元方程随机事件概率复习考试题
- 格式:doc
- 大小:250.00 KB
- 文档页数:3
概率论与数理统计复习参考题随机事件与概率1.已知事件、A B 满足)()(B A P AB P I =且p A P =)(,求= 1)(B P −p 。
2.一批产品共有10个正品2个次品,从中任取两次,每次取一个(不放回)。
则第二次取出的是次品的概率为 1/6 。
3.设10件产品中有4件是不合格品,从中任取两件,已知所取两件中有一件是不合格品,则另一件也是不合格品的概率为 1/5 。
4.从数1,2,3,4中任取一数,记为X ,再从1X ~中任取一数,记为Y ,则==}2{Y P 13/48 。
5.设一批产品中一、二、三等品各占60%、30%、10%,从中任取一件,结果不是三等品,则取到的是一等品的概率为 2/3 。
6.设两两相互独立的三个事件满足条件:C B A ,,2/1)()()(<==C P B P A P ,φ=ABC ,且已知,则16/9)(=C B A P U U =)(A P 1/4 。
7.设两个相互独立的事件都不发生的概率为1/9,A 发生B A 和B 不发生的概率与B 发生不发生的概率相等,则A =)(A P 2/3 。
8.设是两个事件, B A ,4.0)(=A P ,5.0)(=B P , )|()|(B A P B A P =,则=)(B A P 0.2 。
9.设和A B 是任意两个概率不为零的不相容事件,则下列结论肯定正确的是 []。
D (A )A 与B 不相容 (B )A 与B 相容 (C ))()()(B P A P AB P = (D ))()(A P B A P =−10.对于任意二事件和A B ,与B B A =U 不等价的是 [ ]D ()A B A ⊂ (B )A B ⊂ (C )φ=B A ()D φ=B A11.设和A B 为任意两个事件,且A B ⊂,P B ()>0,则必有 [ B ](A ) ()|()(B A P A P <B )P A P A B ()(|)≤(C ) (D )P A P A B ()(|)>P A P A B ()(|)≥12.对于任意二事件和A B()若A φ≠AB ,则、A B 一定独立。
概率论与数理统计练习1一、选择题:1、设随机事件A 与B 满足A B ⊃,则( )成立。
A.()()P A B P A +=B.()()P AB P A =C.()()P B A P B =D.()()()P B A P B P A -=-2、甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,则目标被击中的概率为( B )。
A.0.5B.0.8C.0.55D.0.63、连续型随机变量X 的密度函数()f x 必满足条件( D )。
A.0()1f x ≤≤B.()f x 为偶函数C.()f x 单调不减D. ()1f x dx +∞-∞=⎰4、设12,,,n X X X 是来自正态总体2(,)N μσ 的样本,则22μσ+的矩估计量是( D )。
A. 211()n i i X X n =-∑ B. 211()1n i i X X n =--∑ C. 221()n i i X n X =-∑ D. 211n i i X n =∑ 5、设总体(,1)X N μ ,123,,X X X 为总体X 的一个样本,若^1231123X X CX μ=++为未知参数μ的无偏估计量,则常数C =( ) A.12 B. 13 C. 15 D. 16二、填空题:1、袋子中装有50个乒乓球,其中20个黄的,30个白的,现有两人依次随机地从袋中各取一球,取后不放回,则第二人取得黄球的概率是 0.42、设A ,B 为两个随机事件,()0.6P A =,()0.2P A B -=,则()P AB = 0.63、已知二维随机向量(,)X Y 的联合分布为则= 0.34、设总体X 服从正态分布2(2,)N σ,1216,,,X X X 是来自总体X 的一个样本,且161116i i X X ==∑,则48X σ-服从 5、若(,)X Y 服从区域22{(,)4}G x y x y =+≤上的均匀分布,则(,)X Y 的联合密度函数为三、计算题:1、设A ,B 为随机事件,且()P A p =,()()P AB P A B =,求()P B 。
概率复习考点攻略考点一 概率的定义与事件的分类1.概率:率的统计定义:一般地,在大量重复试验中,如果事件A 发生的频率mn会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。
即()p A P = . 概率各种情况出现的次数某一事件发生的次数=2.必然事件:在一定条件下一定会发生的事件,它的概率是1. 3.不可能事件:在一定条件下一定不会发生的事件,它的概率是0.4.随机事件:在一定条件下可能发生,也可能不发生的事件,它的概率是0~1之间. 【例1】下列事件中是不可能事件.....的是( ) A .守株待兔B .瓮中捉鳖C .水中捞月D .百步穿杨考点二 概率的计算1.公式法:P (A )=mn,其中n 为所有事件的总数,m 为事件A 发生的总次数. 2.列举法(1)列表法:当一次试验要涉及两个因素,并且可能出现的结果数目较多时,应不重不漏地列出所有可能的结果,通常采用列表法求事件发生的概率.(2)画树状图法:当一次试验要涉及2个或更多的因素时,通常采用画树状图来求事件发生的概率.【注意】当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
【例2】不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是______.【例3】如图是一张矩形纸板,顺次连接各边中点得到菱形,再顺次连接菱形各边中点得到一个小矩形.将一个飞镖随机投掷到大矩形纸板上,则飞镖落在阴影区域的概率是( )A .13B .14C .16D .18考点三 利用频率估计概率1.定义:一般地,在大量重复试验中,如果事件发生的频率稳定在某个常数P 附近,因此,用一个事件发生的频率mn来估计这一事件发生的概率. 2.适用条件:当试验的所有可能结果不是有限个,或各种结果发生的可能性不相等时,我们一般要通过统计频率来估计概率.3.方法:进行大量重复试验,当事件发生的频率越来越靠近一个常数时,该常数就可认为是这个事件发生的概率.【例4】为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下. 身高/cm x 160x <160170x ≤<170180x ≤<180x ≥人数60260550130的概率是( ) A .0.32B .0.55C .0.68D .0.87考点四 概率的应用概率是和实际结合非常紧密的数学知识,可以对生活中的某些现象做出评判,如解释摸奖、评判游戏活动的公平性、数学竞赛获奖的可能性等等,还可以对某些事件做出决策. 【例5】今年2﹣4月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A 、B 、C 、D 、E 五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B 、D 两位患者的概率.【例6】某校为了解初中学生每天在校体育活动时间(单位:h),随机调查了该校的部分初中学生,根据调查结果,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为,图①中m的值为;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1 h的学生人数.第一部分选择题一、选择题(本题有10小题,每题3分,共30分)1. 下列事件中,是必然事件的是()A.掷一枚质地均匀的硬币,一定正面向上B.车辆随机到达一个路口,遇到红灯C.如果a2=b2,那么a=bD.将花生油滴在水中,油会浮在水面上2.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是()A.13B.14C.16D.183.如图,电路图上有4个开关A、B、C、D和1个小灯泡,同时闭合开关A、B或同时闭合开关C、D都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是()A.只闭合1个开关B.只闭合2个开关C.只闭合3个开关D.闭合4个开关4.小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,……按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是()A.1100B.120C.1101D.21015.小李与小陈做猜拳游戏,规定每人每次至少出一个手指,两人出拳的手指之和为偶数时小李获胜,那么小李获胜的概率为()A.1325B.1225C.425D .126.投掷一枚质地均匀的骰子两次,向上一面的点数依次记为a,b.那么方程x2+ax+b=0有解的概率是()A.B.C.D.7.如图,电路图上有四个开关A、B、C、D和一个小灯泡,则任意闭合其中两个开关,小灯泡发光的概率是A.12B.13C.14D.168.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:组别(cm)x<160 160≤x<170 170≤x<180 x≥180人数 5 38 42 15 根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是A.0.85 B.0.57 C.0.42 D.0.159.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是()A.14B.12C.35D.3410.某射击运动员在同一条件下的射击成绩记录如下:射击次数20801002004001000“射中九环以上”的次数186882168327823“射中九环以上”的频率0.900.850.820.840.820.82(结果保留两位小数))A.0.90 B.0.82C.0.85D.0.84第二部分填空题二、填空题(本题有6小题,每题4分,共24分)11.在一个不透明的袋子中装有4个白球,a个红球.这些球除颜色外都相同.若从袋子中随机摸出1个球,摸到红球的概率为23,则a ______.12.表中记录了某种苹果树苗在一定条件下移植成活的情况:由此估计这种苹果树苗移植成活的概率约为_____.(精确到0.1)13.同时掷两枚质地均匀的骰子,每枚骰子的六个面上分别刻有1到6的点数,则这两枚骰子向上的一面出现的点数相同的概率为_______________.14.大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的苏康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为________2cm.15.在一个不透明布袋里装有3个白球、2个红球和a个黄球,这些球除颜色不同其它没有任何区别.若从该布袋里任意摸出1个球,该球是黄球的概率为,则a等于.16.某校九(1)班准备举行一次演讲比赛,甲、乙、丙三人通过抽签方式决定出场顺序,则出场顺序恰好是甲、乙、丙的概率是_____.第三部分解答题三、解答题(本题有6小题,共46分)17. 一个不透明的布袋中有4个红球、5个白球、11个黄球,它们除颜色外都相同.(1)求从袋中摸出一个球是红球的概率;(2)现从袋中取走若干个黄球,并放入相同数量的红球,搅拌均匀后,要使从袋中摸出一个球是红球的概率不小于13,问至少需取走多少个黄球?18. 某公司共有400名销售人员,为了解该公司销售人员某季度商品销售情况,随机抽取部分销售人员该季度的销售数量,并把所得数据整理后绘制成如下统计图表进行分析.频数分布表组别销售数量(件)频数频率A20≤x<4030.06B40≤x<6070.14C60≤x<8013aD80≤x<100m0.46E100≤x<12040.08合计b1请根据以上信息,解决下列问题:(1)频数分布表中,a=,b=;(2)补全频数分布直方图;(3)如果该季度销量不低于80件的销售人员将被评为“优秀员工”,试估计该季度被评为“优秀员工”的人数.19. 为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1)八(1)班抽中歌曲《我和我的祖国》的概率是__________;(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.20.今年2﹣4月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.21.我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:代号活动类型A经典诵读与写作B数学兴趣与培优C英语阅读与写作D艺体类E其他每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).(1)此次共调查了名学生.(2)将条形统计图补充完整.(3)“数学兴趣与培优”所在扇形的圆心角的度数为.(4)若该校共有2000名学生,请估计该校喜欢A、B、C三类活动的学生共有多少人?(5)学校将从喜欢“A”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园“金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.22. 如图是某商场第二季度某品牌运动服装的S 号,M 号,L 号,XL 号,XXL 号销售情况的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)求XL 号,XXL 号运动服装销量的百分比;(2)补全条形统计图;(3)按照M 号,XL 号运动服装的销量比,从M 号、XL 号运动服装中分别取出x 件、y 件,若再取2件XL 号运动服装,将它们放在一起,现从这()2x y ++件运动服装中,随机取出1件,取得M 号运动服装的概率为35,求x ,y 的值.。
第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(题型注释)1.某同学掷一枚硬币,结果是一连9次都掷出正面朝上,请问他第10次掷出硬币时出现正面朝上的概率为( )A .小于12B .大于12C .12D .不能确定 2.在一个不透明的盒子中装2个白球,若干个黄球,它们除了颜色不同外,其余均相同.若从中随机摸出一个白球的概率是13,则黄球的个数为( ) A .2 B .3 C .4 D .63.在四张完全相同的卡片上分别印有等边三角形、平行四边形、等腰梯形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取一张,则抽到的卡片上印有的图案是轴对称图形的概率为( )A .14B .13C .12D .344.如图是一个可以自由转动的转盘,当转盘转动停止后,下面有3个表述:①指针指向3个区域的可能性相同;②指针指向红色区域的概率为13;③指针指向红色区域的概率为21.其中正确的表述是( )A .①②B .①③C .②D .③5.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( ) A .1 B .2 C .3 D .46.写有实数0,1-π,0.1235,227的六张卡片中,随机抽取一张,是无理数的概率为( )A .1B .12C .61D .31 7.下列事件是必然事件的是( )A .某运动员射击一次击中靶心B .抛一枚硬币,正面朝上C .3个人分成两组,一定有2个人分在一组D .明天一定晴天8. 一个箱子里装有8个球,其中5个红球,3个白球,每个球除颜色外其它完全相同,从中任意摸出一个球,是白球的概率是 ( )A .18B .58C .35D .389.一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的概率是( )A .61B .21C .31D .32 10.盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是( )A .23B .15C .25D .35 11.如图,一个正六边形转盘被分成6个全等三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是( )A .16B .14C .13D .12 12.“长为3cm ,5cm ,9cm 的线段能围成一个三角形,”这一事件是( )A .必然事件 B.不确定事件 C.随机事件 D.不可能事件13.从标号分别为1、2、3、4、5的5张卡片中,随机抽出1张。
概率初步复习题一、必然事件、不可能事件、随机事件,随机事件的可能性的大小1.下列事件是必然事件的是()A.随机抛掷一枚均匀的硬币,落地后正面一定朝上B.打开电视体育频道,正在播放NBA球赛C.射击运动员射击一次,命中十环D.若a是实数,则0 a2.一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是( )A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大3.给出下列四个事件:⑴、打开电视,正在播广告;⑵、任意取个负数,它的倒数还是负数;⑶、掷一枚硬币,正面向上;⑷、三条长度为3、3、6的线段构成一个三角形。
其中确定性事件为 ( ) A、⑴、⑵ B、⑴、⑶ C、⑵、⑶ D、⑵、⑷4.下列事件是随机事件的是()A.通常情况温度降到0℃以下,纯净的水结冰B.度量三角形的内角和,结果是360C.随意翻到一本书的某页,这页的页码是偶数D.测量某天的最低气温,结果为﹣180℃5.下列事件①在无水的干旱环境中,树木仍会生长;②打开数学课本时刚好翻到第60页;③367人中至少有两人的生日相同;④今年14岁的小亮一定是初中学生.其中随机事件有() A.1个 B.2个 B.3个 D.4个6.下列说法错误的是()A、必然发生的事件发生的概率为1;B、不可能发生的事件发生的概率为0;C、随机事件发生的概率为大于0且小于1;D、不确定发生的事件发生的概率为0.7.下列说法:①一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点.②可能性很小的事件在一次实验中也有可能发生.③天气预报说明天下雨的概率是50%,意思是说明天将有一半时间在下雨.④抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等.正确的是_________ (填序号)8.关于频率与概率有下列几种说法,正确的是①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“抛一枚硬币正面朝上的概率为1/2”表示每抛两次就有一次正面朝上;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;④“抛一枚硬币正面朝上的概率为1/2”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在1/2附近.二、概率定义:对于一个随机事件A,把其发生可能性大小的数值叫做随机事件A发生的概率,记为P(A). 概率的求法:如果在一次实验中,有n种可能的结果,并且他们发生的可能性都相等,事件A包含其中m种结果,那么事件A的概率P(A)=m/n .1.从长度分别为2、3、4、5的四条线段中任取出三条,则以这三条线段为边可以构成三角形的概率 .2.甲、乙、丙三个同学排成一排,则甲排在中间的概率是 .3.从一副扑克牌(除去大、小王)中任抽一张,则抽到红心的概率为;抽到黑桃的概率为;抽到红心3的概率为4.某小组有三名女生,两名男生,现从这个小组中任意选出一名组长,则其中一名女生小丽当选为组长的概率是______ .5.掷两枚骰子,出现点数之和为3的概率是_____6.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是 .7.在一个不透明的盒子中装有8个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为2/3,则n= .8.在一只不透明的口袋中放人只有颜色不同的白球6个,黑球4个,黄球n 个,搅匀后随机从中摸取—个恰好是黄球的概率为1/3,则放人的黄球总数n =______9.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是 .10.两个同心圆中,大圆的半径是小圆半径的3倍,把一粒芝麻抛向两圆,则芝麻落在圆环内的概率是 .11.矩形OABC 的顶点坐标分别是()()()(),,,,,,,00404101 ,在矩形OABC 的内部任取一点(),x y ,则x y <的概率 .10.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( ) A.4/7 B.3/7 C.3/4 D.1/311.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2468),任取一个 两位数,是“上升数”的概率是( ) A 、1/2 B 、2/5 C 、3/5 D 、5/1812.有一副扑克牌,共52张(不包括大、小王),其中梅花、方块、红心、黑桃四种花色各有13张,把扑克牌充分洗匀后,随意抽取一张,抽得红心的概率是( )A.1/13B.1/4C.1/52D.4/1313.如图,电路图上有四个开关A 、B 、C 、D 和一个小灯泡,闭合开关D 或同时闭合开关A 、B 、C 都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是( )A.1/2B.1/3C.1/4D.1/614.从1、2、3、4中任取两个不同的数,其乘积大于4的概率是( )A.1/6B.1/3C.1/2D.2/315.如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是( )A.0B.1/3C.2/3D.116.一个盒子里有完全相同的三个小球,球上分别标有数字﹣2,1,4.随机摸出一个小球(不放回),其数字为p ,再随机摸出另一个小球其数字记为q ,则满足关于x 的方程x 2+px+q=0有实数根的概率是( ) A.1/4 B.1/3 C.1/2 D.2/317.用6个球(除颜色外没有区别)设计满足以下条件的游戏:摸到白球的概率为1/2,摸到红球的概率为1/3,摸到黄球的概率为1/6.则应准备的白球,红球,黄球的个数分别为( )A 3,2,1B 1,2,3C 3,1,2D 无法确定18.有五张形状、大小、质地都相同的卡片,上面分别画有下列图形:①正方形;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中随机抽取一张,正面图形既是轴对称图形,又是中心对称图形的概率是( )A.1/5 B.2/5 C.3/5 D.4/519.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数小于3的概率为( ) A.1/6 B.1/2 C.1/4 D.1/320.已知二次函数2y kx 6x 3=-+,若k 在数组(),.,,,,3211234---中随机取一个,则所得抛物线的对称轴在直线x 1=的右方的概率为( ) A.1/7 B.4/7 C.2/7 D.5/7三、用列举法或树状图的方法求概率1.在A 、B 两个盒子中都装着分别写有1~4的4张卡片,小明分别从A 、B 两个盒子中各取 出一张卡片,并用A 盒中卡片上的数字作为十位数,B 盒中的卡片上的数字作为个位数.请 画出树状图,求小明抽取一次所得两位数能被3整除的概率.2.一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是1/3,求从袋中取出黑球的个数.3.在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌然后放回,在随机摸取出一张纸牌.(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜。
高考数学第一轮复习概率专项练习(含答案)高考数学第一轮复习概率专项练习(含答案)概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。
以下是高考数学第一轮复习概率专项练习,请考生掌握。
一、选择题1.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 69471417 4698 0371 6233 2616 8045 6011 36619597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为()A.0.852B.0.819 2C.0.8D.0.75答案:D 命题立意:本题主要考查随机模拟法,考查考生的逻辑思维能力.解题思路:因为射击4次至多击中2次对应的随机数组为7140,1417,0371,6011,7610,共5组,所以射击4次至少击中3次的概率为1-=0.75,故选D.2.在菱形ABCD中,ABC=30,BC=4,若在菱形ABCD内任取一C. 1/3D.1/4答案:B 解题思路:由题意知投掷两次骰子所得的数字分别为a,b,则基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),,(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36个.而方程x2-ax+2b=0有两个不同实根的条件是a2-8b0,因此满足此条件的基本事件有:(3,1),(4,1),(5,1),(5,2),(5,3),(6,1),(6,2),(6,3),(6,4),共有9个,故所求的概率为=.5.在区间内随机取两个数分别为a,b,则使得函数f(x)=x2+2ax-b2+2有零点的概率为()A.1-B.1-C.1-D.1-答案:B 解题思路:函数f(x)=x2+2ax-b2+2有零点,需=4a2-4(-b2+0,即a2+b22成立.而a,b[-],建立平面直角坐标系,满足a2+b22的点(a,b)如图阴影部分所示,所求事件的概率为P===1-,故选B.6.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于()A.5/6B.11/12C. 1/2D.3/4答案:B 解题思路:将同色小球编号,从袋中任取两球,所有基本事件为:(红,白1),(红,白2),(红,黑1),(红,黑2),(红,黑3),(白1,白2),(白1,黑1),(白1,黑2),(白1,黑3),(白2,黑1),(白2,黑2),(白2,黑3),(黑1,黑2),(黑1,黑3),(黑2,黑3),共有15个基本事件,而为一白一黑的共有6个基本事件,所以所求概率P==.故选B.二、填空题7.已知集合表示的平面区域为,若在区域内任取一点P(x,y),则点P的坐标满足不等式x2+y22的概率为________. 答案:命题立意:本题考查线性规划知识以及几何概型的概率求解,正确作出点对应的平面区域是解答本题的关键,难度中等.解题思路:如图阴影部分为不等式组表示的平面区域,满足条件x2+y22的点分布在以为半径的四分之一圆面内,以面积作为事件的几何度量,由几何概型可得所求概率为=.8.从5名学生中选2名学生参加周六、周日社会实践活动,学生甲被选中而学生乙未被选中的概率是________.答案:命题立意:本题主要考查古典概型,意在考查考生分析问题的能力.解题思路:设5名学生分别为a1,a2,a3,a4,a5(其中甲是a1,乙是a2),从5名学生中选2名的选法有(a1,a2),(a1,a3) ,(a1,a4),(a1,a5),(a2,a3),(a2,a4),(a2,a5),(a3,a4),(a3,a5),(a4,a5),共10种,学生甲被选中而学生乙未被选中的选法有(a1,a3),(a1,a4),(a1,a5),共3种,故所求概率为.9.已知函数f(x)=kx+1,其中实数k随机选自区间,则对x[-1,1],都有f(x)0恒成立的概率是________.答案:命题立意:本题主要考查几何概型,意在考查数形结合思想.解题思路:f(x)=kx+1过定点(0,1),数形结合可知,当且仅当k[-1,1]时满足f(x)0在x[-1,1]上恒成立,而区间[-1,1],[-2,1]的区间长度分别是2,3,故所求的概率为.10.若实数m,n{-2,-1,1,2,3},且mn,则方程+=1表示焦点在y轴上的双曲线的概率是________.解题思路:实数m,n满足mn的基本事件有20种,如下表所示.-2 -1 1 2 3 -2 (-2,-1) (-2,1) (-2,2) (-2,3) -1 (-1,-2) (-1,1) (-1,2) (-1,3) 1 (1,-2) (1,-1) (1,2) (1,3) 2 (2,-2) (2,-1) (2,1) (2,3) 3 (3,-2) (3,-1) (3,1) (3,2) 其中表示焦点在y轴上的双曲线的事件有(-2,1),(-2,2),(-2,3),(-1,1),(-1,2),(-1,3),共6种,因此方程+=1表示焦点在y轴上的双曲线的概率为P==.三、解答题11.袋内装有6个球,这些球依次被编号为1,2,3,,6,设编号为n的球重n2-6n+12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).(1)从袋中任意取出1个球,求其重量大于其编号的概率;(2)如果不放回地任意取出2个球,求它们重量相等的概率. 命题立意:本题主要考查古典概型的基础知识,考查考生的计算能力.解析:(1)若编号为n的球的重量大于其编号,则n2-6n+12n,即n2-7n+120.解得n3或n4.所以n=1,2,5,6.所以从袋中任意取出1个球,其重量大于其编号的概率P==.(2)不放回地任意取出2个球,这2个球编号的所有可能情形为:1,2;1,3;1,4;1,5;1,6;2,3;2,4;2,5;2,6;3,4;3,5;3,6;4,5;4,6;5,6.共有15种可能的情形.设编号分别为m与n(m,n{1,2,3,4,5,6},且mn)的球的重量相等,则有m2-6m+12=n2-6n+12,即有(m-n)(m+n-6)=0.所以m=n(舍去)或m+n=6.满足m+n=6的情形为1,5;2,4,共2种情形.故所求事件的概率为.12.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机抽取一个球,将其编号记为a,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为b,求关于x的一元二次方程x2+2ax+b2=0有实根的概率;(2)先从袋中随机取一个球,该球的编号记为m,将球放回袋中,然后从袋中随机取一个球,该球的编号记为n.若以(m,n)作为点P的坐标,求点P落在区域内的概率.命题立意:(1)不放回抽球,列举基本事件的个数时,注意不要出现重复的号码;(2)有放回抽球,列举基本事件的个数时,可以出现重复的号码,然后找出其中随机事件含有的基本事件个数,按照古典概型的公式进行计算.解析:(1)设事件A为方程x2+2ax+b2=0有实根.当a0,b0时,方程x2+2ax+b2=0有实根的充要条件为ab.以下第一个数表示a的取值,第二个数表示b的取值.基本事件共12个:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).事件A中包含6个基本事件:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3).事件A发生的概率为P(A)==.(2)先从袋中随机取一个球,放回后再从袋中随机取一个球,点P(m,n)的所有可能情况为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.落在区域内的有(1,1),(2,1),(2,2),(3,1),共4个,所以点P落在区域内的概率为.13.某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.命题立意:本题以频率分布直方图为载体,考查概率、统计等基础知识,考查数据处理能力、推理论证能力和运算求解能力,考查数形结合、化归与转化等数学思想方法.解析:(1)由已知,得10(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.(2)根据频率分布直方图可知,成绩不低于60分的频率为1-10(0.005+0.01)=0.85.由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数约为6400.85=544.(3)易知成绩在[40,50)分数段内的人数为400.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为400.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记这2名学生的数学成绩之差的绝对值不大于10为事件M,则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个.所以所求概率为P(M)=.14.新能源汽车是指利用除汽油、柴油之外其他能源的汽车,包括燃料电池汽车、混合动力汽车、氢能源动力汽车和太阳能汽车等,其废气排放量比较低,为了配合我国节能减排战略,某汽车厂决定转型生产新能源汽车中的燃料电池轿车、混合动力轿车和氢能源动力轿车,每类轿车均有标准型和豪华型两种型号,某月的产量如下表(单位:辆):燃料电池轿车混合动力轿车氢能源动力轿车标准型 100 150 y 豪华型 300 450 600 按能源类型用分层抽样的方法在这个月生产的轿车中抽取50辆,其中燃料电池轿车有10辆.(1)求y的值;(2)用分层抽样的方法在氢能源动力轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆轿车,求至少有1辆标准型轿车的概率;(3)用随机抽样的方法从混合动力标准型轿车中抽取10辆进行质量检测,经检测它们的得分如下:9.3,8.7,9.1,9.5,8.8,9.4,9.0,8.2,9.6,8.4.把这10辆轿车的得分看作一个样本,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.4的概率.命题立意:本题主要考查概率与统计的相关知识,考查学生的运算求解能力以及分析问题、解决问题的能力.对于第(1)问,设该厂这个月生产轿车n辆,根据分层抽样的方法在这个月生产的轿车中抽取50辆,其中有燃料电池轿车10辆,列出关系式,得到n的值,进而得到y值;对于第(2)问,由题意知本题是一个古典概型,用列举法求出试验发生包含的事件数和满足条件的事件数,根据古典概型的概率公式得到结果;对于第(3)问,首先求出样本的平均数,求出事件发生包含的事件数和满足条件的事件数,根据古典概型的概率公式得到结果.解析:(1)设该厂这个月共生产轿车n辆,由题意,得=,n=2 000,y=2 000-(100+300)-150-450-600=400.(2)设所抽样本中有a辆标准型轿车,由题意得a=2.因此抽取的容量为5的样本中,有2辆标准型轿车,3辆豪华型轿车,用A1,A2表示2辆标准型轿车,用B1,B2,B3表示3辆豪华型轿车,用E表示事件在该样本中任取2辆轿车,其中至少有1辆标准型轿车,则总的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),共10个,事件E包含的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),共7个,故所求概率为P(E)=.(3)样本平均数=(9.3+8.7+9.1+9.5+8.8+9.4+9.0+8.2+9.6+8.4)=9.设D表示事件从样本中任取一个数,该数与样本平均数之差的绝对值不超过0.4,则总的基本事件有10个,事件D包括的基本事件有9.3,8.7,9.1,8.8,9.4,9.0,共6个.所求概率为P(D)==.高考数学第一轮复习概率专项练习及答案解析的全部内容就是这些,查字典数学网希望考生可以取得优异的成绩。
概率统计习题1.设 A 、B 为随机事件,P (A)=0.5,P(B)=0.6,P(B A)=0.8.则P(B )A .2. 三人独立的破译一个密码,他们能译出密码的概率分别为1/5、1/4、1/3,此密码能被译出的概率是= .3. 设随机变量2(,)X μσN ,XY e =,则Y 的分布密度函数为 .4. 设随机变量2(,)X μσN ,且二次方程240y y X ++=无实根的概率等于0.5, 则μ= .5. 设()16,()25D X D Y ==,0.3X Y ρ=,则()D X Y += .6. 掷硬币n 次,正面出现次数的数学期望为 .7. 某型号螺丝钉的重量是相互独立同分布的随机变量,其期望是1两,标准差是0.1两. 则100个该型号螺丝钉重量不超过10.2斤的概率近似为 (答案用标准正态分布函数表示).8. 设125,,X X X 是来自总体(0,1)X N的简单随机样本,统计量12()/~()C X X t n +,则常数C = ,自由度n = .1.(10分)设袋中有m 只正品硬币,n 只次品硬币(次品硬币的两面均有国徽),从袋中任取一只硬币,将它投掷r 次,已知每次都得到国徽.问这只硬币是正品的概率是多少?2.(10分)设顾客在某银行窗口等待服务的时间(以分计)X 服从指数分布,其概率密度函数为/5(1/5)0()0x e x f x -⎧>=⎨⎩其它某顾客在窗口等待服务,若超过10分钟,他就离开. 他一个月到银行5次.以Y 表示一个月内他未等到服务而离开窗口的次数,写出Y 的分布律,并求{1}P Y ≥.3.(10分)设二维随机变量(,)X Y 在边长为a 的正方形内服从均匀分布,该正方形的对角线为坐标轴,求: (1) 求随机变量X ,Y 的边缘概率密度; (2) 求条件概率密度|(|)X Y f x y . .4.(10分)某型号电子管寿命(以小时计)近似地服从2(160,20)N 分布,随机的选取四只,求其中没有一只寿命小于180小时的概率(答案用标准正态分布函数表示).5.(10分)某车间生产的圆盘其直径在区间(,)a b 服从均匀分布, 试求圆盘面积的数学期望.三. (10分)设12,,n X X X 是取自双参数指数分布总体的一组样本,密度函数为1,(;,)0,x ex f x μθμθμθ--⎧>⎪=⎨⎪⎩其它其中,0μθ>是未知参数,12,,,n x x x 是一组样本值,求: (1),μθ的矩法估计; (2),μθ的极大似然估计.四. (8分)假设ˆθ是θ的无偏估计,且有ˆ()0D θ>试证2ˆθ2ˆ()θ=不是2θ的无偏估计.五. (8分)设112,,,n X X X 是来自总体211~(,)X N μσ的一组样本,212,,,n Y Y Y 是来自总体222~(,)Y N μσ的一组样本,两组样本独立.其样本方差分别为2212,S S ,且设221212,,,μμσσ均为未知. 欲检验假设22012:H σσ=,22112:H σσ<,显著性水平α事先给定. 试构造适当检验统计量并给出拒绝域(临界点由分位点给出).1.设随机事件A ,B 互不相容,且3.0)(=A P ,6.0)(=B P ,则=)(A B P .2. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 .3. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,则该射手的命中率为 .4. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 .5. 设随机变量22~()n χχ,则2()E χ ,2()D χ .6. 设()3D X =,31Y X =+,则,||X Y ρ= .7. 某型号螺丝钉的重量是相互独立同分布的随机变量,其期望是1两,标准差是0.1两.则100个该型号螺丝钉重量不超过10.2斤的概率近似为(答案用标准正态分布函数表示).8. 设1234,,,X X X X 是来自正态总体2(0,2)N 的样本,令221234()(),Y X X X X =++-则当C = 时,CY ~2(2)χ.1.将一枚均匀硬币掷四次,则四次中恰好出现两次正面朝上的概率为 。
九年级数学上25.1随机事件与概率最新最好试题期中复习考试选用周末练习含答案一.选择题(共6小题)1.(2018秋•晋城期末)正十二面体是五个柏拉图立体之一,属准晶体,结晶学全称为正五角十二面体,共有二十个顶点、三十条边和十二个面,面每一个面皆是正五边形.如图1所示的是一个正十面体的日历,如图2所示的是小贤根据图1设计的一枚质地均匀的正十二面体的骰子,其中1个面标有“1”,2个面标有“2”,3个面标有“4”,其余的面标有“3”或“5”,将这枚骰子随机掷出后,“4”朝上的概率是()A.B.C.D.2.(2019春•文登区期中)从如图所示的四张印有汽车品牌标志图案的卡片中任取一张取出印有汽车品牌标志的图案是轴对称图形的卡片的概率是()A.B.C.D.13.(2019春•锦州期末)如图,在水平地面上的甲、乙两个区域分别由若干个大小完全相同的正三角形瓷砖组成,小红在甲、乙两个区域内分别随意抛一个小球,P(甲)表示小球停留在甲区域中灰色部分的概率,P(乙)表示小球停留在乙区域中灰色部分的概率,下列说法中正确的是()A.P(甲)<P(乙)B.P(甲)>P(乙)C.P(甲)=P(乙)D.P(甲)与P(乙)的大小关系无法确定4.(2019春•通川区期末)如图,假设可以随意在图中取点,那么这个点取在阴影部分的概率是()A.B.C.D.5.(2019春•沙坪坝区校级期末)欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见卖油的技艺之高超如图,若铜钱半径为2cm,中间有边长为1cm的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是()A.B.C.D.6.(2019春•昌平区期末)如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,二.填空题(共6小题)7.(2019春•成都期末)有6张正面分别标有数字﹣2,0,2,4,6,8的不透明卡片,它们除数不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使关于x不等式组>>有实数解的概率为.8.(2018秋•市中区期末)如图是赵爽弦图,图中包含四个全等的勾股形及一个小正方形,分别涂成朱色和黄色,若朱色的勾股形中较大的锐角α为60°,现向该赵爽弦图中随机地投掷一枚飞镖,则飞镖落在黄色的小正方形内的概率为.9.(2019•成都模拟)如图,地面上铺满了正方形的地砖(40cm×40cm),现在向这一地面上抛掷半径为5cm的圆碟,圆碟与地砖间的间隙相交的概率是.10.(2019•金堂县模拟)现有7张下面分别标有数字﹣2,﹣1,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为m,则使得关于x的二次函数y=x2﹣2x+m﹣2与x轴有交点,且交于x的分式方程有解的概率为.11.(2019•保康县模拟)如图,在3×3的方格纸中,点A,B,C,D,E分别位于格点上.从A,D,E三点中任意取一点,以所取的这一点及B,C为顶点画三角形,则所画三角形是直角三角形的概率是.12.(2019•双流区模拟)已知a i≠0(i=1,2,…,2019),且满足1971,则直线y=a i x+i(i=1,2,…,2019)经过一、二、四象限的概率为.三.解答题(共5小题)13.(2019春•织金县期末)如图,有一枚质地均匀的正二十面体形状的骰子,其中的1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”.将这枚骰子掷出后:(1)数字几朝上的概率最小?(2)奇数面朝上的概率是多少?14.(2019春•稷山县期末)请把下面解题过程补充完整,填在相应的横线上.(1)5个人围成一个圆围做游戏,游戏的规则是:每个人心里都想好一个有理数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图1所示,求报4的人心里想的数是多少?解:设报4的人心想的数是x,则报1的人心想的数是2×5﹣x=10﹣x报3的人心想的数是2×2﹣(10﹣x)=x﹣6,报5的人心想的数是,报2的人心想的数是2×1﹣(14﹣x)=x﹣12,根据报2人心想的数,报3,报4人心想的数之间的关系可列方程:.所以报4的人心里想的数是.(2)如图2,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).若转动转盘一次,求转出的数字是﹣2的概率.解:由题意可知:“1”和“3”所占的扇形圆心角均为120°所以2个“﹣2”所占的扇形圆心角为,所以转动转盘一次,转出的数字是﹣2的概率为.15.(2019春•市南区期末)某商场为了吸引顾客,设立了一个如图可以自由转动的转盘,并规定:顾客每购买30元的商品就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、绿或黄色区域,顾客就可以获得100元、50元,20元的购物券,(转盘被等分成20个扇形),已知甲顾客购物320元(1)他获得购物券的概率是多少?(2)他得到100元、50元、20元购物券的概率分别是多少?(3)若要让获得20元购物券的概率变为,则转盘的颜色部分怎样修改?请说明理由.16.(2019春•成都期末)如图①,在Rt△ABC中,∠C=90°,两条直角边长分别为a,b,斜边长为c.如图②,现将与Rt△ABC全等的四个直角三角形拼成一个正方形EFMN.(1)若Rt△ABC的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在四个直角三角形区域的概率是多少?(2)若正方形EFMN的边长为8,Rt△ABC的周长为18,求Rt△ABC的面积.17.(2019•鞍山一模)如图,在一不规则区域内,有一边长为3米的正方形,向区域内随机地撒4000颗黄豆,数得落在正方形区域内(含边界)的黄豆有1350颗,以此实验数据为依据,可以估计出该不规则图形的面积.(1)随机向不规则区域内掷一粒黄豆,求黄豆落在正方形区域内(含边界)的概率;(2)请你估计出该不规则图形的面积;九年级数学上25.1随机事件与概率最新最好试题期中复习考试选用周末练习答案一.选择题(共6小题)1.(2018秋•晋城期末)正十二面体是五个柏拉图立体之一,属准晶体,结晶学全称为正五角十二面体,共有二十个顶点、三十条边和十二个面,面每一个面皆是正五边形.如图1所示的是一个正十面体的日历,如图2所示的是小贤根据图1设计的一枚质地均匀的正十二面体的骰子,其中1个面标有“1”,2个面标有“2”,3个面标有“4”,其余的面标有“3”或“5”,将这枚骰子随机掷出后,“4”朝上的概率是()A.B.C.D.解:标有“4”的面数为3,共有12个面,故标有“3”的面朝上的可能性为.故选:B.2.(2019春•文登区期中)从如图所示的四张印有汽车品牌标志图案的卡片中任取一张取出印有汽车品牌标志的图案是轴对称图形的卡片的概率是()A.B.C.D.1解:在这四个图片中是轴对称图形的有2张,则是轴对称图形的卡片的概率是;故选:B.3.(2019春•锦州期末)如图,在水平地面上的甲、乙两个区域分别由若干个大小完全相同的正三角形瓷砖组成,小红在甲、乙两个区域内分别随意抛一个小球,P(甲)表示小球停留在甲区域中灰色部分的概率,P(乙)表示小球停留在乙区域中灰色部分的概率,下列说法中正确的是()A.P(甲)<P(乙)B.P(甲)>P(乙)C.P(甲)=P(乙)D.P(甲)与P(乙)的大小关系无法确定解:观察两个图可知:黑色三角形面积都占总面积的,所以其概率相等,即P(甲)=P(乙).故选:C.4.(2019春•通川区期末)如图,假设可以随意在图中取点,那么这个点取在阴影部分的概率是()A.B.C.D.解:设阴影部分的面积是3x,则整个图形的面积是7x,则这个点取在阴影部分的概率是.故选:C.5.(2019春•沙坪坝区校级期末)欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见卖油的技艺之高超如图,若铜钱半径为2cm,中间有边长为1cm的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是()A.B.C.D.解:∵铜钱的面积为4π,而中间正方形小孔的面积为1,∴随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是,故选:D.6.(2019春•昌平区期末)如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,解:∵白色的有30颗,橘色的有10颗,∴摇匀后倒出一颗,是白色的可能性为,橘色的可能性为,故选:B.二.填空题(共6小题)7.(2019春•成都期末)有6张正面分别标有数字﹣2,0,2,4,6,8的不透明卡片,它们除数不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使关于x不等式组>>有实数解的概率为.解:>①>②,解①得x<2,解②得x>,不等式组有实数解,则2>,解得a<1,所以任取一张,将该卡片上的数字记为a,则使关于x不等式组>>有实数解的概率,故答案为:.8.(2018秋•市中区期末)如图是赵爽弦图,图中包含四个全等的勾股形及一个小正方形,分别涂成朱色和黄色,若朱色的勾股形中较大的锐角α为60°,现向该赵爽弦图中随机地投掷一枚飞镖,则飞镖落在黄色的小正方形内的概率为.解:令勾股形的较短直角边为1,则斜边为2,∴较长的直角边为,则大正方形的面积为4,黄色的小正方形的面积为4﹣414﹣2,∴飞镖落在黄色的小正方形内的概率为,故答案为:.9.(2019•成都模拟)如图,地面上铺满了正方形的地砖(40cm×40cm),现在向这一地面上抛掷半径为5cm的圆碟,圆碟与地砖间的间隙相交的概率是.解:∵圆碟的圆心如果在正方形的地砖(40cm×40cm)的中心部位30cm×30cm的范围外,则与地砖间隙相交,∴圆碟与地砖间的间隙相交的概率大约是.故答案为:10.(2019•金堂县模拟)现有7张下面分别标有数字﹣2,﹣1,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为m,则使得关于x的二次函数y=x2﹣2x+m﹣2与x轴有交点,且交于x的分式方程有解的概率为.解:∵关于x的二次函数y=x2﹣2x+m﹣2与x轴有交点,∴△=b2﹣4ac=4﹣4(m﹣2)≥0,解得m≤3,∴m=﹣2,﹣1,0,1,2,3,解分式方程得x,当m≠2且m≠1时,方程有解,∴m=﹣2,﹣1,0,3,故使得关于x的二次函数y=x2﹣2x+m﹣2与x轴有交点,且交于x的分式方程有解的概率为,故答案为.11.(2019•保康县模拟)如图,在3×3的方格纸中,点A,B,C,D,E分别位于格点上.从A,D,E三点中任意取一点,以所取的这一点及B,C为顶点画三角形,则所画三角形是直角三角形的概率是.解:以所取的这一点及B,C为顶点画三角形有△ABC、△DBC、△EBC三种情况,其中所画三角形是直角三角形的有△ABC、△DBC这2种结果,所以所画三角形是直角三角形的概率是,故答案为:;12.(2019•双流区模拟)已知a i≠0(i=1,2,…,2019),且满足1971,则直线y=a i x+i(i=1,2,…,2019)经过一、二、四象限的概率为.解:∵1971,∵2019﹣1971=48,2019个数中,其中有24个1和24个﹣1相∵加为0,其它1971个都是1;∵直线y=a i x+i(i=1,2,…,2019)经过一、二、四象限,∴概率为;故答案.三.解答题(共5小题)13.(2019春•织金县期末)如图,有一枚质地均匀的正二十面体形状的骰子,其中的1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”.将这枚骰子掷出后:(1)数字几朝上的概率最小?(2)奇数面朝上的概率是多少?解:(1)∵骰子有20个面,1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”.∴P(6朝上),P(5朝上),P(1朝上),P(2朝上),P(3朝上),P(4朝上),∴数字1朝上的概率最小;(2)∵奇数包括了1、3、5,∴P(奇数朝上).14.(2019春•稷山县期末)请把下面解题过程补充完整,填在相应的横线上.(1)5个人围成一个圆围做游戏,游戏的规则是:每个人心里都想好一个有理数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图1所示,求报4的人心里想的数是多少?解:设报4的人心想的数是x,则报1的人心想的数是2×5﹣x=10﹣x报3的人心想的数是2×2﹣(10﹣x)=x﹣6,报5的人心想的数是x+6,报2的人心想的数是2×1﹣(14﹣x)=x﹣12,根据报2人心想的数,报3,报4人心想的数之间的关系可列方程:2×3=x﹣12+x.所以报4的人心里想的数是9.(2)如图2,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).若转动转盘一次,求转出的数字是﹣2的概率.解:由题意可知:“1”和“3”所占的扇形圆心角均为120°所以2个“﹣2”所占的扇形圆心角为60°,所以转动转盘一次,转出的数字是﹣2的概率为.解:(1)设报4的人心想的数是x,则报1的人心想的数是2×5﹣x=10﹣x报3的人心想的数是2×2﹣(10﹣x)=x﹣6,报5的人心想的数是2x﹣(x﹣6)=x+6,报2的人心想的数是2×1﹣(14﹣x)=x﹣12,根据报2人心想的数,报3,报4人心想的数之间的关系可列方程:2×3=x﹣12+x.所以报4的人心里想的数是9.故答案为:x+6,2×3=x﹣12+x,9.(2)解:由题意可知:“1”和“3”所占的扇形圆心角均为120°所以2个“﹣2”所占的扇形圆心角为60°,所以转动转盘一次,转出的数字是﹣2的概率为,故答案为60°,.15.(2019春•市南区期末)某商场为了吸引顾客,设立了一个如图可以自由转动的转盘,并规定:顾客每购买30元的商品就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、绿或黄色区域,顾客就可以获得100元、50元,20元的购物券,(转盘被等分成20个扇形),已知甲顾客购物320元(1)他获得购物券的概率是多少?(2)他得到100元、50元、20元购物券的概率分别是多少?(3)若要让获得20元购物券的概率变为,则转盘的颜色部分怎样修改?请说明理由.解:(1)∵共有20种等可能事件,其中满足条件的有11种,∴P(获得购物券)(2)由题意得:共有20种等可能结果,其中获100元购物券的有2种,获得50元购物券的有4种,获得20元购物券的有5种,∴P(获得100元);P(获得50元);P(获得20元);(3)直接将3个无色扇形涂为黄色.16.(2019春•成都期末)如图①,在Rt△ABC中,∠C=90°,两条直角边长分别为a,b,斜边长为c.如图②,现将与Rt△ABC全等的四个直角三角形拼成一个正方形EFMN.(1)若Rt△ABC的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在四个直角三角形区域的概率是多少?(2)若正方形EFMN的边长为8,Rt△ABC的周长为18,求Rt△ABC的面积.解:(1)∵Rt△ABC的两直角边之比均为2:3,∴设b=2k,a=3k,由勾股定理得,a2+b2=c2,∴c k,∴针尖落在四个直角三角形区域的概率是;(2)∵正方形EFMN的边长为8,即c=8,∵Rt△ABC的周长为18,∴a+b+c=18,∴a+b=10,则Rt△ABC的面积ab[(a+b)2﹣(a2+b2)]=9.17.(2019•鞍山一模)如图,在一不规则区域内,有一边长为3米的正方形,向区域内随机地撒4000颗黄豆,数得落在正方形区域内(含边界)的黄豆有1350颗,以此实验数据为依据,可以估计出该不规则图形的面积.(1)随机向不规则区域内掷一粒黄豆,求黄豆落在正方形区域内(含边界)的概率;(2)请你估计出该不规则图形的面积;解:(1)记“黄豆落在正方形区域内”为事件A.∴P(A),答:黄豆落在正方形区域内(含边界)的概率为;(2)∵P,∵正方形面积等于27,∴不规则图形面积为80平方米.。
概率统计期末复习题一、选择部分(30题)1.随机事件A 、B 、C 至少有一个不发生的事件是( )A. AB AC BC ++B. A B C ++C. A B C ++D. ABC ABC ABC 2.设A 、B 、C 是三个随机事件,则 事件A B C ⋃⋃表示( )A 三个事件恰有一个发生B 三个事件至少有一个发生C 三个事件都发生D 三个事件都不发生3.三个元件寿命分别是123,,,T T T 并联成一个系统,只要有一个元件能正常工作,系统便能正常工作,事件“系统的寿命超过t ”为( )A 123{}T T T t ++>B 123{}T T T t >C 123{m in{}}T T T t >D 123{m ax{}}T T T t >4.将一枚硬币掷三次“三次均出现正面”的概率为( )A12 B 18 C 13 D 385.A 、B 是两个随机事件,已知()0.3,()0.4P A P B ==,()0.5P A B = ,()P A B = ( )A 0.7B 0.3C 0.2D 0.8 6.如果()0P AB =,则( )A. A 与 B 不相容B. A 与 B 不相容C.()()P A B P A -=D.()()()P A B P A P B -=- 7.设()()1P A P B +=,则( )A.()1P A B =B.()0P A B =C.()P A B = ()P A BD.()P A B = ()P A B 8.设A ,B 为任意两个事件,且.0()1,A B P B ⊂<<则( ) A ()(|)P A P A B < B ()(|)P A P A B ≤ C ()(|)P A P A B > D ()(|)P A P A B ≥9.一种零件的加工由两道工序完成,第一道工序的废品率是p ,第二道工序的废品率是q ,则该零件的成品率为( )A. 1p q --B.1pq -C.1p q pq --+ D .2p q --10.10件产品中有3件次品,从中抽出2件,至少抽到1件次品的概率是( ) A 13B 25C715 D 81511.设0()1,0()1,(|)(|)1P A P B P A B P A B <<<<+=,则A 与B 的关系是( ) A.互不相容 B. 相互独立 C .互不独立 D .互为对立 12.设事件A 和B 满足(|)1,P A B =则( )A.B 是必然事件B.(|)0P B A = C .A B ⊂ D .()0P A B -=13.设随机变量X的概率密度为11()0x f x -<<=⎩其它,则常数a 取值为( )A aπ= B 1aπ=C 2a π=D 2a π=14.设~(0,1)X N X 的分布函数()x φ,方程2240t Xt ++=无实根的概率为( ) A 2(2)1φ- B 2(1)1φ- C (2)φ D (2)(1)φφ- 15.设~(0,1)X U ,则方程210tXt ++=没有实根的概率为( )A 15B 25C 35D 4516.设X 与Y 是两个随机变量 则下列各式正确的是( ) A ()()()E XY E X E Y =B ()()()D XY D X D Y =C ()()()E X Y E X E Y +=+D ()()()D X Y D X D Y +=+17.设随机变量X 的概率密度为201()0Ax x f x ⎧<<=⎨⎩其它,则常数A 取值为( )A 3B 2C 1D 1-18.设1()F x 与2()F x 分别为任意两个随机变量的分布函数,令12()()()F x aF x bF x =+ 能使()F x 为分布函数的是( )A 32,55a b ==B 22,33a b ==C 31,22a b ==D 13,22a b == 19.设~(,)X B n p 且() 2.4,() 1.44E X D X == 则,n p 的取值为( )。
初中数学概率基础测试题及答案一、选择题1.下列事件中,属于随机事件的是( ).A .凸多边形的内角和为500︒B .凸多边形的外角和为360︒C .四边形绕它的对角线交点旋转180︒能与它本身重合D .任何一个三角形的中位线都平行于这个三角形的第三边【答案】C【解析】【分析】随机事件是指在一定条件下,可能发生也可能不发生的事件.根据随机事件的定义即可解答.【详解】解:A 、凸n 多边形的内角和180(2)n =︒-,故不可能为500︒,所以凸多边形的内角和为500︒是不可能事件;B 、所有凸多边形外角和为360︒,故凸多边形的外角和为360︒是必然事件;C 、四边形中,平行四边形绕它的对角线交点旋转180︒能与它本身重合,故四边形绕它的对角线交点旋转180︒能与它本身重合是随机事件;D 、任何一个三角形的中位线都平行于这个三角形的第三边,即三角形中位线定理,故是必然事件.故选:C .【点睛】本题考查了必然事件、不可能事件、随机事件的概念.解决本题关键是正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.太原是我国生活垃圾分类的46个试点城市之一,垃圾分类的强制实施也即将提上日程根据规定,我市将垃圾分为了四类可回收垃圾、餐厨垃圾有害垃圾和其他垃圾现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是( )A .16B .18C .112D .116【答案】C【解析】【分析】根据题意,由列表法得到投放的所有结果,然后正确的只有1种,即可求出概率.【详解】解:由列表法,得:∴共有12种等可能的结果数,其中将两包垃圾随机投放到其中的两个垃圾箱中,能实现对应投放的结果为1种,∴投放正确的概率为:112 P ;故选择:C.【点睛】本题考查了列表法与树状图法求概率,解题的关键是正确求出所有等可能的结果数. 3.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为( )A.59B.49C.12D.13【答案】A【解析】【分析】根据题意,用黑色方砖的面积除以正方形地砖的面积即可.【详解】停在黑色方砖上的概率为:59,故选:A.【点睛】本题主要考查了简单概率的求取,熟练掌握相关方法是解题关键.4.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数2的差不大于1的概率是()A.12B.13C.23D.56【答案】A【解析】【分析】根据正方体骰子共有6个面,通过观察向上一面的点数,即可得到与点数2的差不大于1的概率.【详解】∵正方体骰子共6个面,每个面上的点数分别为1、2、3、4、5、6,∴与点数2的差不大于1的有1、2、3.∴与点数2的差不大于1的概率是31 62 =.故选:A.【点睛】此题考查求概率的方法,解题的关键是理解题意.5.下列事件中,是必然事件的是( )A.任意掷一枚质地均匀的骰子,掷出的点数是奇数B.操场上小明抛出的篮球会下落C.车辆随机到达一个路口,刚好遇到红灯D.明天气温高达30C︒,一定能见到明媚的阳光【答案】B【解析】【分析】根据必然事件的概念作出判断即可解答.【详解】解:A、抛任意掷一枚质地均匀的骰子,掷出的点数是奇数是随机事件,故A错误;B、操场上小明抛出的篮球会下落是必然事件,故B正确;C、车辆随机到达一个路口,刚好遇到红灯是随机事件,故C错误;D、明天气温高达30C︒,一定能见到明媚的阳光是随机事件,故D错误;故选:B.【点睛】本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题的关键.6.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a,则数a 使关于x 的不等式组()1242122123x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x 的分式方程233a x x x ++--=1有非负整数解的概率是( ) A .29 B .13 C .49 D .59【答案】C【解析】【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率.【详解】解不等式组得:7x a x ≤⎧⎨>-⎩, 由不等式组至少有四个整数解,得到a≥﹣3,∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5,分式方程去分母得:﹣a ﹣x+2=x ﹣3,解得:x =52a - , ∵分式方程有非负整数解,∴a =5、3、1、﹣3,则这9个数中所有满足条件的a 的值有4个,∴P =49故选:C .【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.7.下列事件中,是必然事件的是( )A .购买一张彩票,中奖B .射击运动员射击一次,命中靶心C .经过有交通信号灯的路口,遇到红灯D .任意画一个三角形,其内角和是180°【答案】D【解析】【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】A.购买一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选D.【点睛】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.8.在一个不透明的袋子中装有6个除颜色外均相同的乒乓球,其中3个是黄球,2个是白球.1个是绿球,从该袋子中任意摸出一个球,摸到的不是绿球的概率是()A.56B.13C.23D.16【答案】A【解析】【分析】先求出摸出是绿球的概率,然后用1-是绿球的概率即可解答.【详解】解:由题意得:到的是绿球的概率是16;则摸到不是绿球的概率为1-16=56.故答案为A.【点睛】本题主要考查概率公式,掌握求不是某事件的概率=1-是该事件的概率是解答本题的关键.9.如图,在4×3长方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.16B.112C.13D.14【答案】D【解析】【分析】【详解】解:∵在4×3正方形网格中,任选取一个白色的小正方形并涂黑,共有8种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有2种情况,如图所示:∴使图中黑色部分的图形构成一个轴对称图形的概率是:21 84故选D.10.抛掷一枚质地均匀的硬币,前2次都正面朝上,第3次正面朝上的概率()A.大于12B.等于12C.小于12D.无法确定【答案】B【解析】【分析】根据概率的意义解答即可.【详解】∵硬币由正面朝上和朝下两种情况,并且是等可能,∴第3次正面朝上的概率是12.故选:B.【点睛】本题考查了概率的意义,正确理解概率的含义并明确硬币只有正反两个面是解决本题的关键.11.下列事件中,属于不可能事件的是()A.某个数的绝对值大于0 B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540° D.长分别为3,4,6的三条线段能围成一个三角形【答案】C【解析】【分析】直接利用随机事件以及确定事件的定义分析得出答案.【详解】A、某个数的绝对值大于0,是随机事件,故此选项错误;B、某个数的相反数等于它本身,是随机事件,故此选项错误;C、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;D、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.故答案选C.【点睛】本题考查的知识点是随机事件以及确定事件,解题的关键是熟练的掌握随机事件以及确定事件.12.有大小、形状、颜色完全相同的四个乒兵球,球上分别标有数字2,3,5,6,将这四个球放入不透明的袋中搅匀,不放回地从中随机连续抽取两个,则这两个球上的数字之积为奇数的概率是( )A.16B.13C.23D.14【答案】A【解析】【分析】根据题意先画出树状图,得出所有等可能的情况数和两个球上的数字之积为奇数的情况数,然后根据概率公式即可得出答案.【详解】根据题意画树状图如下:∵一共有12种等可能的情况数,这两个球上的数字之积为奇数的有2种情况,∴这两个球上的数字之积为奇数的概率是21= 126.故选A.【点睛】此题考查的是树状图法求概率;树状图法适合两步或两步以上完成的事件;解题时要注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.13.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为1 6【答案】D 【解析】A、A盘转出蓝色的概率为12、B盘转出蓝色的概率为13,此选项错误;B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;C、由于A、B两个转盘是相互独立的,先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;D、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种,所以游戏者配成紫色的概率为16,故选D.14.下列问题中是必然事件的有()个(1)太阳从西边落山;(2)经过有信号灯的十字路口,遇见红灯;(3)221a b+=-(其中a、b都是实数);(4)水往低处流.A.1 B.2 C.3 D.4【答案】B【解析】【分析】先分析(1)(2)(3)(4)中有那个必然事件,再数出必要事件的个数,即可得到答案.【详解】(1)太阳从西边落山,东边升起,故为必然事件;(2)经过有信号灯的十字路口,遇见红灯绿灯都有可能,故为随机事件;(3)220a b +≥(其中a 、b 都是实数),故221a b +=-为不可能事件;(4)水往低处流是必然事件;因此,(1)(4)为必然事件,故答案为A.【点睛】本题的主要关键是理解必然事件的概念,再根据必然事件的概念进行判断;需要掌握: 必然事件:事先肯定它一定会发生的事件;不确定事件:无法确定它会不会发生的事件;不可能事件:一定不会发生的事件.15.某市环青云湖竞走活动中,走完全部行程的队员即可获得一次摇奖机会,摇奖机是一个圆形转盘,被等分成16个扇形,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为自行车、雨伞、签字笔.小明走完了全程,可以获得一次摇奖机会,小明能获得签字笔的概率是( )A .116B .716C .14D .18【答案】C【解析】【分析】从题目知道,小明需要得到签字笔,必须获得三等奖,即转到蓝色区域,把圆盘中蓝色的小扇形数出来,再除以总分数,即可得到答案.【详解】解:小明要获得签字笔,则必须获得三等奖,即转到蓝色区域,从转盘中找出蓝色区域的扇形有4份,又因为转盘总的等分成了16份, 因此,获得签字笔的概率为:41164=, 故答案为C.【点睛】本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;在做转盘题时,能正确找到事件发生占圆盘的比例是做对题目的关键,还需要注意,转盘是不是被等分的,才能避免错误.16.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.12B.14C.16D.116【答案】B【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41= 164,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.17.如图,由四个直角边分别是6和8的直角三角形拼成的“赵爽弦图”,随机往大正方形ABCD内投针一次,则针扎在小正方形EFGH内的概率是()A.116B.120C.124D.125【答案】D【解析】【分析】根据几何概率的求法,针头扎在小正方形内的概率为小正方形面积与大正方形面积比,小正方形的面积求算根据直角三角形的边长求算边长再算面积.【详解】根据题意,“赵爽弦图”中,直角三角形的直角边分别为6和8所以小正方形的边长为:862-=,小正方形的面积为4,10=,大正方形的面积为100.所以针扎在小正方形EFGH内的概率是41=10025,答案选D.【点睛】本题借助“赵爽弦图”考查了几何概率,要注意针扎在小正方形EFGH内的概率是小正方形与大正方形的面积比.18.在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为()A.23B.13C.14D.16【答案】A【解析】【分析】列表或树状图得出所有等可能的情况数,找出数字之积大于9的情况数,利用概率公式即可得.【详解】解:根据题意列表得:由表可知所有可能结果共有12种,且每种结果发生的可能性相同,其中摸出的两个小球上的数字之积大于9的有8种,所以两个小球上的数字之积大于9的概率为82 123=,故选A.【点睛】此题考查的是用列表法或树状图法求概率,解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.19.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是()A.0.1 B.0.2 C.0.3 D.0.6【答案】D【解析】【分析】直接利用概率公式进行求解,即可得到答案.【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.∴1张抽奖券中奖的概率是:102030100++=0.6,故选:D.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.20.动物学家通过大量的调查估计:某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3,现在有一只20岁的动物,它活到30岁的概率是()A.35B.38C.58D.310【答案】B【解析】【分析】先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公式解答即可.【详解】解:设共有这种动物x只,则活到20岁的只数为0.8x,活到30岁的只数为0.3x,故现年20岁到这种动物活到30岁的概率为0.30.8xx=38.故选:B.【点睛】本题考查概率的简单应用,用到的知识点为:概率=所求情况数与总情况数之比.。
一元二次方程与随机事件的概率复习题1、(2008宜宾)一个口袋中装有4个红球,3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是 _______2、(2009宜宾)已知数据:13,2,3,π,-2.其中无理数出现的频率为_________ 3、若0)1(2=++-c bx x a 是关于x 的一元二次方程,则a_______.4、若关于x 的方程22(1)(1)30a x a x -+-+=是一元二次方程,则a= ;若关于x 的方程22(1)(1)30a x a x -+-+=是一元一次方程,则a = 。
5.下列方程,是一元二次方程的是_________ ①3x 2+x=20, ②2x 2-3xy+4=0, ③412=-xx , ④ x 2=4-, ⑤ 0432=--x x 6.将方程x x 3122=-化为一般形式__________,指出它的二次项系数是 ,一次项系数是,常数项是______.7.填空 22____)(_____3-=+-x x x 8.若x =1是方程ax 2+bx +c =0的解,则a+b+b+c=____ 已知方程ax 2+bx +c =0的一个根是-1,则a -b +c =_____.9.方程x 2-x =0的根为__________;方程x (x+1)=3(x+1)的解是____________________。
10.方程2x 2-3x+1=0经变形为(x+a)2=b,正确的是( ) A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C. 231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对 11.(2008湖北)下列方程中,有两个不等实数根的是( )A .238x x =- B .2510x x +=- C .271470x x -+= D .2753x x x -=-+ 11.(2011宜宾)某城市居民最低生活保障在2009年是240元,经过连续两年的增加,到2011年提高到345.6元,则该城市两年最低生活保障的平均年增长率是 .12.某超市一月份的营业额为200万元,一月、二月、三月的营业额共1000万元,如果平均每月的增长率为x ,则根据题意列出的方程应为_________________13.(2011宜宾)已知一元二次方程x 2–6x –5=0两根为a 、b ,则 1a + 1b 的值是 14.(2012宜宾)将代数式x 2+6x+2化成(x+p )2+q 的形式为( )A .(x ﹣3)2+11B .(x+3)2﹣7C .(x+3)2﹣11D .(x+2)2+415.若关于y 的一元二次方程ky 2-4y-3=3y+4有实根,则k 的取值范围是( ) A.k>-74 B.k ≥-74 且k ≠0 C.k ≥-74 D.k>74且k ≠0 16.已知一元二次方程 2 x 2 + b x + c = 0的两个根是 – 1 、3 ,则 b= ,,c= .17、若关于x 的一元二次方程x 2+px+q=0的两根互为相反数,则p=______, 若两根互为倒数,则q=_____.18.如果x 1 、x 2 是方程x 2+ 4x + 3 = 0 的两根,则(x 1 + 1)(x 2 + 1)的值是 。
19.关于x 的方程x 2-kx+6=0有一根-2,那么这个方程两根倒数的和是_______ .20.如果关于x 的方程20x px q ++=的两个根分别为123,1x x ==,那么这个方程是( ) A .2340x x ++= B .2430x x -+= C .2430x x +-= D .2340x x +-= 21.若k>1,关于x 的方程2x 2-(4k+1)x+2k 2-1=0的根的情况是( )A.有一正根和一负根B.有两个正根C.有两个负根D.没有实数根22.若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0 有解,那么m 的取值范围是( )A .34mB .34m ≥C .324mm ≠且 D .324m m ≥≠且 23.已知三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 则这个三角形的周长为( ) A.11 B.17 C.17或19 D.1924.一个两位数,个位上的数比十位上的数小4,且个位数与十位数的平方和比这个两位数小4,设个位数是x ,则所列方程为( ) A.x 2+(x +4)2=10(x -4)+x -4 B.x 2+(x +4)2=10x +x +4 C.x 2+(x +4)2=10(x +4)+x -4 D.x 2+(x -4)2=10x +(x -4)-4 25.解下列方程(每小题5分,共30分)⑴24x x = ⑵2(2)9x -=⑶2320x x -+= ⑷221035x x -+=(5)2210x x --= (6) 23(1)2(1)x x x -=-26.(2007上海市)关于x 的一元二次方程(a -1)x 2-5x -a 2+1=0 有一根为0,求a 的值27.用配方法说明不论m 为何值m 2-8m+20的值都大于零28、设,αβ是方程x 2-3x-5=0的两根,求2223αββ+-的值.29、在解方程x 2+px+q=0时,小张看错了p ,解得方程的根为1与-3;小王看错了q ,解得方程的根为4与-2。
这个方程的根应该是什么?30.已知(a 2+b 2)2-(a 2+b 2)-6=0,则a 2+b 2的值为 。
31.用换元法解方程(x -1x )2-5x +5x -66=0时,如果设x -1x=t ,那么原方程可化为。
32.已知25350x x --=,则22152525x x x x --=-- 33.果多项式200842222++++=b a b a p ,则p 的最小值是( )(A) 2005 (B) 2006 (C) 2007 (D) 200834.在Rt△ABC 中,斜边AB=5,BC 、AC 是一元二次方程x 2-(2m-1)x+4(m-1)=0 的两个实数根,则m等于_________.35.(2012宜宾)某市政府为落实“保障性住房政策,2011年已投入3亿元资金用于保障性住房建设,并规划投入资金逐年增加,到2013年底,将累计投入10.5亿元资金用于保障性住房建设.(1)求到2013年底,这两年中投入资金的平均年增长率(只需列出方程);(2)设(1)中方程的两根分别为x 1,x 2,且mx 12﹣4m 2x 1x 2+mx 22的值为12,求m 的值.36.已知x 1和x 2是方程(k 2-1)x 2-6(3k-1)x+72=0的两正根,且(x 1-1)(x 2-1)=4, 求k 的值.37.商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。
求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?38.某商品现在的售价为每件35元,毎天可卖出50件.市场调查反映:如果调整价格,每降价1元,每天可多卖出2件.请你帮助分析,当毎件商品降价多少元时,可使毎天的销售额最大,最大销售额是多少?设每件商品降价x 元,每天的销售额为y 元(1)完成下表:(2) 由以上分析,用含x 的式子表示y ,并求出问题的解39.(2009宜宾)如图所示,有一张“太阳”和两张“小花”样式的精美卡片(共三张),它们除花形外,其余都一样.(1)小明认为:闭上眼从中任意抽取一张,抽出“太阳”卡片与“小花”卡片是等可能的,因为只有这两种卡片.小明的说法正确吗?为什么?(2)混合后,从中一次抽出两张卡片,请通过列表或画树状图的方法求出两张卡片都是“小花”的概率;(3)混合后,如果从中任意抽出一张卡片,使得抽出“太阳”卡片的概率为23,那么应添加翻奖牌背面翻奖牌正面1234海宝计算器计算器文具多少张“太阳”卡片?请说明理由.40、(2010宜宾)某班举行演讲革命故事的比赛中有一个抽奖活动.活动规则是:进入最后决赛的甲、乙两位同学,每人只有一次抽奖机会,在如图所示的翻奖牌正面的4个数字中任选一个数字,选中后可以得到该数字后面的奖品,第一人选中的数字,第二人就不能再选择该数字. (1)求第一位抽奖的同学抽中文具与计算器的的概率分别是多少?(2)有同学认为,如果.甲先抽,那么他抽到海宝的概率会大些,你同意这种说法吗? 并用列表格或画树状图的方式加以说明.41. (2011宜宾)某校开展了以“人生观、价值观”为主题的班队活动,活动结束后,初三(2)班数学兴趣小组提出了5个主要观点并在本班50名学生中进行了调查(要求每位同学只选自己最认可的一项观点),并制成了如下扇形统计图.(1)该班学生选择“和谐”观点的有 人,在扇形统计图中,“和谐”观点所在扇形区域的圆心角是 度.(2)如果该校有1500名初三学生,利用样本估计选择“感恩”观点的初三学生约有 人. (3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查,求恰好选到“和谐”和“感恩”观点的概率(用树状图或列表法分析解答)42.(2012宜宾)为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中一共抽查了 名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为 ,喜欢“戏曲”活动项目的人数是 人;(2)若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.互助12%感恩平等20%。