8个等腰直角三角形,则图中△OAB 与△OHI 的面积比值是( )A. 32B. 64C. 128D. 256 10. 如图,△ABC 的外角平分线CP 和内角平分线BP 相较于点P ,若∠BPC=35°,则∠CAP =( )A.45°B.50°C.55°D.65°二、填空题:(本大题共10个小题,每小题3分,共30分)请将每小题的正确答案填入下面的表格中.11.长方形面积是a ab a 6332+-,一边长为3a ,则它的另一边长是 。
12.若4a 2+ka +9是一个完全平方式,则k 等于 。
13.已知:9,3xy x y =-=-,则__________y xy x =++223.14.如图,已知AB ∥CD ,BE 平分∠ABC ,∠CDE =150°, 则∠C =__________.15.某楼梯的侧面视图如图所示,其中AB=6.5米,BC=2.5米,90C ∠=°,楼梯的宽度为6米,因某种活动要求铺设红色地毯, 则在AB 段楼梯所铺地毯的面积应为 .16. 小明放假去外地看爷爷,他买的是11点的火车,由于去 的早,小明不小心在候车室睡着了,等他醒来的时候,他从(第15题)BCAA B C F E D 第8题 ABCDE第14题(第9题图) P DC B A第10题镜子中看到背面墙上的电子钟上显示的时间如右图所示,他 吓了一身汗,以为自己错过了火车,同学们,小明到底能不 能赶上11点的火车呢?小明醒来时的正确时间是 。
17.如图a 是长方形纸带,∠DEF =20°,将纸带沿EF 折叠成图b ,再沿BF 折 叠成图c ,则图c 中的∠CFE 的度数是 .18.如图,已知长方体的三条棱AB 、BC 、BD 分别为4,5,2,蚂蚁从A 点出发沿长方体的表面爬行到M 的最短路程的平方..是 。
19.如图所示,AD 和BE 是等边三角形的两条高,其交点为O ,若OD=4,则AD= .20.如图, AE 和CD 分别是△ABC 的边AB 、BC 上的中线,AE 和CD 相交于点G ,GA=5cm ,GD=2cm ,GB=3cm ,则△ABC 的面积为 cm 2.三、解答题:(本大题8个小题,共80分)解答时必须给出必要的演算过程或推理步骤. 21.(作图题,8分)已知点M 在直线l 上,A 、B 是直线l 外的两点,按照下面要求完成作图:(1)过点M 作直线l 的垂线(2)在已作出的垂线上确定一点P ,使得点P 到A 、B 两点的距离相等.(注意:要求用尺规作图,画图必须用铅笔,不要求写作法,但要保留作图痕迹并给出结论)l B AM A D A C B A E A F A AC A C B 图a 图c第18题 OE D C B A第19题 G E D C B A 第20题22.计算或化简(每题5分,共10分): (1)()()3201321313---⎪⎭⎫ ⎝⎛---⨯+π (2))5.0()2()41(54222b a ab b a -÷-⋅23.(本题10分) 化简求值:已知x 、y 满足:0136422=++-+y x y x 求代数式3y)3y)(x (x y)y)(x 3(3x y)(3x 2+--+--+的值.24.(本题10分)如图,Rt △ABC 中,∠ACB=900,D 是AB 上的一点,BD=BC.过D 作AB 的垂线交AC 于点E ,CD 交BE 于点F.求证:BE ⊥CD.F E D CB A25.(本题10分)果农老张进行杨梅科学管理试验.把一片杨梅林分成甲、乙两部分,甲地块用新技术管理,乙地块用老方法管理,管理成本相同.在甲、乙两地块上各随机选取20棵杨梅树,根据每棵树产量把杨梅树划分成A ,B ,C ,D ,E 五个等级(甲、乙的等级划分标准相同,每组数据包括左端点不包括右端点).画出统计图如下:(1)补齐条形统计图,求a 的值及相应扇形的圆心角度数;(2)单棵产量≥80kg 的杨梅树视为良株,分别计算甲、乙两块地的良株率大小 (3)若在甲地块随机抽查1棵杨梅树,求该杨梅树产量等级是B 的概率.(第25765432126.(本题10分)如图,△ACB 和△DCE 都是等腰直角三角形,∠ACB =∠DCE =90°,D 为AB 边上一点,(1)求证:△ACD ≌△BCE; (2) 若AD=12,BD=5, 求DE 的长EDC B A27.(本题10分)小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 分才乘上缆车,缆车的平均速度为180 米/分.设小亮出发x分后行走的路程为y米.图中的折线表示小亮在整个行走过程中y随x的变化关系.(1)小亮行走的总路程是________米,他途中休息了________分.(2)分别求出小亮在休息前和休息后所走的路程段上的步行速度。
(3)当小颖到达缆车终点时,小亮离缆车终点的路程是多少?y/28.(本题12分)在Rt△ABC 中,AC =BC ,∠ACB =90°,D 是AC 的中点,DG⊥AC 交AB 于点G.(1)如图1,E 为线段DC 上任意一点,点F 在线段DG 上,且DE=DF ,连结EF 与 CF ,过点F 作FH ⊥FC ,交直线AB 于点H .①求证:DG=DC②判断FH 与FC 的数量关系并加以证明.(2)若E 为线段DC 的延长线上任意一点,点F 在射线DG 上,(1)中的其他条件不变,借助图2画出图形。
在你所画图形中找出一对全等三角形,并判断你在(1)中得出的结论是否发生改变,(本小题直接写出结论,不必证明).A D图2 GH FE D C BA 图1参考答案同学们注意:本试题共28个小题,满分150分,考试时间120分钟一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了 代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将各小题所选答案的标号填写在下表的相应位置上.二、填空题:(本大题共10个小题,每小题3分,共30分)请将每小题的正确答案填入下21.略22.(1)解:原式=3+(-1)×1-(-2)3……3分 (2) 解:原式=)21(44154422b a b a b a -÷⋅…2分=3-1+8 ……4分 =-2 …5分=10 ……5分23.解:原式=9x 2+6xy+y 2-3(3x 2+3xy-xy-y 2)-(x 2-9y 2) ……3分=9x 2+6xy+y 2-9x 2-6xy+3y 2-x 2+9y 2……4分=-x 2+13y 2……6分 ∵x 2+y 2-4x+6y+13∴(x-2)2+(y+3)2=0∴x=2,y=-3 ......8分 当x=2,y=-3时原式=-4+13×9=113 ……10分 24.证明:∵ED ⊥AB∴∠EDB=900在Rt △ECB 和Rt △EDB 中⎩⎨⎧==DB CB EBEB ∴Rt △ECB ≌Rt △EDB (HL )……6分 ∴∠EBC =∠EBD 又BD=BC∴BF ⊥CD(三线合一)……10分FEDC BA25.解:(1)画图(等级为B 的有6棵)……1分 a%=1-10%-15%-20%-45%=10% ∴a=10 ……2分10%×3600=360……3分∴a 的值为10及相应扇形的圆心角度数为360(2)甲:55%2056=+ ……5分 乙:15%+10%=25% ……7分 (3)103206)(==B P 抽到杨梅产量等级为 ……10分 26.证明:(1)∵∠ACB=∠DCE=900即∠ACD+∠DCB =∠DCB+∠BCE =900∴∠ACD =∠BCE …….2分 在△ACD 和△BCE 中⎪⎩⎪⎨⎧=∠=∠=EC DC BCE ACD BC AC∴△ACD ≌△BCE (SAS ) ……5分 (2)由(1)△ACD ≌△BCE ,得∠CBE =∠CAD BE =AD =12 ……6分∵△ACB 为等腰Rt △, ∠ACB=900∴∠CAB =∠CBA =450∴∠DBE =∠CBA+∠CBE =∠CBA+∠CAB =450+450=900……8分 在Rt △DBE 中,根据勾股定理DE 2=BD 2+BE 2=52+122=132∴DE=13 ……10分 27.解:(1)3600 20 ......2分 (2)小亮休息前的速度为:19506530=(米/分) ......4分 小亮休息后的速度为:36001950558050-=-(米/分) ......6分(3)小颖所用时间:3600210180=(分) ......8分小亮比小颖迟到80-50-10=20(分) ......9分 ∴小颖到达终点时,小亮离缆车终点的路程为:20⨯55=1100(米) ......10分28.证明:(1)①∵AC =BC ,∠ACB =900∴∠A =∠B =450EDCBA第11页 共11页又GD ⊥AC∴∠ADG =900在△ADG 中,∠A+∠ADG+∠AGD =1800∴∠AGD =450∴∠A=∠AGD∴AD=DG ......2分 又D 是AC 中点 ∴AD =DC∴DG =DC ......3分 ②由①DG =DC 又∵DF =DE∴DF-DG =DC-DE即FG =CE ......4分由①∠AGD =450∴∠HGF =1800-450=1350又DE =DF ,∠EDF =900∴∠DEF =450∴∠CEF =1800-450=1350∴∠HGF =∠FEC ......6分 又HF ⊥CF∴∠HFC =900∴∠GFH+∠DFC =1800-900=900又Rt △FDC 中∠DFC+∠ECF =900∴∠GFH =∠ECF ......8分 在△FGH 和△CEF 中HGF FEC GF ECGFH ECF ⎧∠=∠⎪=⎨⎪∠=∠⎩∴△FGH ≌△CEF (ASA )∴FH =FC ......9分(2)图略(10分)△FHG ≌△CFE ......11分 不变,FH=FC ......12分G H F E DCB A图1HG F E DCBA。