圆锥曲线常考题型总结-配有大题练习
- 格式:doc
- 大小:1.30 MB
- 文档页数:14
1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB的交点为Q 。
(1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112||||PC PD PQ +=.2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==⋅ (1)动点N 的轨迹方程;(2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=⋅AB OB OA 且,求直线l 的斜率k 的取值范围.3. 如图,椭圆134:221=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积相等,求直线PD 的斜率及直线CD 的倾斜角.4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||22PM PN -=.记动点P 的轨迹为W .(Ⅰ)求W 的方程;(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅的最小值.5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围;(Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。
6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN +=(1)求点P 的轨迹方程; (2)若2·1cos PM PN MPN-∠=,求点P 的坐标.7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线1222=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3MON π∠=,双曲线的焦距为4。
【2023届新高考必刷】圆锥曲线大题综合1.(2023春·江苏扬州·高三统考开学考试)已知AB为抛物线G:y2=2px(p>0)的弦,点C在抛物线的准线l上.当AB过抛物线焦点F且长度为8时,AB中点M到y轴的距离为3.(1)求抛物线G的方程;(2)若∠ACB为直角,求证:直线AB过定点.2.(2023·江苏泰州·统考一模)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左顶点为A,过左焦点F的直线与C交于P,Q两点.当PQ⊥x轴时,PA=10,△PAQ的面积为3.(1)求C的方程;(2)证明:以PQ为直径的圆经过定点.3.(2023秋·浙江绍兴·高三期末)在平面直角坐标系xOy 中,已知点A (-2,0),B (2,0),直线PA 与直线PB 的斜率之积为-14,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)若直线l :y =kx +m 与曲线C 交于M ,N 两点,直线MA ,NB 与y 轴分别交于E ,F 两点,若EO=3OF ,求证:直线l 过定点.4.(2023秋·浙江·高三期末)已知点A 463,233 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上一点,B 与A 关于原点对称,F 是右焦点,∠AFB =π2.(1)求双曲线的方程;(2)已知圆心在y 轴上的圆C 经过点P (-4,0),与双曲线的右支交于点M ,N ,且直线MN 经过F ,求圆C 的方程.5.(2023春·广东揭阳·高三校考阶段练习)已知抛物线E:y2=2px p>0的焦点为F,点F关于直线y=12x+34的对称点恰好在y轴上.(1)求抛物线E的标准方程;(2)直线l:y=k x-2k≥6与抛物线E交于A,B两点,线段AB的垂直平分线与x轴交于点C,若D6,0,求ABCD的最大值.6.(2023·湖南邵阳·统考二模)已知双曲线C:x2a2-y2b2=10<a10,b的右顶点为A,左焦点F-c,0到其渐近线bx+ay=0的距离为2,斜率为13的直线l1交双曲线C于A,B两点,且AB=8103.(1)求双曲线C的方程;(2)过点T6,0的直线l2与双曲线C交于P,Q两点,直线AP,AQ分别与直线x=6相交于M,N 两点,试问:以线段MN为直径的圆是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.7.(2023春·湖南长沙·高三雅礼中学校考阶段练习)定义:一般地,当λ>0且λ≠1时,我们把方程x2a2+y2b2=λ(a>b>0)表示的椭圆Cλ称为椭圆x2a2+y2b2=1(a>b>0)的相似椭圆.(1)如图,已知F1-3,0,F23,0,M为⊙O:x2+y2=4上的动点,延长F1M至点N,使得MN= MF1,F1N的垂直平分线与F2N交于点P,记点P的轨迹为曲线C,求C的方程;(2)在条件(1)下,已知椭圆Cλ是椭圆C的相似椭圆,M1,N1是椭圆Cλ的左、右顶点.点Q是Cλ上异于四个顶点的任意一点,当λ=e2(e为曲线C的离心率)时,设直线QM1与椭圆C交于点A,B,直线QN1与椭圆C交于点D,E,求AB+DE的值.8.(2023·湖北武汉·统考模拟预测)过坐标原点O 作圆C :(x +2)2+y 2=3的两条切线,设切点为P ,Q ,直线PQ 恰为抛物E :y 2=2px ,(p >0)的准线.(1)求抛物线E 的标准方程;(2)设点T 是圆C 上的动点,抛物线E 上四点A ,B ,M ,N 满足:TA =2TM ,TB =2TN ,设AB 中点为D .(i )求直线TD 的斜率;(ii )设△TAB 面积为S ,求S 的最大值.9.(2023·山东·潍坊一中校联考模拟预测)已知F 为抛物线C :y 2=2px (p >0)的焦点,O 为坐标原点,M 为C 的准线l 上的一点,直线MF 的斜率为-1,△OFM 的面积为1.(1)求C 的方程;(2)过点F 作一条直线l ,交C 于A ,B 两点,试问在l 上是否存在定点N ,使得直线NA 与NB 的斜率之和等于直线NF 斜率的平方?若存在,求出点N 的坐标;若不存在,请说明理由.10.(2023·山东菏泽·统考一模)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点分别为F 1-3,0,F 23,0 ,A 为椭圆C 上一点,△F 1AF 2的面积最大值为3.(1)求椭圆C 的方程;(2)若B 、D 分别为椭圆C 的上、下顶点,不垂直坐标轴的直线l 交椭圆C 于P 、Q (P 在上方,Q 在下方,且均不与B ,D 点重合)两点,直线PB ,QD 的斜率分别为k 1,k 2,且k 2=-3k 1,求△PBQ 面积的最大值.11.(2023·福建泉州·统考三模)已知椭圆C :x 24+y 23=1的左、右顶点分别为A ,B .直线l 与C 相切,且与圆O :x 2+y 2=4交于M ,N 两点,M 在N 的左侧.(1)若|MN |=455,求l 的斜率;(2)记直线AM ,BN 的斜率分别为k 1,k 2,证明:k 1k 2为定值.12.(2023·江苏南通·统考模拟预测)已知A x 1,y 1 ,B x 2,y 2 ,C x 3,y 3 三个点在椭圆x 22+y 2=1,椭圆外一点P 满足OP =2AO ,BP =2CP,(O 为坐标原点).(1)求x 1x 2+2y 1y 2的值;(2)证明:直线AC 与OB 斜率之积为定值.13.(2023·浙江嘉兴·统考模拟预测)已知抛物线C :y 2=2px p >0 ,过焦点F 的直线交抛物线C 于A ,B 两点,且AB =AF ⋅BF .(1)求抛物线C 的方程;(2)若点P 4,4 ,直线PA ,PB 分别交准线l 于M ,N 两点,证明:以线段MN 为直径的圆过定点.14.(2023·江苏连云港·统考模拟预测)已知椭圆E:x2a2+y2b2=1a>b>0的焦距为23,且经过点P-3,12.(1)求椭圆E的标准方程:(2)过椭圆E的左焦点F1作直线l与椭圆E相交于A,B两点(点A在x轴上方),过点A,B分别作椭圆的切线,两切线交于点M,求ABMF1的最大值.15.(2023春·江苏常州·高三校联考开学考试)已知点P2,-1在椭圆C:x2a2+y2b2=1(a>b>0)上,C的长轴长为42,直线l:y=kx+m与C交于A,B两点,直线PA,PB的斜率之积为14.(1)求证:k为定值;(2)若直线l与x轴交于点Q,求QA|2+QB|2的值.16.(2023春·江苏苏州·高三统考开学考试)已知抛物线y2=a2x的焦点也是离心率为32的椭圆x2a2+y2 b2=1a>b>0的一个焦点F.(1)求抛物线与椭圆的标准方程;(2)设过F的直线l交抛物线于A、B,交椭圆于C、D,且A在B左侧,C在D左侧,A在C左侧.设a=AC,b=μCD,c=DB.①当μ=2时,是否存在直线l,使得a,b,c成等差数列?若存在,求出直线l的方程;若不存在,说明理由;②若存在直线l,使得a,b,c成等差数列,求μ的范围.17.(2023秋·江苏无锡·高三统考期末)已知椭圆C1:x2a2+y2b2=1a>b>0的右焦点F和抛物线C2:y2=2px p>0的焦点重合,且C1和C2的一个公共点是23,263.(1)求C1和C2的方程;(2)过点F作直线l分别交椭圆于A,B,交抛物线C2于P,Q,是否存在常数λ,使1AB-λPQ为定值?若存在,求出λ的值;若不存在,说明理由.18.(2023秋·江苏·高三统考期末)如图,已知椭圆x24+y2=1的左、右顶点分别为A,B,点C是椭圆上异于A,B的动点,过原点O平行于AC的直线与椭圆交于点M,N,AC的中点为点D,直线OD与椭圆交于点P,Q,点P,C,M在x轴的上方.(1)当AC=5时,求cos∠POM;(2)求PQ⋅MN的最大值.19.(2023·浙江·校联考模拟预测)设双曲线C:x2a2-y2b2=1的右焦点为F3,0,F到其中一条渐近线的距离为2.(1)求双曲线C的方程;(2)过F的直线交曲线C于A,B两点(其中A在第一象限),交直线x=53于点M,(i)求|AF|⋅|BM||AM|⋅|BF|的值;(ii)过M平行于OA的直线分别交直线OB、x轴于P,Q,证明:MP=PQ.20.(2023春·浙江绍兴·高三统考开学考试)在平面直角坐标系xOy 中,已知椭圆C :x 24+y 2=1,B 1,0 .(1)设P 是椭圆C 上的一个动点,求PO ⋅PB的取值范围;(2)设与坐标轴不垂直的直线l 交椭圆C 于M ,N 两点,试问:是否存在满足条件的直线l ,使得△MB N 是以B 为直角顶点的等腰直角三角形?若存在,求出直线l 的方程,若不存在,请说明理由.21.(2023春·浙江·高三开学考试)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且经过点M(-2,0),F 1,F 2为椭圆C 的左右焦点,Q x 0,y 0 为平面内一个动点,其中y 0>0,记直线QF 1与椭圆C 在x 轴上方的交点为A x 1,y 1 ,直线QF 2与椭圆C 在x 轴上方的交点为B x 2,y 2 .(1)求椭圆C 的标准方程;(2)①若AF 2∥BF 1,证明:1y 1+1y 2=1y 0;②若QF 1 +QF 2 =3,探究y 0,y 1,y 2之间关系.22.(2023春·浙江温州·高三统考开学考试)如图,椭圆x 24+y 2=1的左右焦点分别为F 1,F 2,点P x 0,y 0 是第一象限内椭圆上的一点,经过三点P ,F 1,F 2的圆与y 轴正半轴交于点A 0,y 1 ,经过点B (3,0)且与x 轴垂直的直线l 与直线AP 交于点Q .(1)求证:y 0y 1=1.(2)试问:x 轴上是否存在不同于点B 的定点M ,满足当直线MP ,MQ 的斜率存在时,两斜率之积为定值?若存在定点M ,求出点M 的坐标及该定值;若不存在,请说明理由.23.(2023春·广东·高三校联考阶段练习)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的右顶点为A 2,0 ,直线l 过点P 4,0 ,当直线l 与双曲线E 有且仅有一个公共点时,点A 到直线l 的距离为255.(1)求双曲线E 的标准方程;(2)若直线l 与双曲线E 交于M ,N 两点,且x 轴上存在一点Q t ,0 ,使得∠MQP =∠NQP 恒成立,求t .24.(2023·广东梅州·统考一模)已知动圆M经过定点F1-3,0,且与圆F2:x-32+y2=16内切.(1)求动圆圆心M的轨迹C的方程;(2)设轨迹C与x轴从左到右的交点为点A,B,点P为轨迹C上异于A,B的动点,设PB交直线x=4于点T,连结AT交轨迹C于点Q.直线AP、AQ的斜率分别为k AP、k AQ.(i)求证:k AP⋅k AQ为定值;(ii)证明直线PQ经过x轴上的定点,并求出该定点的坐标.25.(2023春·湖北武汉·高三华中师大一附中校考阶段练习)已知双曲线E:x24-y2=1与直线l:y=kx-3相交于A、B两点,M为线段AB的中点.(1)当k变化时,求点M的轨迹方程;(2)若l与双曲线E的两条渐近线分别相交于C、D两点,问:是否存在实数k,使得A、B是线段CD的两个三等分点?若存在,求出k的值;若不存在,说明理由.26.(2023·山东·日照一中校考模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,斜率为-3的直线l 与双曲线C 交于A ,B 两点,点M (4,-22)在双曲线C 上,且MF 1 ⋅MF 2 =24.(1)求△MF 1F 2的面积;(2)若OB +OB=0(O 为坐标原点),点N 3,1 ,记直线NA ,NB 的斜率分别为k 1,k 2,问:k 1⋅k 2是否为定值?若是,求出该定值;若不是,请说明理由.27.(2023秋·山东泰安·高三统考期末)已知椭圆E :x 2a 2+y 2b2=1a >b >0 过A 1,62 ,B 3,22两点.(1)求椭圆E 的方程;(2)已知Q 4,0 ,过P 1,0 的直线l 与E 交于M ,N 两点,求证:MP NP=MQ NQ.28.(2023·浙江·模拟预测)已知双曲线E:x2a2-y2b2=1(a>0,b>0)的焦距为10,且经过点M(8,33).A,B为双曲线E的左、右顶点,P为直线x=2上的动点,连接PA,PB交双曲线E于点C,D(不同于A,B).(1)求双曲线E的标准方程.(2)直线CD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.29.(2023·湖南·模拟预测)已知椭圆C:x2a2+y2b2=1a>b>0的上顶点为B,O为坐标原点,P-a2,0为椭圆C的长轴上的一点,若∠BPO=45°,且△OPB的面积为12.(1)求椭圆C的标准方程;(2)椭圆C与x轴负半轴交于点A,过点A的直线AM,AN分别与椭圆C交于M,N两点,直线AM,AN的斜率分别为k AM,k AN,且k AM⋅k AN=-112,求证:直线MN过定点,并求出该定点坐标,求出△AMN面积的最大值.30.(2023春·湖北·高三统考阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为12.且经过点1,32 ,P ,Q 是椭圆C 上的两点.(1)求椭圆C 的方程;(2)若直线OP 与OQ 的斜率之积为-34(O 为坐标原点),点D 为射线OP 上一点,且OP =PD ,若线段DQ 与椭圆C 交于点E ,设QE =λED(λ>0).(i )求λ值;(ii )求四边形OPEQ 的面积.。
题组:圆锥曲线综合大题练题型1:定点问题1.椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为12,其左焦点到点P(2,1)的距离为√10.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.2.已知抛物线C:y2=2px经过点M(2,2),C在点M处的切线交x轴于点N,直线l1经过点N且垂直于x轴.(Ⅰ)求线段ON的长;(Ⅱ)设不经过点M和N的动直线l2:x=my+b交C于点A和B,交l1于点E,若直线MA、ME、MB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.3.已知椭圆C:2222=1x ya b(a>b>0),四点P1(1,1),P2(0,1),P3(–1,32),P4(1,32)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.4.如图,椭圆E:x 2a2+y2b2=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=12.过F1的直线交椭圆于A、B两点,且∆ABF2的周长为8.(Ⅰ)求椭圆E的方程.(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.5.如图,已知椭圆Γ:x 2b2+y2a2=1(a>b>0)的离心率e=√22,短轴右端点为A,M(1.0)为线段OA的中点.(Ⅰ)求椭圆Γ的方程;(Ⅱ)过点M任作一条直线与椭圆Γ相交于P,Q两点,试问在x轴上是否存在定点N,使得∠PNM=∠QNM,若存在,求出点N的坐标;若不存在,说明理由.题型2:定值问题1.已知椭圆C :22221+=x y a b (0a b >>)的离心率为 32 ,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N.求证:BM AN ⋅为定值.2.如图, 在平面直角坐标系中, 抛物线的准线与轴交于点,过点的直线与抛物线交于两点, 设到准线的距离. (1)若,求抛物线的标准方程;(2)若,求证:直线的斜率的平方为定值.xOy ()220y px p =>l x M M ,A B ()11,A x y l ()20d p λλ=>13y d ==0AM AB λ+=AB3.椭圆C:x 2a2+y2b2=1(a>b>0)的离心率√22,点(2,√2)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.4.已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率√22,的离心率为,点A(1,√32)在椭圆C上,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)设动直线l与椭圆C有且仅有一个公共点,且l与圆x2+y2=5的相交于不在坐标轴上的两点P1,P2,记直线OP1,OP2的斜率分别为k1,k2,求证:k1∙k2为定值.5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率√22,若圆x 2+y 2=a 2被直线x − y −√2=0截得的弦长为2。
专题05 五类圆锥曲线题型-2024年高考数学大题秒杀技巧及专项训练(解析版)【题型1 圆锥曲线中的轨迹方程问题】【题型2 圆锥曲线中齐次化处理斜率乘积问题】【题型3 圆锥曲线中的三角形(四边形)面积问题】【题型4 圆锥曲线中的定点、定值、定直线问题】【题型5 圆锥曲线中的极点与极线】题型1 圆锥曲线中的轨迹方程问题曲线方程的定义一般地,如果曲线C 与方程(,)0F x y =之间有以下两个关系:①曲线C 上的点的坐标都是方程(,)0F x y =的解;②以方程(,)0F x y =的解为坐标的点都是曲线C 上的点.此时,把方程(,)0F x y =叫做曲线C 的方程,曲线C 叫做方程(,)0F x y =的曲线.求曲线方程的一般步骤:(1)建立适当的直角坐标系(如果已给出,本步骤省略);(2)设曲线上任意一点的坐标为),(y x ;(3)根据曲线上点所适合的条件写出等式;(4)用坐标表示这个等式,并化简;(5)确定化简后的式子中点的范围.上述五个步骤可简记为:求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围.y x 、求轨迹方程的方法:定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
直接法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(,)x y 表示该等量关系式,即可得到轨迹方程。
代入法(相关点法):如果动点P 的运动是由另外某一点P '的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出(,)P x y ,用(,)x y 表示出相关点P '的坐标,然后把P '的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
圆锥曲线综合大题(易错必刷32题15种题型专项训练)➢韦达定理基础型➢直线横截式应用➢直线双变量型应用➢面积最值型➢面积比值范围型➢动直线过定点➢圆过定点➢圆锥切线➢定直线➢向量型定比分点➢斜率型:和定➢斜率型:积定➢斜率型:商定➢求轨迹➢新定义型第19题一.韦达定理基础型(共2题)1.(23-24高二下·四川成都·期中)已知椭圆C:22221x ya b+=(0a b>>),131,2Pæö-ç÷èø,231,2Pæöç÷èø,(30,P,()41,1P四点中恰有三点在椭圆C上.(1)求椭圆C的标准方程;(2)过右焦点F且斜率为1的直线l交椭圆C于M,N两点,点P为直线4x=上任意一点,求证:直线PM,PF,PN的斜率成等差数列.2.(23-24高二下·上海·期中)如图,由部分椭圆22221(0,0)x y a b y a b +=>>£和部分双曲线22221(0)x y y a b -=³,组成的曲线C 称为“盆开线”.曲线C 与x 轴有(2,0),(2,0)A B -两个交点,.(1)设过点(1,0)的直线l 与C 相切于点(4,3)M ,求部分椭圆方程、部分双曲线方程及直线l 的方程;(2)过A 的直线m 与C 相交于点,,P A Q 三点,求证:PBA QBA Ð=Ð.二. 直线横截式应用(共2题)3.(23-24高二上·广西南宁·期中)已知椭圆2222:1(0)x y C a b a b +=>>.(1)求椭圆C 的方程:(2)过点()1,0M 的直线l 与椭圆C 交于点A 、B ,设点1(,0)2N ,若ABN V 的面积为310,求直线l 的斜率k .4.(23-24高二下·云南玉溪·期中)在直角坐标平面内,已知点()()122,0,2,0A A -,动点P (x,y ).设1PA 、2PA 的斜率分别为12k k 、,且1234k k ×=-.设动点P (x,y )的轨迹为曲线C .(1)求曲线C 的方程;(2)过点F 1(―1,0)的直线l 交曲线C 于M N 、两点,是否存在常数l ,使11MN F M F N l =×uuuu r uuuu r恒成立?三. 直线双变量型(共2题)5.(23-24高二下·天津·期中)已知椭圆2222:1(0)x y C a b a b +=>>经过点()2,0A -,离心率为12.(1)求椭圆C 的方程;(2)点P Q 、为椭圆C 上不同的两点,直线AP 与y 轴交于点M ,直线AQ 与y 轴交于点),N E,设()0,(0)M m m >,且满足,EM EN PQ OE ^×=-uuu r uuu r,求点M 的坐标.6.(21-22高三上·湖北·期中)已知圆O :222x y +=,椭圆C :(22221x y a b a b+=>>,P是C 上的一点,A 是圆O 上的一点,PA 的最大值为(1)求椭圆C 的方程;(2)点M 是C 上异于P 的一点,PM 与圆O 相切于点N ,证明:2PO PM PN =×.四.面积最值型(共2题)7.(23-24高二下·福建泉州·期中)已知抛物线2:2(03)C y px p =<<,其焦点为F ,点(,Q m 在抛物线C 上,且4QF =.(1)求抛物线C 的方程;(2)O 为坐标原点,,A B 为抛物线上不同的两点,且OA OB ^,(i )求证直线AB 过定点;(ii )求AFO V 与ABO V 面积之和的最小值.8.(23-24高二下·内蒙古呼和浩特·期中)已知在平面直角坐标系xOy 中,动点P 到()和)的距离和为4,设点11,2A æöç÷èø.(1)求动点P 的轨迹方程;(2)M 为线段PA 的中点,求点M 的轨迹方程;(3)过原点O 的直线交P 的轨迹于B ,C 两点,求ABC V 面积的最大值.五.面积比值范围(共2题)9.(23-24高二·山东·期中)已知抛物线()2:20C y px p =>.过抛物线焦点F 作直线1l 分别在第一、四象限交C 于K P 、两点,过原点O 2与抛物线的准线交于E 点,设两直线交点为S .若当点P 的纵坐标为2-时,OP =(1)求抛物线的方程.(2)若EP 平行于x 轴,证明:S 在抛物线C 上.(3)在(2)的条件下,记SEP V 的重心为R ,延长ER 交SP 于Q ,直线EQ 交抛物线于N T 、(T 在右侧),设NT 中点为G ,求PEG △与ESQ V 面积之比n 的取值范围.10.(23-24高三上·青海西宁·期中)已知椭圆()2222:10x y E a b a b +=>>点P 在椭圆E 上运动,且12PF F V (1)求椭圆E 的方程;(2)设A ,B 分别是椭圆E 的右顶点和上顶点,不过原点的直线l 与直线AB 平行,且与x 轴,y 轴分别交于点M ,N ,与椭圆E 相交于点C ,D ,O 为坐标原点.(ⅰ)求OCM V 与ODN △的面积之比;(ⅱ)证明:22CM MD +为定值.六.动直线过定点 (共2题)11.(23-24高二下·安徽阜阳·期中)已知抛物线()2:20C y px p =>的焦点为F ,P 是C 上一点,线段PF的中点为5,22Q æöç÷èø.(1)求C 的方程;(2)若7p <,O 为原点,点M ,N 在C 上,且直线OM ,ON 的斜率之积为2024,求证:直线MN 过定点.12.(22-23高二上·四川雅安·期中)已知()0,1P 为椭圆2222:1(0)x y C a b a b +=>>上一点,点P 与椭圆C 的两(1)求椭圆C 的标准方程;(2)不经过点P 的直线l 与椭圆C 相交于,A B 两点,若直线PA 与PB 的斜率之和为1-,证明:直线l 必过定点,并求出这个定点坐标.七. 圆过定点(共2题)13.(23-24高二下·上海·期中)已知椭圆22:12x C y +=(1)若双曲线22221x y a b -=(0,0)a b >>的一条渐近线方程为y x =,且与椭圆C 有公共焦点,求此双曲线的方程;(2)过点10,3S æö-ç÷èø的动直线l 交椭圆C 于,A B 两点,试问在坐标平面上是否存在一个定点T ,使得以AB 为直径的圆恒过定点T ?若存在,求出T 的坐标,若不存在,说明理由.14.(23-24高二上·江苏常州·期中)已知双曲线()2222:10,0x y C a b a b-=>>F 到渐近线的距离为1.(1)求双曲线C 的方程;(2)若直线l 过定点()4,0M 且与双曲线C 交于不同的两点A 、B ,点N 是双曲线C 的右顶点,直线AN 、BN 分别与y 轴交于P 、Q 两点,以线段PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,说明理由.八.圆锥切线 (共2题)15.(23-24高二下·上海·期中)已知圆()22:21F x y -+=,动圆P 与圆F 内切,且与定直线3x =-相切,设圆心P 的轨迹为G (1)求G 的方程(2)若直线l 过点F ,且与G 交于,A B 两点①若直线l 与y 轴交于M 点,满足(),0,0MA AF MF FB l μl μ==>>uuu r uuu r uuur uuu r,试探究l 与μ的关系;②过点,A B 分别作曲线G 的切线相交于点P ,求PAB V 面积的最小值.16.(23-24高二下·上海·期中)已知抛物线2Γ:2x y =的焦点为F ,过Γ在第一象限上的任意一点P 作Γ的切线l ,直线l 交y 轴于点Q .过F 作l 的垂线m ,交Γ于,A B 两点.(1)若点Q 在Γ的准线上,求直线l 的方程;(2)求PF 的中点M 的轨迹方程;(3)若三角形PAB ,求点Q 的坐标.九.定直线(共2题)17.(2024高二·全国·期中)已知椭圆()2222:10x y C a b a b +=>>,A ,B 分别为C 的上、下顶点,O 为坐标原点,直线4y kx =+与C 交于不同的两点M ,N .(1)设点P 为线段MN 的中点,证明:直线OP 与直线MN 的斜率之积为定值;(2)若AB 4=,证明:直线BM 与直线AN 的交点G 在定直线上.18.(2024·河北·期中)已知椭圆C 的中心在原点O 、对称轴为坐标轴,A æççè、12B ö÷÷ø是椭圆上两点.(1)求椭圆C 的标准方程;(2)椭圆C 的左、右顶点分别为1A 和2A ,M ,N 为椭圆上异于1A 、2A 的两点,直线MN 不过原点且不与坐标轴垂直.点M 关于原点的对称点为S ,若直线1A S 与直线2A N 相交于点T .(i )设直线1MA 的斜率为1k ,直线2MA 的斜率为2k ,求12k k -的最小值;(ii )证明:直线OT 与直线MN 的交点在定直线上.十.向量型定比分点 (共2题)19.(23-24高二下·江苏南京·期中)已知椭圆C :()222210+=>>x y a b a b (P .(1)求椭圆C 的方程;(2)过右焦点F 的直线l 与椭圆C 交于A ,B 两点,若3AF FB =uuu r uuu r,求PAB V 的面积.20.(2023·河南·期中)已知椭圆()2222:10x y C a b a b +=>>的右焦点()10F ,,点12M ö÷÷ø在椭圆C 上.(1)求椭圆C 的标准方程;(2)过点()2,1P 的直线l 与椭圆C 交于A ,B 两点.若PA PB l =uu u r uuu r ,()0AQ QB l l =>uuu ruuu r ,求OQ uuu r 的最小值(O是坐标原点).十一.斜率型:和定 (共2题)21.(2024·河南郑州·期中)设抛物线2:2(0)C y px p =>的焦点为F ,()00,P x y 是C 上一点且2200||||PF PF x x -=+,直线l 经过点(8,0)Q -.(1)求抛物线C 的方程;(2)①若l 与C 相切,且切点在第一象限,求切点的坐标;②若l 与C 在第一象限内的两个不同交点为,A B ,且Q 关于原点O 的对称点为R ,证明:直线,AR BR 的倾斜角之和为π.22.(23-24高二上·云南昆明·期中)在平面直角坐标系xOy 中,动点(,)M x y 1x =+.记点M 的轨迹为C .(1)求C 的方程;(2)设点T 在y 轴上(异于原点),过点T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,并且||||||||TA TB TP TQ =,求直线AB 的斜率与直线PQ 的斜率之和.十二.斜率型:积定(共2题)23.(23-24高二·辽宁鞍山·期中)已知椭圆2222:1(0)x y C a b a b+=>>,右焦点为()2,0F 且离心率为23,直线:6l x =,椭圆C 的左右顶点分别为12,A A P 、为l 上任意一点,且不在x 轴上,1PA 与椭圆C 的另一个交点为2,M P A 与椭圆C 的另一个交点为N .(1)直线1MA 和直线2MA 的斜率分别记为12M A M A k k 、,求证:12MA MA k k ×为定值;(2)求证:直线MN 过定点.24.(23-24高二·云南昆明·期中)已知点P 在椭圆C:x2a 2+y 2b 2=1(a >b >0)上,过点P 作直线l 与椭圆C 交于点Q ,过点P 作关于坐标原点O 的对称点P ¢,PP ¢的最小值为l 的斜率为0时,存在第一象限内的一点P 使得4,PP PQ =¢=(1)求椭圆C 的方程;(2)设直线l 的斜率为k (k ≠0),直线QP ¢的斜率为k ¢,求k k ¢×的值.十三.斜率型:商定(共2题)25.(2024·广东广州·期中)已知在平面直角坐标系xOy 中,双曲线C :()22221,0x y a b a b -=>过和(两点.(1)求双曲线C 的标准方程;(2)若S ,T 为双曲线C 上不关于坐标轴对称的两点,M 为ST 中点,且ST 为圆G 的一条非直径的弦,记GM 斜率为1k ,OM 斜率为2k ,证明:12k k 为定值.26.(23-24高二·广东汕头·期中)已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点31,2æöç÷èø在该椭圆上,且该椭圆的右焦点F 的坐标为(1,0).(1)求椭圆C 的标准方程;(2)如图,过点F 且斜率为k 的直线l 与椭圆交于M ,N 两点,记直线AM 的斜率为1k ,直线BN 的斜率为2k ,求证:1213k k =.十四.求轨迹 (共2题)27.(23-24高二下·上海·期中)已知A 、B 、C 是我方三个炮兵阵地,A 地在B 地的正东方向,相距6km ;C 地在B 地的北偏西30°,相距4km .P 为敌方炮兵阵地.某时刻A 地发现P 地产生的某种信号,12s 后B地也发现该信号(该信号传播速度为13km/s ).以BA 方向为x 轴正方向,AB 中点为坐标原点,与AB 垂直的方向为y 轴建立平面直角坐标系.(1)判断敌方炮兵阵地P 可能分布在什么样的轨迹上,并求该轨迹的方程;(2)若C 地与B 地同时发现该信号,求从A 地应以什么方向炮击P 地?28.(23-24高二上·安徽宿州·期中)已知直线BC 经过定点()0,2,N O 是坐标原点,点M 在直线BC 上,且OM BC ^.(1)当直线BC 绕着点N 转动时,求点M 的轨迹E 的方程;(2)已知点()3,0T -,过点T 的直线交轨迹E 于点P Q 、,且65OP OQ ×=uuu r uuu r ,求PQ .十五.新定义型第19题(共4题)29.(2024·福建·期中)贝塞尔曲线是由法国数学家Pierre Bézier 发明的,它为计算机矢量图形学奠定了基础.贝塞尔曲线的有趣之处在于它的“皮筋效应”,即随着控制点有规律地移动,曲线会像皮筋一样伸缩,产生视觉上的冲击.(1)在平面直角坐标系中,已知点1T 在线段AB 上.若A (x 1,y 1),B (x 2,y 2),1AT a AB =,求动点1T 坐标;(2)在平面直角坐标系中,已知(2,4)A -,(2,0)B -,(2,4)C ,点,M N 在线段,AB BC 上,若动点2T 在线段MN 上,且满足2AM BN MT a ABBCMN===,求动点2T 的轨迹方程;(3)如图,已知((A B C D ,若点3,,,,,M N P X Y T 分别在线段,,,,,AB BC CD MN NP XY 上,且3AM BN CP MX NY XT a ABBCCDMNNPXY======,求动点3T 的轨迹方程.30.(23-24高三上·湖北荆州·期中)已知双曲线E 的中心为坐标原点,渐近线方程为y =,点(2,1)-在双曲线E 上.互相垂直的两条直线12,l l 均过点()(,0n n P p p >)*N n Î,直线1l 交E 于,A B 两点,直线2l 交E 于,C D 两点,,M N 分别为弦AB 和CD 的中点.(2)若直线MN 交x 轴于点()()*,0N n Q t n Î,设2n n p =.①求n t ;②记n a PQ =,()*21N n b n n =-Î,求211(1)nkk k k k b b a +=éù--ëûå.31.(2024·四川·期中)已知抛物线C :()220y px p =>的焦点为F ,过点F 的直线与C 相交于点A ,B ,AOB V 面积的最小值为12(O 为坐标原点).按照如下方式依次构造点()*N n F n Î:1F 的坐标为(),0p ,直线n AF ,n BF 与C 的另一个交点分别为n A ,n B ,直线n n A B 与x 轴的交点为1n F +,设点n F 的横坐标为n x .(2)求数列{}n x 的通项公式;(3)数列{}n x 中,是否存在连续三项(按原顺序)构成等差数列?若存在,指出所有这样的连续三项;若不存在,请说明理由.32.(2024·江西新余·期中)通过研究,已知对任意平面向量(),AB x y =uuu r,把AB uuu r绕其起点A 沿逆时针方向旋转q 角得到向量()cos sin ,sin cos AP x y x y q q q q =-+uuu r,叫做把点B 绕点A 逆时针方向旋转q 角得到点P ,(1)已知平面内点(A ,点B-,把点B 绕点A 逆时针旋转π3得到点P ,求点P 的坐标:(2)已知二次方程221+-=x y xy 的图像是由平面直角坐标系下某标准椭圆()222210+=>>x y a b a b绕原点O 逆时针旋转π4所得的斜椭圆C ,(i )求斜椭圆C 的离心率;(ⅱ)过点Q 作与两坐标轴都不平行的直线1l 交斜椭圆C 于点M 、N ,过原点O 作直线2l 与直线1l垂直,直线2l 交斜椭圆C 于点G 、H 理由.。
圆锥曲线大综合第一部分圆锥曲线常考题型和热点问题一.常考题型题型一:数形结合确定直线和圆锥曲线的位置关系题型二:弦的垂直平分线问题题型三:动弦过定点问题题型四:过已知曲线上定点的弦的问题题型五:共线向量问题题型六:面积问题题型七:弦或弦长为定值的问题题型八:角度问题题型九:四点共线问题题型十:范围为题(本质是函数问题)题型十一:存在性问题(存在点,存在直线y kx m ,存在实数,三角形(等边、等腰、直角),四边形(矩形,菱形、正方形),圆)二.热点问题1.定义与轨迹方程问题2.交点与中点弦问题3.弦长及面积问题4.对称问题5.范围问题6.存在性问题7.最值问题8.定值,定点,定直线问题第二部分知识储备一.与一元二次方程 ax2bx c 0(a 0) 相关的知识(三个“二次”问题)1. 判别式:b24ac2. 韦达定理:若一元二次方程ax2bx c 0(a 0) 有两个不等的实数根x1, x2,则x1x2b, x1 x2 ca a3. 求根公式:若一元二次方程ax2bx c 0(a 0) 有两个不等的实数根x1, x2,则x1,2b b2 4 ac2a二.与直线相关的知识1.直线方程的五种形式:点斜式,斜截式,截距式,两点式,一般式WORD 完美 .格式2.与直线相关的重要内容:①倾斜角与斜率:y tan ,[0, ) ;②点到直线的距离公式: d Ax0By0C(一般式)或 d kx0 y0 b (斜截式)A2 B 212k 23.弦长公式:直线y kxb 上两点 A( x1 , y1), B( x2 , y2 ) 间的距离:AB 1 k 2 x x2 (1k2 )[( x x )24x x ]( 或 AB 1 1y y2)1 12 1 2k 21 4.两直线 l1 : y1k1x1b1 ,l2 : y2k2 x2b2 的位置关系:① l1 l2k1 k2 1 ② l1 / /l2k1 k2且b1b25.中点坐标公式:已知两点A( x1 , y1 ), B( x2 ,y2),若点 M x, y 线段AB 的中点,则x x1x1 , y y1y22 2三.圆锥曲线的重要知识考纲要求:对它们的定义、几何图形、标准方程及简单性质,文理要求有所不同。
(1)当5AC =时,求cos POM ∠(2)求⋅PQ MN 的最大值.7.已知抛物线1C :28x y =的焦点点,1C 与2C 公共弦的长为4(1)求2C 的方程;(2)过F 的直线l 与1C 交于A ,(i )若AC BD =,求直线l 的斜率;(ii )设1C 在点A 处的切线与系.8.已知圆()(2:M x a y b -+-点O 且与C 的准线相切.(1)求抛物线C 的方程;(2)点()0,1Q -,点P (与Q 不重合)在直线切线,切点分别为,A B .求证:9.已知椭圆2212:12x y C b+=的左、右焦点分别为2222:12x y C b -=的左、右焦点分别为于y 轴的直线l 交曲线1C 于点Q 两点.a b (1)求椭圆的方程;(2)P 是椭圆C 上的动点,过点P 作椭圆为坐标原点)的面积为5217,求点12.过坐标原点O 作圆2:(2)C x ++参考答案:)(),0a-,(),0F c,所以AF时,在双曲线方程中令x c=,即2bBFa=,又AF BF= ()所以BFA V 为等腰直角三角形,即易知2BFA BAF ∠=∠;当BF 与AF 不垂直时,如图设()()0000,0,0B x y x y >>00tan(π)y BFA x c -∠=-即tan -又因为00tan y BAF x a∠=+,002tan 2y x aBAF +∠=4.(1)21±2(2)证明见解析.【分析】(1)求出椭圆左焦点F1 1x5.(1)21 2x y =(2)1510,33 P⎛⎫± ⎪ ⎪⎝⎭【分析】(1)根据抛物线的焦半径公式可解;【点睛】方法技巧:圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多样,但主要有两种方法:(1)几何转化代数法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用圆锥曲线的定义、图形、几何性质来解决;(2)函数取值法:若题目的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值(或值域),常用方法:三角换元法;(5)平面向量;(7.(1)2213x y -=(2)(i )36±;(ii )点F 在以【分析】(1)根据弦长和抛物线方程可求得交点坐标,结合同焦点建立方程组求解可得;(2)(i )设()11,A x y ,(2,B x 物线方程和双曲线方程,利用韦达定理,结合以及点M 坐标,利用FA FM ⋅【详解】(1)1C 的焦点为(0,2F 又1C 与2C 公共弦的长为46,且所以公共点的横坐标为26±,代入所以公共点的坐标为(26,3±所以229241a b -=②联立228y kx x y =+⎧⎨=⎩,得28160x kx --=,Δ=联立22213y kx x y =+⎧⎪⎨-=⎪⎩,得()2231129k x kx -++则3421231kx x k +=--,342931x x k =-,9.(1)2212x y +=,2212x y -=(2)12y x =-或12y x=(3)2【分析】(1)用b 表示12,e e ,由12e e ⋅=10.(1)2222114222x y x y +=-=,;(2)1;(3)是,=1x -【分析】(1)根据椭圆和双曲线的关系,结合椭圆和双曲线的性质,求得343+因为AB 既是过1C 焦点的弦,又是过所以2212||1()AB k x x =+⋅+-且121||()()22p p AB x x x =+++=所以212(1)k +=2240123(34)k k +,【点睛】因为//l OT ,所以可设直线l 的方程为由22x y =,得212y x =,得y '所以曲线E 在T 处的切线方程为联立22y x m y x =+⎧⎨=-⎩,得2x m y m =+⎧⎨=⎩()2,22N m m ++NT。
圆锥曲线大题综合----学而思黎根飞老师一、轨迹方程(10道)1.动圆P 与定圆22:4320B x y y +--=相内切,且过点()02A -,,求动圆圆心P 的轨迹方程.【解析】 如图所示,设动圆P 的半径为r ,圆B 的方程可化为()22236x y +-=.又动圆P 过点()02A -,,从而r PA =, 6PB PA +=.则点P 的轨迹是以A ,B 为焦点的椭圆, 且26a =,24c =, 即3a =,2c =,b =.故所求点P 的轨迹方程为22195y x +=.2.求到两不同定点距离之比为一常数(0)λλ≠的动点的轨迹方程.【解析】 以两不同定点A B ,所在的直线为x 轴,AB 的中垂线为y 轴,建立平面直角坐标系.设()P x y ,是轨迹上任一点,(0)(0)(0)A a B a a ->,,,. 由题设得PA PB λ==∴22222(1)()(1)20x y a ax λλ-++++=.当1λ=时,方程0x =表示一条直线. 当1λ≠时,方程为2222221211a x a y λλλλ⎛⎫+⎛⎫++= ⎪ ⎪--⎝⎭⎝⎭,表示一个圆. 所以当1λ=时,点的轨迹是一条直线;当1λ≠时,点的轨迹是一个圆.3.已知定点(30),B ,点A 在圆221x y +=上运动,M 是线段AB 上的一点,且13AM MB =,则点M 的轨迹方程是___________.【解析】 设11()(),,,M x y A x y .∵13AM MB = ,∴111()(3)3,,x x y y x y --=--,∴111(3)313x x x y y y ⎧-=-⎪⎪⎨⎪-=-⎪⎩,∴1141343x x y y ⎧=-⎪⎪⎨⎪=⎪⎩.∵点A 在圆221x y +=上运动,∴22111x y +=,∴22441133x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即2239416x y ⎛⎫-+= ⎪⎝⎭,∴点M 的轨迹方程是2239416x y ⎛⎫-+= ⎪⎝⎭.4.已知点A B ,分别是射线()1:0l y x x =≥,()2:0l y x x =-≥上的动点,O 为坐标原点,且OAB ∆的面积为定值2,求线段AB 中点M 的轨迹C 的方程.【解析】 由题可设()11A x x ,,()22B x x -,,()M x y ,,其中1200x x >>,.则121222x x x x x y +⎧=⎪⎪⎨-⎪=⎪⎩,①,②∵OAB ∆的面积为定值2,∴)121211222OAB S OA OB x x ∆=⋅===.22-①②,消去12x x ,,得:222x y -=.由于1200x x >>,,∴0x >,所以点M 的轨迹方程为222x y -=(0x >).5.一条变动的直线l 与椭圆24x +22y =1交于P 、Q 两点,M 是l 上的动点,满足关系2MP MQ ⋅=.若直线l 在变动过程中始终保持其斜率等于1.求动点M 的轨迹方程,并说明曲线的形状.【解析】 设动点(,)M x y ,动直线l :y x m =+,并设11(,)P x y ,22(,)Q x y 是方程组22,240y x m x y =+⎧⎨+-=⎩的解,消去y ,得2234240x mx m ++-=, 其中221612(24)0m m ∆=-->,∴m <<且1243m x x +=-,212243m x x -=,又∵1MP x =-,2MQ x =-.由2MP MQ ⋅=,得121x x x x -⋅-=, 也即21212()1x x x x x x -++=,于是有22424133mx m x -++=. ∵m y x =-,∴22243x y +-=.由22243x y +-=,得椭圆222177x x +=夹在直线y x =且不包含端点.由22243x y +-=-,得椭圆2221x y +=.6. 已知点(30)P -,,点A 在y 轴上,点Q 在x 轴的正半轴上,且0PA AQ ⋅=.点M 在直线AQ 上,满足32AM MQ =-.当点A 在y 轴上移动时,求动点M 的轨迹C 的方程.【解析】 设点M 的坐标为()x y ,,则由32AM MQ =- 得(0)2yA -,由0PA AM ⋅= 得23(3)()0422y x y y x -⋅=⇒=,,∴所求动点M 的轨迹C 的方程为24y x =.7.已知ABC ∆中,A B C ∠∠∠,,所对的边分别为a b c ,,,且a c b >>成等差数列,2AB =,求顶点C 的轨迹方程.【解析】 由2c =,2a b c +=得:4a b +=,以AB 所在直线为x 轴,以AB 的中垂线所在的直线为y 轴建立直角坐标系,则A 点坐标为(10)-,,B 点坐标为(10),, 设()C x y ,,则有4AC BC +=,即4+=,4x =-,两边再次平方化简得:223412x y +=;要构成三角形,必须满足C 点不在x 轴上,即0y ≠,故2x ≠±, 又a b >,即BC AC >>,解得0x <, 故所求的C 点的轨迹方程为223412x y +=(0x <且2)x ≠-.8.设()0A a -,,()0B a ,()0a >,已知直线MA 与MB 的斜率乘积为定值m ,求动点M 的轨迹方程,并根据m 地不同值讨论曲线的形状.【解析】 设动点M 的坐标为()x y ,,则直线MA 与MB 的斜率分别为MA yk x a=+, MB yk x a=-,依题意,得 222MA MBy y y k k m x a x a x a ⋅=⋅==+--, 化简,得222mx y a m -=,即为所求. 显然,当0m =时,方程表示直线0y =; 当0m <时,方程可化为22221x y a a m +=;1m =-时,方程表示圆222x y a +=; 1m <-时,方程表示焦点在y 轴上的椭圆; 10m -<<时,方程表示焦点在x 轴上的椭圆.当0m >时,方程可化为22221x y a a m-=,方程表示焦点在x 轴上的双曲线.9.如图,过()24P ,作互相垂直的直线1l 、2l ,若1l 交x 轴于点A ,2l 交y 轴于点B ,求线段AB 的中点轨迹方程.【解析】 解法一:(直接法)设()M x y ,是所求轨迹上任意一点,则A 、B 两点的坐标分别为()20A x ,、()02B y ,,∵M 为线段AB 的中点,连接PM ,∵PA PB ⊥,∴2PM AB =,∴=250x y +-=,即为所求轨迹方程. 解法二:(直接法)设M 的坐标为()x y ,,∵M 为线段AB 的中点,∴A B 、两点的坐标分别为()20A x ,、()02B y ,,∵PA PB ⊥,∴1PA PB k k ⋅=-,即()404211220yx x --⋅=-≠-2-整理得:()2501x y x +-=≠,当1x =时,A 、B 两点的坐标分别为()20A ,、()04B ,,线段AB 的中点为()12,仍满足250x y +-=.综上所述,所求轨迹方程为250x y +-=. 解法三:(直接法)设M 的坐标为()x y ,,∵PA PB ⊥,OA OB ⊥,且M 为线段AB 的中点,∴四边形OAPB 是圆内接四边形,且M 为圆心,∴OM MP =,∴x=,整理得:250x y +-=,即为所求轨迹方程. 解法四:(相关点法)设M 的坐标为()x y ,,A 、B 两点的坐标分别为()0A a ,,()0B b ,,则22a xb y ⎧=⎪⎪⎨⎪=⎪⎩,∴22a xb y =⎧⎨=⎩, ∵PA PB ⊥,∴222PA PB AB +=,∴()()()()22222222422422x y x y -+++-=+,整理得:250x y +-=,即为所求轨迹方程. 解法五:(参数法)设直线1l 的方程为:()()420y k x k -=-≠,因为12l l ⊥,且2l 过点()24P ,,所以2l 的方程为:()142y x k -=--,所以420A k ⎛⎫- ⎪⎝⎭,、204B k ⎛⎫+ ⎪⎝⎭,,设A B 、的中点M 的坐标为()x y ,,则42022242k x k y ⎧-+⎪=⎪⎪⎨⎪++⎪=⎪⎩,即2112x k y k⎧=-⎪⎪⎨⎪=+⎪⎩消去参数k 得:250x y +-=,即为所求轨迹方程.10.已知动点P 与双曲线221x y -=的两个焦点1F 、2F 的距离之和为定值,且12cos F PF ∠的最小值为13-,求动点P 的轨迹方程.【解析】∵221x y-=,∴c . 设1PF m =,2PF n =,则2m n a +=(常数0a >),所以点P 是以12F F 、为焦点,2a 为长轴的椭圆,22a c>=,∴a >. 由余弦定理,有()222222121212224cos 122m n F F m n mn F F a F PF mn mn mn +=+---===-∠.∵222m n mn a +⎛⎫= ⎪⎝⎭≤,∴当且仅当m n -时,mn 取得最大值2a .此时12cos F PF ∠取得最小值22241a a --.由题意2224113a a --=-,解得23a =. ∴222321b a c =-=-=.∴P 点的轨迹方程为2213x y +=.二、弦长面积(30道)11.已知椭圆22:14y C x +=,过点(03)M ,的直线l 与椭圆C 相交于不同的两点A 、B .⑴若l 与x 轴相交于点N ,且A 是MN 的中点,求直线l 的方程;⑵设P 为椭圆上一点, 且OA OB OP λ+=(O 为坐标原点).求当AB <时,实数λ的取值范围.【解析】 ⑴设11()A x y ,,因为A 为MN 的中点,且M 的纵坐标为3,N 的纵坐标为0,所以, 又因为点11()A x y ,在椭圆C 上所以221114y x +=,即219116x +=,解得1x =,则点A的坐标为342⎛⎫ ⎪ ⎪⎝⎭,或42⎛⎫3 ⎪ ⎪⎝⎭,, 所以直线l的方程为7210y -+=或7210y +-=.⑵设直线AB 的方程为3y kx =+或0x =,11()A x y ,,22()B x y ,,33()P x y ,,当AB 的方程为0x =时,4AB => 当AB 的方程为3y kx =+时:由题设可得A 、B 的坐标是方程组22314y kx y x =+⎧⎪⎨+=⎪⎩的解,消去y 得22(4)650k x kx +++=,所以22(6)20(4)0k k =-+>△即25k >,则12264k x x k -+=+,12254x x k ⋅=+,1212224(3)(3)4y y kx kx k +=+++=+,因为AB =<<,解得216813k -<<, 所以258k <<.因为OA OB OP λ+=,即112233()()()x y x y x y λ+=,,,,所以当0λ=时,由0OA OB +=,得122604k x x k -+==+,1222404y y k +==+, 上述方程无解,所以此时符合条件的直线l 不存在;当0λ≠时,12326(4)x x k x k λλ+-==+,123224(4)y y y k λλ+==+, 因为点33()P x y ,在椭圆上,所以222261241(4)4(4)k k k λλ⎡⎤⎡⎤-+=⎢⎥⎢⎥++⎣⎦⎣⎦, 化简得22364k λ=+,因为258k <<,所以234λ<<,132y =则()22λ∈-,.综上,实数λ的取值范围为()22-,.12.设椭圆22221(0)x y C a b a b+=>>∶,其相应于焦点(20)F ,的准线方程为4x =.⑴求椭圆C 的方程;⑵已知过点()120F -,倾斜角为θ的直线交椭圆C 于A B ,两点,求证:22cos AB θ=-;⑶过点()120F -,作两条互相垂直的直线分别交椭圆C 于A B 、和D E 、,求AB DE +的最小值.【解析】 ⑴由题意得:222224c a c a b c=⎧⎪⎪=⎨⎪⎪=+⎩∴2284a b ⎧=⎪⎨=⎪⎩∴椭圆C 的方程为22184x y +=⑵方法一:由⑴知()120F -,是椭圆C的左焦点,离心率e 设l 为椭圆的左准线.则4l x =-∶作1AA l ⊥于1A ,1BB l ⊥于1B ,l 与x 轴交于点H (如图) ∵点A 在椭圆上∴11AF =)11cos 2F H AF θ=+1cos θ=∴1AF =,同理1BF =∴1122cos AB AF BF θ=+=+=-. 方法二:当π2θ≠时,记tan k θ=,则直线AB 方程为(2)y k x =+将其代入方程:2228x y +=得:2222(12)88(1)0k x k x k +++-= 设()11A x y ,,()22B x y , ,则1x ,2x 是此二次方程的两个根. ∴2122812k x x k +=-+,()21228112k x x k -=+AB ===)22112k k +==+① B A∵22tan k θ=,代入①式得AB =②当π2θ=时,AB =仍满足②式.∴AB = ⑶设直线AB 的倾斜角为θ,由于DE AB ⊥,由⑵可得AB =,DE =22sin 24AB DE θ+===+ 当π4θ=或3π4θ=时,AB DE +取得最小值3.13.设A 、B分别是直线5y x =和5y x =-上的两个动点,并且AB = 点P 满足OP OA OB =+.记动点P 的轨迹为C .⑴ 求轨迹C 的方程;⑵ 若点D 的坐标为()016,,M 、N 是曲线C 上的两个动点,且DM DN λ=,求实数λ的取值范围.【解析】 ⑴ 设()P x y ,,∵A ,B分别为直线5y x =和5y x =-上的点,故可设11A x x ⎛⎫ ⎪ ⎪⎝⎭、22B x ⎛⎫⎪ ⎪⎝⎭,. ∵OP OA OB =+ ,∴)1212x x x y x x =+⎧⎪⎨-⎪⎩,∴12122x x x x x y +=⎧⎪⎨-=⎪⎩又AB =∴()()2212124205x x x x -++=. ∴22542045y x +=, 即轨迹C 的方程为2212516x y +=.⑵ 设()N s t ,,()M x y ,,则由DM DN λ=,可得()()1616x y s t λ-=-,,.故x s λ=,()1616y t λ=+-. ∵点M 、N 在曲线C 上, ∴()2222212516161612516s t t s λλλ⎧+=⎪⎪⎨-+⎪+=⎪⎩ 消去s 得()()22216161611616t t λλλ--++=.由题意知0λ≠,且1λ≠, 得17152t λλ-=. 又4t ≤, ∴171542λλ-≤,解得()35153λλ≠≤≤. 故实数λ的取值范围是()35153λλ≠≤≤.14.已知:圆221x y +=过椭圆22221x y a b+=(0a b >>)的两焦点,与椭圆有且仅有两个公共点;直线y kx m =+与圆221x y +=相切,与椭圆22221x y a b+=相交于A ,B 两点.记OA OB λ=⋅ ,且2334λ≤≤.(1)求椭圆的方程;(2)求k 的取值范围;(3)求OAB △的面积S 的取值范围.【解析】 (Ⅰ)由题意知22c =,1c =,因为圆与椭圆有且只有两个公共点,从而1b =.故a所求椭圆方程为2212x y +=(Ⅱ)因为直线l :y kx m =+与圆221x y +=相切所以原点O 到直线l1=,即:221m k =+又由2212y kx m x y =+⎧⎪⎨+=⎪⎩,()222124220k x kmx m +++-=设()11A x y ,,()22B x y ,,则122412km x x k -+=+,21222212m x x k -=+()()22121212121OA OB x x y y k x x km x x m λ=⋅=+=++++22112k k λ+=+,且2334λ≤≤,故2112k ≤≤, 即k的范围为1122⎡⎤--⎢⎢⎥⎣⎦⎣⎦,∪, (Ⅲ)()()()()222221212121214AB x x y y k x x x x ⎡⎤=-+-=++-⎣⎦()222221k =-+,由2112k ≤≤,得:423AB ≤ 1122S AB d AB ==,所以:243S ≤≤ 15.已知点M 、N的坐标分别是()0、)0,直线PM 、PN 相交于点P ,且它们的斜率之积是12-.⑴ 求点P 的轨迹方程;⑵ 直线:l y kx m =+与圆22:1O x y +=相切,并与点P 的轨迹交于不同的两点A 、B.当43AB ⎫∈⎪⎪⎣⎭,时,求OA OB ⋅ 的取值范围. 【解析】 ⑴设()P x y ,,则(12MP NP k k x ⋅==-≠,整理得(2212x y x +=≠⑵∵圆O 与直线l 相切,1=,即221m k =+当直线l 过M 或N点时,有0k m +=,由2201k m m k ⎧+=⎪⎨=+⎪⎩,,解得1k =±, ∵直线l 与点P 的轨迹交于不同的两点A 、B ,且M 、N 不在点P 的轨迹上, ∴1k ≠± ①由2212x y y kx m ⎧+=⎪⎨⎪=+⎩消去y ,得222(12)4220k x kmx m +++-=,设11()A x y ,,22()B x y ,,122412km x x k +=-+,21222212m x x k -⋅=+,AB ===将221m k =+代入上式得AB =又43AB ⎫∈⎪⎪⎣⎭,,424238()1624()19k k k k +<++≤,得 424242428()164()198()34()12k k k k k k k k ⎧+<⎪++⎪⎨+⎪⎪++⎩,,≥22220(2)(1)0(21)(23)k k k k ⎧+-<⎪⇒⎨-+⎪⎩,,≥2112k ⇒<≤.② 由①和②得2112k <≤,22121212121212()()(1)()+OA OB x x y y x x kx m kx m k x x km x x m ⋅=+=+++=+++22222224(1)1212m mkk km m k k--=+⋅+⋅+++,将221m k =+代入,得 222111112221k OA OB k k +⎛⎫⋅==+ ⎪++⎝⎭,∵2112k <≤∴2334OA OB ⎛⎤⋅∈ ⎥⎝⎦,.16.已知圆C 的方程为224x y +=,过点(24)M ,作圆C 的两条切线,切点分别为A 、B 直线恰好经过椭圆2222:1(0)x y T a b a b+=>>的右顶点和上顶点.⑴ 求椭圆T 的方程⑵已知直线:0)l y kx k =+>与椭圆T 相交于P ,Q 两点,O 为坐标原点,求OPQ △面积的最大值.【解析】 ⑴由题意:一条切线方程为:2x =,设另一条切线方程为:4(2)y k x -=-则2=,解得:34k =,此时切线方程为:3542y x =+切线方程与圆方程联立得:65x =-,85y =,则直线AB 的方程为22x y +=令0x =,解得1y =,∴1b =;令0y =,得2x =,∴2a = 故所求椭圆方程为2214x y +=⑵联立221.4y kx x y ⎧=+⎪⎨+=⎪⎩整理得22(14)80k x +++=,令11()P x y ,,22()Q x y ,,则12214x x k -+=+,122814x x k=+,()2232(14)0k =-+>△,即:2210k ->原点到直线l的距离为d =,12PQ x =-,∴1212OPQS PQ d x =⋅=-==△1==当且仅当2k =时取等号,则OPQ △面积的最大值为117.如图,已知定点(10)F -,,(10)N ,,以线段FN为对角线作周长是边形MNEF .平面上的动点G 满足2OG =(O 为坐标原点). ⑴ 求点E 、M 所在曲线1C 的方程及动点G 的轨迹2C 的方程;⑵ 已知过点F 的直线l 交曲线1C 于点P 、Q ,交轨迹2C 于点A 、B,若(||AB ∈,求NPQ △的内切圆的半径的取值范围.【解析】 ⑴因为四边形MNEF为周长为E 到点F 、N的距离之和是又2NF =<,故由椭圆的定义知,曲线1C为椭圆,a 1c =,1b =.故曲线1C 的方程为2212x y +=.由2OG =,动点G 的轨迹为以坐标原点O 为圆心,2为半径的圆,其方程为224x y +=.⑵当l x ⊥轴时,将1x =-代入224x y +=得y =所以(AB =, 所以直线l 不垂直于x 轴,设直线l 的方程为(1)y k x =+, 圆2C 的圆心(00)O ,到直线l的距离d =,由圆的几何性质得,||AB ===由(||AB ∈,解得213k >. 联立方程22(1)12y k x x y =+⎧⎪⎨+=⎪⎩,消去x 得2212210y y k k ⎛⎫+--= ⎪⎝⎭.设11()P x y ,,22()Q x y ,,NPQ 内切圆半径为R , 则1222221122k ky y k k +==++,2122211122k y y k k-=-=++,因为()121122NF y y R PN PQ QN ⋅-=⋅⋅++, 其中,2NF =,PN PQ QN ++=,所以12R y -.而12y y -=== 因为213k >,所以221161(12)25k ->+,所以,NPQ △的内切圆半径的取值范围为2152⎛⎫⎪⎝⎭,.18.已知1F 、2F 是椭圆22221(0)x y a b a b +=>>的左、右焦点,且离心率12e =,点P 为椭圆上的一个动点,12PF F △的内切圆面积的最大值为4π3. ⑴ 求椭圆的方程;⑵ 若A 、B 、C 、D 是椭圆上不重合的四个点,满足向量1F A 与1FC共线,1F B 与1F D 共线,且0AC BD ⋅=,求AC BD + 的取值范围.【解析】 ⑴由几何性质可知:当12PF F △内切圆面积取最大值时,即12PF F S △取最大值,且12max 1()22PF F S c b bc ⋅⋅=△. 由24ππ3r =得3r =又1222PF F C a c =+△为定值,12122PF F PF F rS C =△△,综上得22bc a c =+;又由12c e a ==,可得2a c =,即b =,经计算得2c =,b =4a =, 故椭圆方程为2211612x y +=.①⑵当直线AC 与BD 中有一条直线垂直于x 轴时,6814AC BD +=+=. ②当直线AC 斜率存在但不为0时,设AC 的方程为:(2)y k x =+,由22(2)11612y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222(34)1616480k x k x k +++-=,代入弦长公式得:2224(1)34k AC k +=+ ,同理由221(2)11612y x k x y ⎧=-+⎪⎪⎨⎪+=⎪⎩消去y 可得2222111341616480x x k k k ⎛⎫+++-= ⎪⎝⎭, 代入弦长公式得:2224(1)34k BD k +=+ ,所以2222222168(1)16811(34)(43)121(1)k AC BD k k k k ++==+++-++ 令21(01)1t k =∈+,,则24912124t t ⎛⎤-++∈ ⎥⎝⎦,,所以96147AC BD ⎡⎫+∈⎪⎢⎣⎭,,由①②可知,AC BD + 的取值范围是96147⎡⎤⎢⎥⎣⎦,.19.已知点A是圆(221:16F x y ++=上任意一点,点2F 与点1F 关于原点对称.线段2AF 的中垂线m 分别与12,AF AF 交于M 、N 两点.⑴ 求点M 的轨迹C 的方程;⑵ 设不过原点O 的直线l 与该椭圆交于P 、Q 两点,满足直线OP 、PQ 、OQ 的斜率依次成等比数列,求OPQ △面积的取值范围.【解析】 ⑴由题意得,()10F,)20F ,圆1F 的半径为4,且2MF MA =从而121112||||||||||4||MF MF MF MA AF F F +=+==>∴点M 的轨迹是以1F 、2F 为焦点的椭圆,其中长轴24a =,得到2a =,焦距2c =1b =, 椭圆方程为:2214x y +=⑵由题意可知,直线l 的斜率存在且不为0,故可设直线l 的方程为(0)y kx m m =+≠,11()P x y ,,22()Q x y ,,由22440y kx m x y =+⎧⎨+-=⎩,消去y 得222(14)8km 4(1)0k x x m +++-=, 则22222226416(14)(1)16(41)0k m k m m k m =-+-=-+>△,且122814km x x k -+=+,21224(1)14m x x k -=+,故2212111212()()()y y kx m kx m k x x km x x m =++=+++, 因为直线OP ,PQ ,OQ 的斜率依次成等比数列,所以2221212121212()y y k x x km x x m k x x x x +++⋅==,即22228014k m m k-+=+,又0m ≠, 所以214k =,即12k =±, 由于直线OP ,OQ 的斜率存在,且0>△,得202m <<且21m ≠, 原点到O 到PQ的距离d,1122OPQ S PQ d =⋅⋅=△12m ==202m <<∵且21m ≠,∴OPQ S △的取值范围为(01),.综上所述OPQ S △的取值范围为(]01,.20.已知椭圆C :22221x y a b +=(0a b >>)的离心率2e =,以坐标原点O 为圆心,半径为c (c 为椭圆的半焦距)的圆与直线l:3y =+相切.(1)求椭圆的方程;(2)若直线l 与圆O 的公共点为M ,与椭圆C 的公共点为N ,求OMN △的面积.【解析】 根据题意,圆的方程为222x y c +=.于是可得圆心()00O ,到直线l30y +-=的距离为c , 2分c =,c =.又∵c e a ==,∴2a =. 4分 ∴2221b a c =-=.6分 ∴椭圆的方程为2214x y +=.6分(Ⅱ)由22314y x y ⎧=+⎪⎨+=⎪⎩,,得29320x -+=.8分设()11N x y ,,则13x =,113y =,即直线与椭圆相切,N 为切点.∴3ON =.又OM =∴3MN ===, 10分∴112232OMN S MN OM =⋅⋅=⨯=△.12分21.已知点()44P ,,圆C :()()2253x m y m -+=<与椭圆E :22221x y a b+=(0a b >>)有一个公共点()31A ,,1F ,2F 分别是椭圆的左、右焦点,直线1PF 与圆C 相切. (Ⅰ)求m 的值与椭圆E 的方程;(Ⅱ)设Q 为椭圆E 上的一个动点,求AP AQ ⋅的范围.【解析】 (Ⅰ)点A 代入圆C 方程,得()2315m -+=.∵3m <,∴1m =圆C :()2215x y -+=.设直线1PF 的斜率为k ,则1PF :()44y k x =-+,即440kx y k --+=. ∵直线1PF 与圆C=.解得112k =,或12k =. 当112k =时,直线1PF 与x 轴的交点横坐标为3611,不合题意舍去. 当12k =时,直线1PF 与x 轴的交点横坐标为4-, ∴4c =.()140F -,,()240F ,.122a AF AF =+==,a =,218a =,22b =.椭圆E 的方程为:221182x y += (Ⅱ)()13AP = ,,设()Q x y ,,()()33136AP AQ x y x y ⋅=-+-=+-.∵221182x y +=,即()22318x y +=, 而()22323x y x y +⋅≥,∴18618xy -≤≤.则()()22336186x y x y xy xy 2+=++=+的取值范围是[]036,3x y +的取值范围是[]66-,.∴36AP AQ x y ⋅=+-的取值范围是[]120-,22. 已知椭圆22:14y C x +=,过点(01)M ,的直线l 与椭圆C 相交于两点A 、B .⑴若l 与x 轴相交于点P ,且P 为AM 的中点,求直线l 的方程;⑵设点102N ⎛⎫ ⎪⎝⎭,,求NA NB + 的最大值.【解析】 ⑴设11()A x y ,,因为P 为AM 的中点,且P 的纵坐标为0,M 的纵坐标为1,所以1102y +=,解得11y =-,又因为点11()A x y ,在椭圆C 上,所以221114y x +=,即21114x +=,解得12x =,则点A的坐标为1⎫-⎪⎪⎝⎭或1⎛⎫- ⎪ ⎪⎝⎭,所以直线l的方程为330y -+=,或330y +-=.⑵设11()A x y ,,22()B x y ,,则1112NA x y ⎛⎫=- ⎪⎝⎭ ,,2212NB x y ⎛⎫=- ⎪⎝⎭ ,,所以1212(1)NA NB x x y y +=++-,,则NA NB +=,当直线AB 的斜率不存在时,其方程为0x =,(02)A ,,(02)B -,,此时1NA NB +=;当直线AB 的斜率存在时,设其方程为1y kx =+, 由题设可得A 、B 的坐标是方程组22114y kx y x =+⎧⎪⎨+=⎪⎩的解,消去y 得22(4)230k x kx ++-=所以22(2)12(4)0k k =++>△,12224kx x k -+=+,则121228(1)(1)4y y kx kx k +=+++=+, 所以22222222281211144(4)k k NA NB k k k --⎛⎫⎛⎫+=+-=+ ⎪ ⎪+++⎝⎭⎝⎭≤, 当0k =时,等号成立,即此时NA NB +取得最大值1.综上,当直线AB 的方程为0x =或1y =时,NA NB +有最大值1.23.如图,四边形ABCD 的顶点都在椭圆22163x y +=上,对角线AC 、BD 互相垂直且平分于原点O .⑴若点A 在第一象限,直线AB 的斜率为1,求直线AB 的方程; ⑵求四边形ABCD 面积的最小值.【解析】 ⑴设()11A x y ,,()22B x y ,,直线AB 的方程为y x b =+∵四边形ABCD 的顶点都在椭圆22163x y +=上∴2226y x b x y =+⎧⎨+=⎩,∴()2226x x b ++=, 即2234260x bx b ++-=则()()222161226890b b b ∆=--=-> 1243b x x +=-,212263b x x -=∴()()()212121212y y x b x b x x b x x b =++=+++ 2222264633b b b b ---=+=又OA OB ⊥,所以12120OA OB x x y y ⋅=+=∴231203b -=∴24b =,2b =±∵点A 点在第一象限∴2b =- 所以直线AB 的方程为2y x =-⑵①若直线AB x ⊥轴,设其方程为0x x =,此时易知直线AC 、BD 的方程分别为y x =,y x =-,且四边形ABCD 是正方形,则()00A x x ,,()00B x x -,,2200163x x +=,202x =,四边形ABCD 的面积()2200248S x x ===②若直线AB 的斜率存在,设其方程为y kx m =+,()11A x y ,,()22B x y ,,2226y kx m x y =+⎧⎨+=⎩,∴()2226x kx m ++=, 即()222214km 260k x x m +++-=则()()()2222222222164212682263k m k m k m k m m k ⎡⎤∆=-+-=-+--⎣⎦()228630k m =+->122421km x x k +=-+,21222621m x x k -=+∴()()()2212121212km y y kx m kx m k x x x x m =++=+++()22222222222264262121k m k m k m m m k k k --++-==++又OA OB ⊥,所以2222212122226636602121m m k m k OA OB x x y y k k -+---⋅=+===++∴2222m k =+所以12AB x x ==-===直角三角形OAB 斜边AB 上的高h =所以12OABS h AB ∆===2==, 当且仅当0k =时取得此最小值,此时min 8S =综上所述,四边形ABCD 面积的最小值为8.24.已知椭圆2222:1x y M a b +=(0)a b >>的离心率为3,且椭圆上一点与椭圆的两个焦点构成的三角形周长为6+.⑴求椭圆M 的方程;⑵设直线l 与椭圆M 交于A B ,两点,且以AB 为直径的圆过椭圆的右顶点C ,求ABC △面积的最大值.【解析】 ⑴因为椭圆M 上一点和它的两个焦点构成的三角形周长为6+所以226a c +=+,又椭圆的离心率为3,即3c a =,所以3c =,所以3a =,c =所以1b =,椭圆M 的方程为2219x y +=.⑵法一:不妨设BC 的方程()()30y n x n =->,,则AC 的方程为1(3)y x n=--.由22(3),19y n x x y =-⎧⎪⎨+=⎪⎩得2222169109n x n x n ⎛⎫+-+-= ⎪⎝⎭, 设()11A x y ,,()22B x y ,,因为222819391n x n -=+,所以22227391n x n -=+,同理可得2122739n x n -=+,所以26||91BC n =+,22266||99n AC n n =++, 2222121136(1)||||22(91)(9)1649ABC n n n n S BC AC n n n n ⎛⎫+ ⎪+⎝⎭=⋅⋅=⋅=++⎛⎫++⎪⎝⎭△, 设12t n n =+≥,则22236464899t S t t t ==++≤,当且仅当83t =时取到等号,所以ABC △面积的最大值为38.法二:不妨设直线AB 的方程x ky m =+.由2219x ky m x y =+⎧⎪⎨+=⎪⎩,消去x 得222(9)290k y kmy m +++-=, 设11()A x y ,,22()B x y ,,则有12229km y y k +=-+,212299m y y k -=+. ①因为以AB 为直径的圆过点C ,所以 0CA CB ⋅=.由 ()()112233CA x y CB x y =-=- ,,,,得 1212(3)(3)0x x y y --+=. 将1122x ky m x ky m =+=+,代入上式,得 221212(1)(3)()(3)0k y y k m y y m ++-++-=.将 ① 代入上式,解得 125m =或3m =(舍)所以125m =(此时直线AB 经过定点1205D ⎛⎫⎪⎝⎭,,与椭圆有两个交点),所以121||||2ABC S DC y y ∆=-12= 设211099t t k =<+,≤,则ABC S ∆. 所以当25102889t ⎛⎤=∈ ⎥⎝⎦,时,ABC S △取得最大值38.25.已知椭圆W 的中心在原点,焦点在x 轴上,离心率为3,两条准线间的距离为6.椭圆W 的左焦点为F ,过左准线与x 轴的交点M 任作一条斜率不为零的直线l 与椭圆W 交于不同的两点A 、B ,点A 关于x 轴的对称点为C . ⑴求椭圆W 的方程;⑵求证:CF FB λ=(λ∈R ); ⑶求MBC ∆面积S 的最大值.【解析】 ⑴ 设椭圆W 的方程为22221x y a b+=,由题意可知2222,26,c a a b c a c ⎧=⎪⎪⎪=+⎨⎪⎪⋅=⎪⎩解得a =,2c =,b , 所以椭圆W 的方程为22162x y +=.⑵ 解法1:因为左准线方程为23a x c=-=-,所以点M 坐标为(30)-,.于是可设直线l 的方程为(3)y k x =+.22(3),162y k x x y =+⎧⎪⎨+=⎪⎩得2222(13)182760k x k x k +++-=. 由直线l 与椭圆W 交于A 、B 两点,可知2222(18)4(13)(276)0k k k ∆=-+->,解得223k <.设点A ,B 的坐标分别为11(,)x y ,22(,)x y ,则21221813k x x k -+=+,212227613k x x k-=+,11(3)y k x =+,22(3)y k x =+. 因为(2,0)F -、11(,)C x y -,所以11(2,)FC x y =+- ,22(2,)FB x y =+.又因为1221(2)(2)()x y x y +-+- 1221(2)(3)(2)(3)x k x x k x =+++++ 1212[25()12]k x x x x =+++2222541290[12]1313k k k k k --=++++2222(5412901236)013k k k k k --++==+,所以CF FB λ=.解法2:因为左准线方程为23a x c=-=-,所以点M 坐标为(30)-,.于是可设直线l 的方程为(3)y k x =+,点A ,B 的坐标分别为11(,)x y ,22(,)x y , 则点C 的坐标为11(,)x y -,11(3)y k x =+,22(3)y k x =+. 由椭圆的第二定义可得 22113||||||3||x y FB FC x y +==+, 所以B ,F ,C 三点共线,即CF FB =. ⑶ 由题意知1211||||||||22S MF y MF y =+121||||2MF y y =⋅+ 121|()6|2k x x k =++ 23||13k k =+313||||k k =≤=+,当且仅当213k =时“=”成立,所以MBC ∆面积S的最大值为2.26.如图,椭圆()222210x y a b a b+=>>的左焦点为F ,过点F 的直线交椭圆于A 、B 两点,当直线AB 经过椭圆的一个顶点时,其倾斜角恰为60︒. ⑴ 求该椭圆的离心率;⑵ 设线段AB 的中点为G ,AB 的中垂线与x 轴和y 轴分别交于D 、E 两点,记GFD △的面积为1S ,OED △(O 为原点)的面积为2S ,求12S S 的取值范围.【解析】 ⑴依题意,当直线AB 经过椭圆的顶点(0,)b 时,其倾斜角为60︒设 (,0)F c -,则tan 60bc︒==.将 b = 代入 222a b c =+,解得 2a c =. 所以椭圆的离心率为 12c e a ==.⑵由⑴,椭圆的方程可设为2222143x y c c+=.设11(,)A x y ,22(,)B x y .依题意,直线AB 不能与,x y 轴垂直,故设直线AB 的方程为()y k x c =+,将其代入2223412x y c +=,整理得222222(43)84120k x ck x k c c +++-=.则 2122843ck x x k -+=+, 121226(2)43ck y y k x x c k +=++=+,22243(,)4343ck ckG k k -++.因为 GD AB ⊥,所以 2223431443Dck k k ck x k +⨯=---+,2243D ck x k -=+. 因为 △GFD ∽△OED ,所以 2222222212222243()()||434343||()43ck ck ck S GD k k k ck S OD k ---++++==-+ 222242222242(3)(3)99999()ck ck c k c k ck c k k ++===+>.所以12S S 的取值范围是(9,)+∞. 27.已知1F ,2F 分别是椭圆15:22=+y x E 的左、右焦点,1F ,2F 关于直线02=-+y x 的对称点是圆C 的一条直径的两个端点.⑴求圆C 的方程;⑵设过点2F 的直线l 被椭圆E 和圆C 所截得的弦长分别为a ,b .当ab 最大时,求直线l 的方程.【解析】 ⑴ 先求圆C 关于直线02=-+y x 对称的圆D,由题知圆D 的直径为12F F ,所以圆D 的圆心0,0D (),半径2r c ===,圆心0,0D ()与圆心C 关于直线02=-+y x 对称(2,2)C ⇒⇒圆C 的方程为:22(2)(2)4x y -+-=.⑵由⑴知2F (2,0), ,据题可设直线l 方程为: x = my +2,m∈R. 这时直线l 可被圆和椭圆截得2条弦,符合题意.圆C:4)2()2(22=-+-y x 到直线l 的距离=.⇒在圆中,有勾股定理得: 22222444(41m 1m m b =-=++.设直线与椭圆相交于点1122(,),(,)E x y F x y ,联立直线和椭圆方程,整理得:5204544)(0145(22212122+=++-=++=+⇒=-++m m m my y m x x my y m )由椭圆的焦半径公式 得:51525)(210)(5252222121++⋅=+-=+-=m m x x x x a5158m 14515222222++⋅=+⋅++⋅=∴m m m m ab .令()0()5f x x y f x x =≥⇒=+在[0,3]上单调递增,在[3,)+∞上单调递减令()(3)f x f ≤⇒当23m =时,ab 取最大值,这时直线方程为: 2.x =+所以当ab 取最大值,直线方程为2x =+。
圆锥曲线常见题型归纳一、基础题涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。
此类题在考试中最常见,解此类题应注意:(1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况;(3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=;例题:(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( )A .421=+PF PFB .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)方程8=表示的曲线是_____ (答:双曲线的左支)(3)已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2)(4)已知方程12322=-++k y k x 表示椭圆,则k 的取值范围为____ (答:11(3,)(,2)22---); (5)双曲线的离心率等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______(答:2214x y -=);(6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)二、定义题对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。
此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。
解析几何大题专题第一类题型 弦长面积问题1.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率是2,且过点P .直线2y x m =+与椭圆C 相交于,A B 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)求PAB △的面积的最大值;(Ⅲ)设直线,PA PB 分别与y 轴交于点,M N .判断||PM ,||PN 的大小关系,并加以证明.2. (本小题14分) 已知椭圆22:13+=x y C m m,直线:20+-=l x y 与椭圆C 相交于P ,Q 两点,与x 轴交于点B ,点,P Q 与点B 不重合.(Ⅰ)求椭圆C 的离心率;(Ⅱ)当2∆=OPQ S 时,求椭圆C 的方程;(Ⅲ)过原点O 作直线l 的垂线,垂足为.N 若λ=PN BQ ,求λ的值.3.(本小题共14分)已知椭圆2222:1(0)x yC a ba b+=>>离心率等于12,(2,3)P、(2,3)Q-是椭圆上的两点.(Ⅰ)求椭圆C的方程;(Ⅱ),A B是椭圆上位于直线PQ两侧的动点,若直线AB的斜率为12,求四边形APBQ面积的最大值.4.(本小题满分14分)已知椭圆C:2231(0)mx my m+=>的长轴长为O为坐标原点.(Ⅰ)求椭圆C的方程和离心率;(Ⅱ)设点(3,0)A,动点B在y轴上,动点P在椭圆C上,且P在y轴的右侧,若||||BA BP=,求四边形OPAB面积的最小值.5.(本小题共14分)已知椭圆C:2214xy+=,F为右焦点,圆O:221x y+=,P为椭圆C上一点,且P位于第一象限,过点P作PT与圆O相切于点T,使得点F,T在OP两侧.(Ⅰ)求椭圆C的焦距及离心率;(Ⅱ)求四边形OFPT面积的最大值.6.(本小题13分)已知抛物线C:y2=2px经过点P(2,2),A,B是抛物线C上异于点O的不同的两点,其中O为原点.(I)求抛物线C的方程,并求其焦点坐标和准线方程;(II)若OA OB,求△AOB面积的最小值.第二类题型 圆过定点问题( 包括点在圆上 点在圆外 点在圆内)1.(本小题满分14 分)已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,椭圆C 与y 轴交于A , B 两点,且|AB |=2.(Ⅰ)求椭圆C 的方程;(Ⅱ)设点P 是椭圆C 上的一个动点,且直线PA ,PB 与直线x =4分别交于M , N两点.是否存在点P 使得以MN 为直径的圆经过点(2,0)?若存在,求出点P 的横坐标;若不存在,说明理由。
圆锥曲线整理1.圆锥曲线的定义:(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|);(2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d .圆锥曲线的定义是本部分的一个重点内容,在解题中有广泛的应用,在理解时要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时2222bx a y +=1(0a b >>)。
%(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222b x a y -=1(0,0a b >>)。
(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。
注意:1.圆锥曲线中求基本量,必须把圆锥曲线的方程化为标准方程。
2.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):椭圆:由x2,y 2分母的大小决定,焦点在分母大的坐标轴上。
1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且 ① 设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得 .1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM =λAB .(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=由得所以⎪⎩⎪⎨⎧=-=.)1(00a y ea x λλ 因为点M 在椭圆上,所以 ,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1|1|0)(|||21221c eec e a c e d PF =+=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是 即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形.[来源:Z,xx,]3.设R y x ∈,,j i、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a )3( ,)3(-+=++=,且4=+b a.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长.[来源学+科+网][启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R OB OA OM ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由y y x x +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x OM =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •=0,求直线PQ 的方程;(3)设AP =λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP ∆=,且3,3OF FP t OM OP j ⋅==+ .(I )设443,t OF FP θ<<求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2OP c t c OF 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-,0MA AP ⋅=. (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8. 已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。
.高考二轮复习专项:圆锥曲线大题集1.如图,直线 l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点, M 在l1上的射影点是N ,且|BN|=2|DM|.(Ⅰ)建立适当的坐标系,求动点M 的轨迹C 的方程.(Ⅱ)过点D 且不与l1、l2垂直的直线 l 交(Ⅰ)中的轨迹 C 于E 、F 两点;另外平面上的点G 、 H 满足:AGAD(R);GEGF2GH;GHEF0.求点G 的横坐标的取值X 围. l2e3M22. 设椭圆的中心是坐标原点,焦点在x轴上,离心率,点P(0,3)到这个椭圆 上的点的最远距离是 4,求这个椭圆的方程.BD N Bl1 Ax 2 y 21(a b 0) x 25, 3.C1: b 2椭圆 a 2 的一条准线方程是4 其左、右顶点分别 是A 、B ;双曲线C2x 2y 2:a 2 b 2 1 的一条渐近线方程为3x -5y=0. 〔Ⅰ〕求椭圆C1的方程及双曲线 C2的离心率; 〔Ⅱ〕在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆 1 于点N ,假设AM MP. 求证: MN AB0.C4. 椭圆的中心在坐标原点 O,右焦点F 〔c,0〕到相应准线的距离为 1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为 a.〔1〕用半焦距c 表示椭圆的方程及tan;〔2〕假设2<tan <3,求椭圆率心率 e 的取值X 围.x 2 y 26 5.椭圆a 2 b 2e〔a >b >0〕的离心率3,过点A 〔0,-b 〕和B 〔a ,0〕的直线3与原点的距离为2 〔1〕求椭圆的方程〔2〕定点E 〔-1,0〕,假设直线y =kx +2〔k ≠0〕与椭圆交于CD 两点问:是否存在k 的值,使以CD 为直径的圆过E 点?请说明理由6.在直角坐标平面中,ABC 的两个顶点A,B的坐标分别为A(1,0),B(1,0),平面内两点G,M同时满足以下条件:①GAGBGC0MAMB MC;②;③GM∥ABWord资料.〔1〕求ABC的顶点C的轨迹方程;〔2〕过点P(3,0)的直线l与〔1〕中轨迹交于E,F两点,求PEPF的取值X围7. 设x,y R,i,j 为直角坐标平面内x轴.y轴正方向上的单位向量,假设a xi(y2)j,bxi (y2)j,且|a||b|8〔Ⅰ〕求动点 M(x,y)的轨迹C的方程;〔Ⅱ〕设曲线 C上两点A.B,满足(1) 直线AB过点〔0,3〕,(2)假设OP OAOB,那么OAPB 为矩形,试求 AB方程.8. 抛物线C:y2m(xn),(m 0,n 0)的焦点为原点,C的准线与直线l:kxy2k 0(k 0)的交点M在x轴上,l与C交于不同的两点A、B,线段AB的垂直平分线交x轴于点N〔p,0〕.〔Ⅰ〕求抛物线C的方程;〔Ⅱ〕XX数p的取值X围;〔Ⅲ〕假设C的焦点和准线为椭圆Q的一个焦点和一条准线,试求Q的短轴的端点的轨迹方程.9. 如图,椭圆的中心在原点,长轴AA1在x轴上.以A、A1为焦点的双曲线交椭圆于C、D、1 AE23 D1、C1四点,且|CD|=2|AA1|.椭圆的一条弦AC交双曲线于E,设EC ,当34 时,求双曲线的离心率e的取值X围.Word资料.10. 三角形ABC的三个顶点均在椭圆4x25y280上,且点A是椭圆短轴的一个端点〔点A在y轴正半轴上〕.假设三角形ABC的重心是椭圆的右焦点,试求直线BC的方程;假设角A为900,AD垂直BC于D,试求点D的轨迹方程.11. 如图,过抛物线x24y的对称轴上任一点P(0,m)(m 0)作直线与抛物线交于A,B两点,点Q是点P关于原点的对称点.(1) 设点P分有向线段AB所成的比为,证明: QP(QAQB);(2) 设直线AB的方程是x2y 12 0,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.p2p12. 动点P〔p,-1〕,Q〔p,12〕,过Q作斜率为2的直线l,PQ中点M的轨迹为曲线C.〔1〕证明:l经过一个定点而且与曲线C一定有两个公共点;〔2〕假设〔1〕中的其中一个公共点为A,证明:AP是曲线C的切线;〔3〕设直线AP的倾斜角为,AP与l的夹角为,证明:或是定值.Word资料.13.在平面直角坐标系内有两个定点 F 1、F2和动点 P ,F 1、F 2坐标分别为F 1(1,0)、|PF 1|2F 2(1,0),动点P 满足|PF2|2 ,动点P 的轨迹为曲线C,曲线C关于直线yx的对称曲线为曲线C',直线yx m 3与曲线C'交于A 、B 两点,O 是坐标原点,△ABO 的面积为7,〔1〕求曲线C 的方程;〔2〕求m 的值。
专题18 圆锥曲线高频压轴解答题目录01 轨迹方程 (2)02 向量搭桥进行翻译 (3)03 弦长、面积背景的条件翻译 (4)04 斜率之和差商积问题 (5)05 弦长、面积范围与最值问题 (6)06 定值问题 (7)07 定点问题 (9)08 三点共线问题 (10)09 中点弦与对称问题 (11)10 四点共圆问题 (12)11 切线问题 (13)12 定比点差法 (14)13 齐次化 (16)14 极点极线问题 (16)15 同构问题 (18)16 蝴蝶问题 (19)01 轨迹方程1.(2024·重庆·高三重庆南开中学校考阶段练习)已知双曲线22221(0,0)x y a b a b-=>>的一条浙近线方程为y x =,且点P在双曲线上.(1)求双曲线的标准方程;(2)设双曲线左右顶点分别为,A B ,在直线1x =上取一点()()1,0P t t ¹,直线AP 交双曲线右支于点C ,直线BP 交双曲线左支于点D ,直线AD 和直线BC 的交点为Q ,求证:点Q 在定直线上.2.(2024·重庆·统考模拟预测)已知椭圆C :()222210x y a b a b+=>>的长轴长是短轴长的2倍,直线12y x =被椭圆截得的弦长为4.(1)求椭圆C 的方程;(2)设M ,N ,P ,Q 为椭圆C 上的动点,且四边形MNPQ 为菱形,原点О在直线MN 上的垂足为点H ,求H 的轨迹方程.3.(2024·福建莆田·统考一模)曲线C 上任意一点P 到点(2,0)F 的距离与它到直线4x =的距离之比等于(4,0)M 且与x 轴不重合的直线l 与C 交于不同的两点,A B .(1)求C 的方程;(2)求证:ABF △内切圆的圆心在定直线上.02 向量搭桥进行翻译4.(2024·陕西咸阳·校考模拟预测)已知椭圆2222:1(0)x y C a b a b +=>>的离心率是双曲线2213x y -=的离心率的倒数,椭圆C 的左、右焦点分别为12,F F ,上顶点为P ,且122PF PF ×=-uuu r uuu u r.(1)求椭圆C 的方程;(2)当过点()0,2Q 的动直线l 与椭圆C 相交于两个不同点,A B 时,设AQ QB l =uuu ruuu r,求l 的取值范围.5.(2024·上海奉贤·统考一模)已知椭圆22221(0)x y a b a b +=>>的焦距为,椭圆的左右焦点分别为1F 、2F ,直角坐标原点记为O .设点()0,P t ,过点P 作倾斜角为锐角的直线l 与椭圆交于不同的两点B 、C .(1)求椭圆的方程;(2)设椭圆上有一动点T ,求()12PT TF TF ×-uuu r uuu r uuu r的取值范围;(3)设线段BC 的中点为M ,当t ³Q ,使得非零向量OM uuuu r与向量PQ uuu r 平行,请说明理由.6.(2024·云南昆明·高三统考期末)已知动点P 到定点()0,4F 的距离和它到直线1y =距离之比为2;(1)求点P 的轨迹C 的方程;(2)直线l 在x 轴上方与x 轴平行,交曲线C 于A ,B 两点,直线l 交y 轴于点D .设OD 的中点为M ,是否存在定直线l ,使得经过M 的直线与C 交于P ,Q ,与线段AB 交于点N ,PM PN l =uuuu r uuu r ,MQ QN l =uuuur uuu r 均成立;若存在,求出l 的方程;若不存在,请说明理由.03 弦长、面积背景的条件翻译7.(2024·陕西榆林·统考一模)已知椭圆()2222:10x y C a b a b +=>>经过()830,1,,55A P æö-ç÷èø两点.(1)求C 的方程;(2)斜率不为0的直线l 与椭圆C 交于,M N 两点,且点A 不在l 上,AM AN ^,过点P 作y 轴的垂线,交直线=1x -于点S ,与椭圆C 的另一个交点为T ,记SMN V 的面积为1S ,TMN △的面积为2S ,求12S S .8.(2024·四川绵阳·高三绵阳南山中学实验学校校考阶段练习)已知椭圆()2222:10x y E a b a b +=>>的左、右焦点为1F ,2F ,若E 上任意一点到两焦点的距离之和为4,且点æççè在E 上.(1)求椭圆E 的方程;(2)在(1)的条件下,若点A ,B 在E 上,且14OA OB k k ×=-(O 为坐标原点),分别延长AO ,BO 交E 于C ,D 两点,则四边形ABCD 的面积是否为定值?若为定值,求四边形ABCD的面积,若不为定值,请说明理由.9.(2024·上海·高三上海市大同中学校考期末)已知双曲线H :2214x y -=的左、右焦点为1F ,2F ,左、右顶点为1A ,2A ,椭圆E 以1A ,2A 为焦点,以12F F 为长轴.(1)求椭圆E 的离心率;(2)设椭圆E 交y 轴于1B ,2B ,过1B 的直线l 交双曲线H 的左、右两支于C ,D 两点,求2B CD △面积的最小值;(3)设点(),M m n 满足224m n <.过M 且与双曲线H 的渐近线平行的两直线分别交H 于点P ,Q .过M 且与PQ 平行的直线交H 的渐近线于点S ,T .证明:MSMT为定值,并求出此定值.04 斜率之和差商积问题10.(2024·贵州铜仁·校联考模拟预测)在平面直角坐标系中,已知过动点(),M x y 作x 轴垂线,分别与1y =和4y =-交于P ,Q 点,且()12,0A -,()22,0A ,若实数l 使得212OP OQ MA MA l ×=×uuu r uuu r uuuu r uuuu r成立(其中O 为坐标原点).(1)求M l 为何值时M 点的轨迹为椭圆;(2)当l =()4,0B 的直线l 与轨迹M 交于y 轴右侧C ,D 两点,证明:直线1A C ,2A D 的斜率之比为定值.11.(2024·安徽·高三校联考期末)已知抛物线2:2(0)C y px p =>的焦点为F ,点()04,P y 是抛物线C 上一点,点Q 是PF 的中点,且Q 到抛物线C 的准线的距离为72.(1)求抛物线C 的方程;(2)已知圆22:(2)4M x y -+=,圆M 的一条切线l 与抛物线C 交于A ,B 两点,O 为坐标原点,求证:OA ,OB 的斜率之差的绝对值为定值.12.(2024·海南海口·统考模拟预测)在平面直角坐标系xOy 中,已知双曲线2222:1(0,0)x y C a b a b-=>>的左顶点为A ,焦点到渐近线的距离为2.直线l 过点(),0(02)P t t <<,且垂直于x 轴,过P 的直线l ¢交C 的两支于,G H 两点,直线,AG AH 分别交l 于,M N 两点.(1)求C 的方程;(2)设直线,AN OM 的斜率分别为12,k k ,若1212k k ×=,求点P 的坐标.05 弦长、面积范围与最值问题13.(2024·陕西商洛·镇安中学校考模拟预测)已知12,F F 分别为椭圆2222:1(0)x y M a b a b +=>>的左、右焦点,直线1l 过点2F 与椭圆交于,A B 两点,且12AF F △的周长为(2a +.(1)求椭圆M 的离心率;(2)直线2l 过点2F ,且与1l 垂直,2l 交椭圆M 于,C D 两点,若a =ACBD 面积的范围.14.(2024·河南·统考模拟预测)已知抛物线2:4C y x =的焦点为F ,过F 的直线l 交C 于,A B 两点,过F 与l 垂直的直线交C 于,D E 两点,其中,B D 在x 轴上方,,M N 分别为,AB DE 的中点.(1)证明:直线MN 过定点;(2)设G 为直线AE 与直线BD 的交点,求GMN V 面积的最小值.15.(2024·上海嘉定·统考一模)抛物线24y x =上有一动点(,),0P s t t >.过点P 作抛物线的切线l ,再过点P 作直线m ,使得m l ^,直线m 和抛物线的另一个交点为Q .(1)当1s =时,求切线l 的直线方程;(2)当直线l 与抛物线准线的交点在x 轴上时,求三角形OPQ 的面积(点O 是坐标原点);(3)求出线段||PQ 关于s 的表达式,并求||PQ 的最小值;06 定值问题16.(2024·全国·模拟预测)如图,已知12,F F 分别为椭圆C :()222210x y a b a b +=>>的左、右焦点,P 为椭圆C 上一点,若12124PF PF PF PF +=-=uuu r uuu u r uuu r uuu u r,122PF F S =△.(1)求椭圆C 的标准方程;(2)若点P 坐标为),设不过点P 的直线l 与椭圆C 交于A ,B 两点,A 关于原点的对称点为A ¢,记直线l ,PB ,PA ¢的斜率分别为k ,1k ,2k ,若1213k k ×=,求证:直线l 的斜率k 为定值.17.(2024·安徽·高三校联考阶段练习)已知双曲线221222:1(0,0),,x y C a b F F a b -=>>分别是C 的左、右焦点.若C 的离心率2e =,且点()4,6在C 上.(1)求C 的方程.(2)若过点2F 的直线l 与C 的左、右两支分别交于,A B 两点(不同于双曲线的顶点),问:2211AF BF -是否为定值?若是,求出该定值;若不是,请说明理由.18.(2024·全国·高三阶段练习)如图所示,已知抛物线()21,0,1,,y x M A B =-是抛物线与x 轴的交点,过点M 作斜率不为零的直线l 与抛物线交于,C D 两点,与x 轴交于点Q ,直线AC 与直线BD 交于点P .(1)求CM DM CD×的取值范围;(2)问在平面内是否存在一定点T ,使得TP TQ ×uur uuu r为定值?若存在,求出点T 的坐标;若不存在,请说明理由.07 定点问题19.(2024·广东广州·广东实验中学校考一模)设抛物线2:2(0)E y px p =>,过焦点F 的直线与抛物线E 交于点()11,A x y 、()22,B x y .当直线AB 垂直于x 轴时,2AB =.(1)求抛物线E 的标准方程.(2)已知点()1,0P ,直线AP 、BP 分别与抛物线E 交于点C 、D .求证:直线CD 过定点.20.(2024·宁夏银川·高三银川一中校考阶段练习)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>的左,右顶点分别为A 、B ,点F 是椭圆的右焦点,3AF FB =uuu r uuu r ,3AF FB ×=uuu r uuu r .(1)求椭圆C 的方程;(2)经过椭圆右焦点F 且斜率不为零的动直线l 与椭圆交于M 、N 两点,试问x 轴上是否存在异于点F 的定点T ,使||||||||MF NT NF MT ×=×恒成立?若存在,求出T 点坐标,若不存在,说明理由.21.(2024·四川甘孜·统考一模)在平面直角坐标系xOy 中,抛物线2:2(0)E y px p =>的焦点为,F E 的准线l 交x 轴于点K ,过K 的直线l 与抛物线E 相切于点A ,且交y 轴正半轴于点P .已知E 上的动点B 到点F 的距离与到直线2x =-的距离之和的最小值为3.(1)求抛物线E 的方程;(2)过点P 的直线交E 于,M N 两点,过M 且平行于y 轴的直线与线段OA 交于点T ,点H 满足MT TH =uuur uuu r.证明:直线HN 过定点.08 三点共线问题22.(2024·广东·高三校联考阶段练习)点F 是抛物线G :22y px =(0p >)的焦点,O 为坐标原点,过点F 作垂直于x 轴的直线l ,与抛物线G 相交于A ,B 两点,AB 4=,抛物线G 的准线与x 轴交于点K .(1)求抛物线G 的方程;(2)设C 、D 是抛物线G 上异于A 、B 两点的两个不同的点,直线AC 、BD 相交于点E ,直线AD 、BC 相交于点G ,证明:E 、G 、K 三点共线.23.(2024·贵州毕节·校考模拟预测)已知F 是抛物线2:2(0)C y px p =>的焦点,过点F 的直线交抛物线C 于,A B 两点,当AB 平行于y 轴时,2AB =.(1)求抛物线C 的方程;(2)若O 为坐标原点,过点B 作y 轴的垂线交直线AO 于点D ,过点A 作直线DF 的垂线与抛物线C 的另一交点为,E AE 的中点为G ,证明:,,G B D 三点共线.24.(2024·贵州贵阳·高三贵阳一中校考期末)已知A ,B 为椭圆()2222:10x y C a b a b+=>>的左、右顶点,P 为椭圆上异于A ,B 的一点,直线AP 与直线BP 的斜率之积为14-,且椭圆C 过点12ö÷ø.(1)求椭圆C 的标准方程;(2)若直线AP ,BP 分别与直线:4l x =相交于M ,N 两点,且直线BM 与椭圆C 交于另一点Q ,证明:A ,N ,Q 三点共线.09 中点弦与对称问题25.(2024·福建福州·高三福建省福州格致中学校考期末)已知椭圆()2222:10x y C a b a b+=>>的离心率为12,椭圆上的点到焦点的最小距离是3.(1)求椭圆C 的方程;(2)是否存在过点31,2Q æöç÷èø的直线交曲线C 于AB 两点,使得Q 为AB 中点?若存在,求该直线方程,若不存在,请说明理由.26.(2024·全国·高三专题练习)已知圆22:(3)4M x y ++=,圆22:(3)100N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C (1)求C 的方程;(2)是否存在过点31,2Q æöç÷èø的直线交曲线C 于AB 两点,使得Q 为AB 中点?若存在,求该直线方程,若不存在,请说明理由.27.(2024·贵州黔东南·高三校考阶段练习)已知椭圆C :()222210x y a b a b +=>>的一个焦点为()1,0F -,且点F 到C 的左、右顶点的距离之积为5.(1)求椭圆C 的标准方程;(2)过点F 作斜率乘积为1-的两条直线1l ,2l ,1l 与C 交于A ,B 两点,2l 与C 交于D ,E 两点,线段AB ,DE 的中点分别为M ,N .证明:直线MN 与x 轴交于定点,并求出定点坐标.10 四点共圆问题28.(2024·湖北·高三校联考阶段练习)已知双曲线22:1x C a =的离心率为2,过C 上的动点M 作曲线C 的两渐近线的垂线,垂足分别为A 和,B ABM V .(1)求曲线C 的方程;(2)如图,曲线C 的左顶点为D ,点N 位于原点与右顶点之间,过点N 的直线与曲线C 交于,G R 两点,直线l 过N 且垂直于x 轴,直线DG ,DR 分别与l 交于,P Q 两点,若,,,O D P Q 四点共圆,求点N 的坐标.29.(2024·河南·高三校联考阶段练习)已知椭圆2222:1x y C a b+=()0a b >>的左、右焦点分别为1F ,2F ,点D 在C 上,132DF =,252DF =,212DF F F >,且12DF F △的面积为32.(1)求C 的方程;(2)设C 的左顶点为A ,直线:6l x =-与x 轴交于点P ,过P 作直线交C 于G ,H 两点直线AG ,AH 分别与l 交于M ,N 两点,O 为坐标原点,证明:O ,A ,N ,M 四点共圆.30.(2024·江苏南通·统考模拟预测)已知动圆M 过点(1,0)F 且与直线=1x -相切,记动圆圆心M 的轨迹为曲线C .(1)求曲线C 的方程;(2)若直线():0l x m m =<与x 轴相交于点P ,点B 为曲线C 上异于顶点O 的动点,直线PB 交曲线C 于另一点D ,直线BO 和DO 分别交直线l 于点S 和T .若,,,O F S T 四点共圆,求m 的值.11 切线问题31.(2024·河南周口·高三校联考阶段练习)已知点()2,1A 的椭圆2222:1(0)x y M a b a b +=>>上,点,B C 为椭圆M 上异于点A 的两点.(1)求椭圆M 的方程;(2)若AB AC ^,过点,B C 两点分别作椭圆M 的切线,这两条切线的交点为D ,求AD 的最小值.32.(2024·山东德州·高三德州市第一中学校考阶段练习)如图所示,已知椭圆C :22163x y +=与直线l :163xy +=.点P 在直线l 上,由点P 引椭圆C 的两条切线PA 、PB ,A 、B 为切点,O 是坐标原点.(1)若点P 为直线l 与y 轴的交点,求PAB V 的面积S ;(2)若OD AB ^,D 为垂足,求证:存在定点Q ,使得DQ 为定值.(注:椭圆22221x ya b+=在其上一点处()00,M x y 的切线方程为00221x x y ya b+=)33.(2024·辽宁辽阳·高三统考期末)在平面直角坐标系xOy 内,已知定点()2,0F ,定直线3:2l x =,动点P 到点F 和直线l P 的轨迹为曲线E .(1)求曲线E 的方程.(2)以曲线E 上一动点M 为切点作E 的切线l ¢,若直线l ¢与直线l 交于点N ,试探究以线段MN 为直径的圆是否过x 轴上的定点.若过定点.求出该定点坐标;若不过,请说明理由.12 定比点差法34.(2024·吉林·统考一模)已知抛物线21:2(0)C y px p =>的焦点F 到其准线的距离为4,椭圆22222:1(0)x y C a b a b +=>>经过抛物线1C 的焦点F .(1)求抛物线1C 的方程及a ;(2)已知O 为坐标原点,过点(1,1)M 的直线l 与椭圆2C 相交于A ,B 两点,若=uuuu r uuurAM mMB ,点N 满足=-uuu r uuu r AN mNB ,且||ON 最小值为125,求椭圆2C 的离心率.35.(2024·江苏·高二专题练习)已知椭圆()2222:10x y a b a bG +=>>的离心率为23,半焦距为()0c c >,且1a c -=.经过椭圆的左焦点F ,斜率为()110k k ¹的直线与椭圆交于A 、B 两点,O 为坐标原点.(1)求椭圆G 的标准方程;(2)当11k =时,求AOB S V 的值;(3)设()1,0R ,延长AR ,BR 分别与椭圆交于C ,D 两点,直线CD 的斜率为2k ,求证:12k k 为定值.36.(2024·安徽合肥·统考一模)在平面直角坐标系xOy 中,F 是抛物线()2:20C x py p =>的焦点,M是抛物线C 上位于第一象限内的任意一点,过,,M F O 三点的圆的圆心为N ,点N 到抛物线C 的准线的距离为34.(1)求抛物线C 的方程;(2)当过点()4,1P 的动直线l 与抛物线C 相交于不同点,A B 时,在线段AB 上取点Q ,满足AP QB AQ PB ×=×u u u r u u u r u u u r u u r,证明:点Q 总在某定直线上.13 齐次化37.已知椭圆22:13x C y +=,()0,1B ,P ,Q 为上的两个不同的动点,23BP BQ k k =,求证:直线PQ 过定点.38.已知椭圆22:14x C y +=,设直线l 不经过点2(0,1)P 且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:直线l 过定点.39.如图,椭圆22:12x E y +=,经过点(1,1)M ,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q(均异于点(0,1)A -,证明:直线AP 与AQ 的斜率之和为2.14 极点极线问题40.(2024·江苏南通·高二统考开学考试)已知双曲线C :22221x y a b -=(0a >,0b >)实轴端点分别为()1,0A a -,()2,0A a ,右焦点为F ,离心率为2,过1A 点且斜率1的直线l 与双曲线C 交于另一点B ,已知1A BF △的面积为92.(1)求双曲线的方程;(2)若过F 的直线l ¢与双曲线C 交于M ,N 两点,试探究直线1A M 与直线2A N 的交点Q 是否在某条定直线上?若在,请求出该定直线方程;如不在,请说明理由.41.(2024·安徽六安·校联考一模)已知椭圆()2222:10x y C a b a b+=>>的离心率为12,短轴长为(1)求椭圆C 的方程;(2)设A ,B 分别为椭圆C 的左、右顶点,若过点()4,0P 且斜率不为0的直线l 与椭圆C 交于M 、N 两点,直线AM 与BN 相交于点Q .证明:点Q 在定直线上.42.(2024·北京海淀·统考模拟预测)已知椭圆M :22221x y a b +=(a >b >0)过A (-2,0),B (0,1)两点.(1)求椭圆M 的离心率;(2)设椭圆M 的右顶点为C ,点P 在椭圆M 上(P 不与椭圆M 的顶点重合),直线AB 与直线CP 交于点Q ,直线BP 交x 轴于点S ,求证:直线SQ 过定点.15 同构问题43.(2024·广东广州·统考一模)已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2,圆M 与y 轴相切,且圆心M 与抛物线C 的焦点重合.(1)求抛物线C 和圆M 的方程;(2)设()()000,2P x y x ¹为圆M 外一点,过点P 作圆M 的两条切线,分别交抛物线C 于两个不同的点()()1122,,,A x y B x y 和点()()3344,,,Q x y R x y .且123416y y y y =,证明:点P 在一条定曲线上.44.(2024·湖北襄阳·襄阳五中校考一模)已知抛物线21:C y x =,圆()222:41C x y -+=.(1)求圆心2C 到抛物线1C 准线的距离;(2)已知点P 是抛物线1C 上一点(异于原点),过点P 作圆2C 的两条切线,交抛物线1C 于A 、B 两点,若直线2PC 的斜率为1k ,直线AB 的斜率为2k ,125·24k k =-,求点P 的坐标.45.(2024·内蒙古呼和浩特·统考一模)拋物线C 的顶点为坐标原点O ,焦点在x 轴上,直线l :2x =交C 于P ,Q 两点,且OP OQ ^.已知点M 的坐标为()4,0,M e 与直线l 相切.(1)求抛物线C 和M e 的标准方程;(2)已知点()8,4N ,点1A ,2A 是C 上的两个点,且直线1NA ,2NA 均与M e 相切.判断直线12A A 与M e 的位置关系,并说明理由.46.(2024·浙江杭州·高二萧山中学校考期末)已知圆C 的方程为:()()22210x y r r ++=>(1)已知过点15,22M æö-ç÷èø的直线l 交圆C 于,A B 两点,若1r =,求直线l 的方程;(2)如图,过点()1,1N -作两条直线分别交抛物线2y x =于点P ,Q ,并且都与动圆C 相切,求证:直线PQ 经过定点,并求出定点坐标.16 蝴蝶问题47.(2024·重庆渝中·高三重庆巴蜀中学校考阶段练习)如图,B ,A 是椭圆22:14x C y +=的左、右顶点,P ,Q 是椭圆C 上都不与A ,B 重合的两点,记直线BQ ,AQ ,AP 的斜率分别是BQ k ,AQ k ,AP k .(1)求证:14BQ AQ k k ×=-;(2)若直线PQ 过定点6,05æöç÷èø,求证:4AP BQ k k =.48.(2024·江苏宿迁·高二统考期末)已知椭圆2222:1(0)x y C a b a b +=>>的左焦点为1(F ,且过点P .(1)求椭圆C 的标准方程;(2)已知12,A A 分别为椭圆C 的左、右顶点,Q 为直线1x =上任意一点,直线12,AQ A Q 分别交椭圆C 于不同的两点,M N .求证:直线MN 恒过定点,并求出定点坐标.49.如图,椭圆的长轴12A A 与x 轴平行,短轴12B B 在y 轴上,中心为(0,)(0)M r b r >>.(1)写出椭圆的方程,求椭圆的焦点坐标及离心率;(2)直线1y k x =交椭圆于两点()()()11222,,,0C x y D x y y >;直线2y k x =交椭圆于两点()33,G x y ,()()444,0H x y y >.求证:1122341234k x x k x x x x x x =++;(3)对于(2)中的中的在C ,D ,G ,H ,设CH 交x 轴于P 点,GD 交x 轴于Q 点,求证:||||OP OQ =(证明过程不考虑CH 或GD 垂直于x轴的情形)。
终结圆锥曲线大题十个大招招式一:弦的垂直平分线问题 (25)招式二:动弦过定点的问题 (26)招式四:共线向量问题 (28)招式五:面积问题 (35)招式六:弦或弦长为定值、最值问题 (38)招式七:直线问题 (43)招式八:轨迹问题 (47)招式九:对称问题 (54)招式十、存在性问题 (57)招式一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
例题分析1:已知抛物线y=-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b⎧=-+⇒++-=⇒+=-⎨=+⎩,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出221114(2)32AB =+-⨯-=.招式二:动弦过定点的问题例题2、已知椭圆C :22221(0)x y a b a b +=>>的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
圆锥曲线44道特训221.已知双曲线C:「-仁=1的离心率为心,点(V3,o)是双曲线的一个顶点.a-b'(1)求双曲线的方程;(2)经过的双曲线右焦点旦作倾斜角为30°直线/,直线/与双曲线交于不同的A,3两点,求A3的长.22[2.如图,在平面直角坐标系xOy中,椭圆、+与=1(。
〉力〉0)的离心率为一,过椭圆右a2b22焦点F作两条互相垂直的弦A3与CQ.当直线A3斜率为0时,AB+CD=7.(1)求椭圆的方程;(2)求AB+CD的取值范围.3.已知椭圆C:「+「=1(。
〉力〉0)的一个焦点为尸(1,0),离心率为土.设P是椭圆Zr2C长轴上的一个动点,过点P且斜率为1的直线/交椭圆于A,B两点.(1)求椭圆C的方程;(2)求|PA|2+|PB|2的最大值.224.已知椭圆C:「+七=1(0〉力〉0)的右焦点为『(L°),短轴的一个端点B到F的距离a'd等于焦距.(1)求椭圆。
的方程;(2)过点万的直线/与椭圆C交于不同的两点M,N,是否存在直线/,使得△3加与△B月V的面积比值为2?若存在,求出直线/的方程;若不存在,说明理由..2,25.已知椭圆C:=■+%■=1(a>b>0)过点p(—1,—1)-c为椭圆的半焦距,且c=姻b.过a"b~点P作两条互相垂直的直线L,L与椭圆C分别交于另两点M,N.(1)求椭圆C的方程;(2)若直线L的斜率为一1,求APMN的面积;第1页共62页(3)若线段MN的中点在x轴上,求直线MN的方程.6.已知椭圆E的两个焦点分别为(-1,0)和(1,0),离心率e=—.2(1)求椭圆£*的方程;(2)若直线l:y=kx+m(人主0)与椭圆E交于不同的两点A、B,且线段的垂直平分线过定点P(|,0),求实数女的取值范围.Ji7.已知椭圆E的两个焦点分别为(-1,0)和(1,0),离心率e.2(1)求椭圆E的方程;(2)设直线l-.y=x+m(m^O)与椭圆E交于A、3两点,线段A3的垂直平分线交x 轴于点T,当hi变化时,求面积的最大值.8.已知椭圆错误!未找到引用源。
圆锥曲线大综合第一部分 圆锥曲线常考题型和热点问题一.常考题型题型一:数形结合确定直线和圆锥曲线的位置关系 题型二:弦的垂直平分线问题 题型三:动弦过定点问题题型四:过已知曲线上定点的弦的问题 题型五:共线向量问题 题型六:面积问题题型七:弦或弦长为定值的问题 题型八:角度问题 题型九:四点共线问题题型十:范围为题(本质是函数问题)题型十一:存在性问题(存在点,存在直线y kx m =+,存在实数,三角形(等边、等腰、直角),四边形(矩形,菱形、正方形),圆)二.热点问题1.定义与轨迹方程问题2.交点与中点弦问题3.弦长及面积问题4.对称问题5.范围问题6.存在性问题7.最值问题8.定值,定点,定直线问题第二部分 知识储备一. 与一元二次方程20(0)ax bx c a ++=≠相关的知识(三个“二次”问题)1. 判别式:24b ac ∆=-2. 韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不等的实数根12,x x ,则12b x x a +=-,12c x x a⋅= 3. 求根公式:若一元二次方程20(0)ax bx c a ++=≠有两个不等的实数根12,x x ,则1,22b x a-=二.与直线相关的知识1. 直线方程的五种形式:点斜式,斜截式,截距式,两点式,一般式2. 与直线相关的重要内容:①倾斜角与斜率:tan y θ=,[0,)θπ∈;②点到直线的距离公式:d =d =(斜截式)3. 弦长公式:直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:1212)AB x AB y =-==-或 4. 两直线1111122222:,:l y k x b l y k x b =+=+的位置关系:① 12121l l k k ⊥⇔⋅=- ②121212//l l k k b b ⇔=≠且5. 中点坐标公式:已知两点1122(,),(,)A x y B x y ,若点(),M x y 线段AB 的中点,则1112,22x x y y x y ++== 三.圆锥曲线的重要知识考纲要求:对它们的定义、几何图形、标准方程及简单性质,文理要求有所不同。
文科:掌握椭圆,了解双曲线;理科:掌握椭圆及抛物线,了解双曲线1. 圆锥曲线的定义及几何图形:椭圆、双曲线及抛物线的定义及几何性质。
2. 圆锥曲线的标准方程:①椭圆的标准方程②双曲线的标准方程 ③抛物线的标准方程 3. 圆锥曲线的基本性质:特别是离心率,参数,,a b c 三者的关系,p 的几何意义等4. 圆锥曲线的其他知识:①通径:椭圆22b a ,双曲线22b a,抛物线2p②焦点三角形的面积:p 在椭圆上时122tan2F PF S b θ=⋅Vp 在双曲线上时122/tan2F PF S b θ=V四.常结合其他知识进行综合考查1. 圆的相关知识:两种方程,特别是直线与圆,两圆的位置关系2. 导数的相关知识:求导公式及运算法则,特别是与切线方程相关的知识3. 向量的相关知识:向量的数量积的定义及坐标运算,两向量的平行与垂直的判断条件等 4. 三角函数的相关知识:各类公式及图像与性质5. 不等式的相关知识:不等式的基本性质,不等式的证明方法,均值定理等五.不同类型的大题 (1)圆锥曲线与圆例1.(本小题共14分)已知双曲线2222:1(0,0)x y C a b a b-=>>,右准线方程为x =(Ⅰ)求双曲线C 的方程;(Ⅱ)设直线l 是圆22:2O x y +=上动点0000(,)(0)P x y x y ≠处的切线,l 与双曲线C 交于不同的两点,A B ,证明AOB ∠的大小为定值…【解法1】本题主要考查双曲线的标准方程、圆的切线方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.(Ⅰ)由题意,得23a cc a⎧=⎪⎪⎨⎪=⎪⎩,解得1,a c ==, ∴2222b c a =-=,∴所求双曲线C 的方程为2212y x -=. (Ⅱ)点()()0000,0P x y x y ≠在圆222x y +=上,圆在点()00,P x y 处的切线方程为()0000x y y x x y -=--, 化简得002x x y y +=.由2200122y x x x y y ⎧-=⎪⎨⎪+=⎩及22002x y +=得()22200344820xx x x x --+-=,∵切线l 与双曲线C 交于不同的两点A 、B ,且2002x <<,∴20340x -≠,且()()22200016434820x x x ∆=--->,设A 、B 两点的坐标分别为()()1122,,,x y x y ,则20012122200482,3434x x x x x x x x -+==--, ∵cos OA OBAOB OA OB⋅∠=⋅u u u r u u u r u u u r u u u r ,且()()121212010220122OA OB x x y y x x x x x x y ⋅=+=+--u u u r u u u r ,()212012012201422x x x x x x x x x ⎡⎤=+-++⎣⎦- ()222200002222000082828143423434x x x x x x x x ⎡⎤--⎢⎥=+-+----⎢⎥⎣⎦ 22002200828203434x x x x --==-=--.∴ AOB ∠的大小为90︒.【解法2】(Ⅰ)同解法1.(Ⅱ)点()()0000,0P x y x y ≠在圆222x y +=上,圆在点()00,P x y 处的切线方程为()0000x y y x x y -=--,化简得002x x y y +=.由2200122y x x x y y ⎧-=⎪⎨⎪+=⎩及22002x y +=得()22200344820x x x x x --+-= ①()222000348820xy y x x ---+= ②∵切线l 与双曲线C 交于不同的两点A 、B ,且2002x <<, ∴20340x -≠,设A 、B 两点的坐标分别为()()1122,,,x y x y ,则2200121222008228,3434x x x x y y x x --==--, ∴12120OA OB x x y y ⋅=+=u u u r u u u r,∴ AOB ∠的大小为90︒.(∵22002x y +=且000x y ≠,∴220002,02x y <<<<,从而当20340x -≠时,方程①和方程②的判别式均大于零).练习1:已知点A 是椭圆()22:109x y C t t+=>的左顶点,直线:1()l x my m =+∈R 与椭圆C 相交于,E F 两点,与x 轴相交于点B .且当0m =时,△AEF 的面积为163.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线AE ,AF 与直线3x =分别交于M ,N 两点,试判断以MN 为直径的圆是否经过点B ?并请说明理由.(2)圆锥曲线与图形形状问题例2.1已知A ,B ,C 是椭圆W :24x +y 2=1上的三个点,O 是坐标原点.(1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.解:(1)椭圆W :24x +y 2=1的右顶点B 的坐标为(2,0).因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设A (1,m ),代入椭圆方程得14+m 2=1,即m =±所以菱形OABC 的面积是12|OB |·|AC |=12×2×2|m |.(2)假设四边形OABC 为菱形.因为点B 不是W 的顶点,且直线AC 不过原点,所以可设AC 的方程为y =kx +m (k ≠0,m ≠0).由2244,x y y kx m⎧+=⎨=+⎩消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),则1224214x x km k +=-+,121222214y y x x mk m k++=⋅+=+. 所以AC 的中点为M 224,1414km m k k ⎛⎫- ⎪++⎝⎭. 因为M 为AC 和OB 的交点,所以直线OB 的斜率为14k-.因为k ·14k ⎛⎫- ⎪⎝⎭≠-1,所以AC 与OB 不垂直.所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.练习1:已知椭圆C :)0(12222>>=+b a by a x 过点(2,1),且以椭圆短轴的两个端点和一个焦点为顶点的三角形是等腰直角三角形.(Ⅰ)求椭圆的标准方程;(Ⅱ)设M ,)x y (是椭圆C 上的动点,P ,0)p (是X 轴上的定点,求MP 的最小值及取最小值时点M 的坐标.(3)圆锥曲线与直线问题 例3.1已知椭圆22:24C x y +=,(1)求椭圆C 的离心率.(2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222xy +=的位置关系,并证明你的结论.解析:⑴椭圆的标准方程为:22142x y +=, 2a =,b =则c =2c e a ==;⑵直线AB 与圆222x y +=相切.证明如下: 法一:设点A B ,的坐标分别为()()002x y t ,,,,其中00x ≠.因为OA OB ⊥,所以0OA OB ⋅=u u u r u u u r ,即0020tx y +=,解得002y t x =-. 当0x t =时,202t y =-,代入椭圆C的方程,得t =故直线AB的方程为x =圆心O 到直线AB的距离d .此时直线AB 与圆222x y +=相切.当0x t ≠时,直线AB 的方程为()0022y y x t x t--=--,即()()0000220y x x t y x ty ---+-=. 圆心O 到直线AB 的距离d =.又22024x y +=,02y t x =-,故d ===此时直线AB 与圆222x y +=相切. 法二:由题意知,直线OA 的斜率存在,设为k ,则直线OA 的方程为y kx =,OA OB ⊥,①当0k =时,()20A ±,,易知()02B ,,此时直线AB 的方程为2x y +=或2x y -+=, 原点到直线AB,此时直线AB 与圆222x y +=相切; ②当0k ≠时,直线OB 的方程为1y x k=-,联立2224y kx x y =⎧⎨+=⎩得点A的坐标⎛⎫,或⎛⎫, ⎝;联立12y xk y ⎧=-⎪⎨⎪=⎩得点B 的坐标()22k -,, 由点A 的坐标的对称性知,无妨取点A ⎛⎫进行计算, 于是直线AB的方程为:))2222y x k x k k-=+=++,即((21220k x y k -+++=,原点到直线AB 的距离d ==,此时直线AB 与圆222x y +=相切。