光的力学效应-光镊原理及应用--《大学物理》系列讲座-(2)
- 格式:ppt
- 大小:6.06 MB
- 文档页数:77
光电镊的原理范文光电镊是一种基于光电效应的仪器,通过利用光子的能量来控制和操作微小物体。
它常常被用于微机电系统(MEMS)、纳米技术和生物医学领域。
本文将详细介绍光电镊的原理。
光电镊的原理基于光电效应,光电效应是指当光照射到材料表面时,光子的能量可以被材料中的电子吸收,从而使得电子获得足够的能量从材料中脱离。
这个现象由爱因斯坦在1905年首次提出,并且为他赢得了诺贝尔物理学奖。
光电镊通常由两个主要部分组成:光学系统和控制系统。
光学系统由一束激光器和一套光学器件组成,用来产生聚焦的光束。
控制系统通过控制激光器的功率、频率和聚焦光束的位置来实现对物体的操作。
这两个部分密切协作,使得光电镊能够实现高精度和高效率的操作。
具体来说,当激光器发出激光束后,它会经过一系列的光学器件,如透镜和光栅,来聚焦成一个非常小的点。
这个点的大小由入射光束的焦距以及透镜的孔径决定。
光束聚焦后,它的能量密度变高,这是因为原本较大的激光面积被聚焦到一个很小的点上。
这个过程类似于用放大镜来聚焦太阳光照射在一块纸上,可以导致纸燃烧的现象。
当物体放置到激光束的焦点位置时,光电效应发生。
光子的能量被吸收,使得物体表面的电子获得足够的能量从原子中脱离。
这些脱离的电子会产生电荷,导致物体表面带电。
通过控制光束的功率和位置,可以在纳米尺度上控制和操作物体。
控制系统通过调节激光器的功率、频率和聚焦光束的位置来实现对物体的操作。
激光器的功率可以调节激光束的能量密度,从而控制光电效应的强度。
激光器的频率可以调节光束的颜色,不同颜色的光束对物体的光电效应有不同的影响。
聚焦光束的位置可以通过调节透镜的位置实现,使得光束能够准确地照射到物体的表面。
光电镊具有很多优点:高分辨率、高精度、非接触性和对物体的无损操作。
与传统的机械夹具相比,光电镊可以实现对微小物体的高精度操作,不会对物体造成损坏。
此外,它还可以在真空环境下和生物体内进行操作。
光电镊已经在很多领域得到应用,如微电子装备、纳米加工和细胞操作。
光镊的技术原理及应用1. 引言光镊是一种利用激光束产生光压力,对微小粒子进行操控和固定的技术。
其原理基于光子的动量,通过调节激光的光束参数,可以实现对微粒子的捕捉、移动、旋转等精确控制。
光镊技术在生物医学、纳米科学、光学通信等领域具有广泛应用。
2. 原理光镊技术的原理基于光子的动量和光压效应。
光子是光的最小单位,具有一定的动量。
当光子射到物体上时,其动量将被传递给物体,使其受到压力。
利用激光束产生的高强度、高聚焦的光场,可以对微小粒子施加足够的光压力,实现对其进行操控。
光镊技术主要基于两种光压效应:反射光压和偏折光压。
反射光压是指激光束射到微粒子表面后,被微粒子反射回去,产生反向的光压力。
偏折光压是指激光束通过微粒子时,由于微粒子对光的折射率不同于周围介质,产生折射现象,使光束偏折,从而产生光压力。
这两种光压效应可以结合使用,实现对微粒子的精确控制。
3. 技术应用3.1 生物医学领域光镊技术在生物医学领域有广泛的应用。
例如,可以利用光镊技术对单个细胞进行操控和研究,包括单细胞分离、单细胞操控、单细胞解析等。
此外,光镊技术还可以用于显微手术,如利用激光束进行准确切割或光凝固,实现微创手术。
光镊技术在生物医学领域的应用有望进一步推动微创手术的发展,并为生物医学研究带来突破。
3.2 纳米科学领域光镊技术在纳米科学领域也有重要应用。
通过调节激光的光束参数,可以对纳米颗粒进行精确的操控和排列,实现纳米技术的发展。
例如,可以利用光镊技术将纳米颗粒按照一定的规则排列,制备纳米材料的光学器件或纳米电路。
此外,光镊技术还可以用于纳米机器人的控制和操纵,推动纳米科学的进一步研究和应用。
3.3 光学通信领域光镊技术在光学通信领域有着重要的应用。
利用光镊技术,可以对光纤中的光信号进行精确的调控和处理,实现光信号的控制和传输。
例如,可以利用光镊技术对光纤中的光信号进行调制,实现光信号的放大或滤波。
此外,光镊技术还可以用于光纤通信系统中的光路选择和光纤连接的调整,提高光通信的可靠性和性能。
光镊原理的应用1. 光镊的定义光镊是一种利用光的特性来控制微观对象的工具。
它利用激光束的聚焦效应,将光束聚焦成一个非常小的光点,并利用光的压阻力或光子的冲击力对微观对象进行操作和控制。
2. 光镊的工作原理光镊的工作原理主要基于下列两个重要效应:2.1 光阱效应光阱效应是指激光束在介质中发生折射、散射等现象,从而形成一种类似于势阱的光学场景。
当微观对象进入光阱时,会受到光的压阻力,并被限制在光束的焦点区域内。
2.2 光压效应光压效应是指光子在物体表面产生的反冲作用力。
当激光束聚焦到微观对象表面时,光子的冲击力会使微观对象受到推动或操纵。
3. 光镊的应用领域3.1 生物学研究光镊在生物学研究中得到广泛应用。
它可以用于操纵和植入细胞,进行单细胞操作、细胞捕获和分类,以及光学镊切、拉伸等细胞操作技术。
3.2 纳米技术在纳米技术领域,光镊可以用于纳米粒子的操纵、定位和组装。
通过调整激光的参数,可以精确控制纳米粒子的位置和方向。
3.3 光学通信在光学通信领域,光镊可以用于对光纤进行修复和调整。
通过调整激光的焦距和功率,可以精确控制光纤中的光信号。
3.4 物理学研究光镊在物理学研究中也扮演着重要角色。
它可以用于单个原子和分子的操作和操纵,以及量子态的控制和测量。
4. 光镊的优势和局限性4.1 优势•光镊可以对微观对象进行非接触式操作,避免了对样品的污染和损伤。
•光镊具有高空间分辨率和灵活的操纵能力,可以实现高精度的操作和控制。
•光镊可以在不同环境中工作,适用于各种复杂样品。
4.2 局限性•光镊在操纵微观对象时受限于光的传播特性,操作范围较小。
•光镊的操纵效果受到光源和光学系统的限制,需要高质量的光源和光学器件。
5. 总结光镊作为一种利用光的特性进行微观操纵和控制的工具,在生物学研究、纳米技术、光学通信和物理学研究等领域都有广泛的应用。
它具有非接触式操作、高空间分辨率和灵活的操纵能力等优势,但也存在操作范围较小和光源、光学器件的限制等局限性。
光镊的技术原理及应用光镊是一种利用光学力对微小粒子进行操作和操纵的技术设备。
它的技术原理主要基于激光束的光学力和光动力学效应。
通过调控激光束的参数,如光强、波长和光束的横截面形状等,可以对微小粒子产生吸引力或推力,实现对其位置和运动的控制,从而实现对微小粒子的操作。
光镊的技术原理主要包括光学效应、散射效应和吸收效应。
其中光学效应是最基本的原理,它通过光场对粒子施加的力来操纵粒子的运动。
当激光入射到粒子上时,激光光子与粒子之间会发生散射作用或吸收作用。
激光束的光强和波长的选择会影响光学效应的大小和类型。
当光学效应与光学力平衡时,粒子会被束缚在光学力场中,形成光镊效应,这样就可以对粒子进行操作。
光镊技术有着广泛的应用领域。
首先,光镊技术可以用于微生物学研究。
通过光镊技术,可以操纵微生物细胞、病毒等微小生物粒子,进行单个细胞的操作和研究。
例如,可以通过光镊技术捕获和操作单个细胞,研究其生长、分裂和运动等过程。
此外,还可以通过光镊技术将不同种类的微生物分离,实现对微生物的定点操作。
其次,光镊技术在生物医学领域也有很多应用。
例如,可以利用光镊技术对单个细胞进行操作,并对细胞内部进行精细的观察和测量。
这对于了解细胞的功能、结构和代谢等过程具有重要意义。
此外,光镊技术还可以结合显微技术,实现对活体组织和器官进行非侵入性操作和观察。
例如,可以通过光镊技术对活体细胞进行切割、焊接、注射等操作,用于研究和治疗癌细胞、神经退行性疾病等疾病。
再次,光镊技术也可以应用于纳米技术和纳米制造领域。
通过光镊技术,可以操纵和组装纳米颗粒,构建纳米结构和纳米器件。
例如,可以通过控制光镊的位置和力度,操纵纳米颗粒进行排列和组装,构建具有特定功能和性能的纳米结构。
此外,还可以利用光镊技术对纳米材料进行加工和处理,实现对纳米材料的精确控制和调节。
总之,光镊技术通过利用光学力对微小粒子进行操作和操纵,具有广泛的应用前景。
它在微生物学研究、生物医学领域和纳米技术等领域都有重要应用。
集成光镊的原理及应用1. 简介集成光镊是一种利用光学原理实现精确操控微小物体的技术。
它集成了光学器件和微操控系统,能够对微尺度物体进行非接触式、高精度的操控。
本文将介绍集成光镊的工作原理以及在不同领域的应用。
2. 工作原理集成光镊的工作原理基于光学力的作用。
当定向的光束照射到微尺度物体上时,光的动量和光束的光场分布会对物体施加力,从而实现对物体的操控。
2.1 光学力与物体操控在光学力作用下,物体会受到光束的压力。
这种压力可以使物体向光束的中心移动,或者沿着光束的方向旋转。
对于微小物体而言,光学力的作用非常显著,可以实现微米或纳米级别的精确操控。
2.2 光学器件集成光镊采用了多种光学器件来实现对光束的控制和调节。
常见的光学器件包括:•透镜:用于调节光束的聚焦程度和光斑的大小。
•光栅:用于调节光束的相位和方向。
•偏振器:用于调节光束的偏振状态。
通过合理组合和控制这些光学器件,可以实现对光束的精确控制,从而实现对微小物体的操控。
2.3 微操控系统除了光学器件,集成光镊还包括了微操控系统,用于控制光学器件和物体的相对运动。
微操控系统可以控制光学器件的位置、角度和光强等参数,从而实现对光束的精确调节。
通过微操控系统,可以实现对微小物体的平移、旋转、捕获等操作。
3. 应用领域集成光镊在多个领域具有广泛的应用。
下面将介绍几个重要的应用领域。
3.1 生物医学在生物医学领域,集成光镊被用于细胞操作、光学显微成像和微流体控制等方面。
通过集成光镊,可以精确操控细胞的位置和形态,用于研究细胞的功能和相互作用。
此外,集成光镊还可以实现对微流体的控制,如调节液体的流速和混合效果。
3.2 纳米制造在纳米制造领域,集成光镊被用于纳米材料的操控和组装。
通过集成光镊,可以实现对纳米颗粒的精确操控,如将纳米颗粒放置到指定的位置,实现纳米材料的组装和排列。
3.3 光子学在光子学领域,集成光镊被用于光学元件的定位和对齐。
通过集成光镊,可以实现对光纤、光栅等光学元件的精确操控,提高光学器件的性能和稳定性。
1.1光镊技术简介光镊是以激光的力学效应为基础的一种物理工具,是利用强会聚的光场与微粒相互作用时形成的光学势阱来俘获粒子的【4】.1969年,A. Ashkin等首次实现了激光驱动微米粒子的实验。
此后他又发现微粒会在横向被吸入光束(微粒的折射率大于周围介质的折射率).在对这两种现象研究的基础上,Ashkin提出了利用光压操纵微粒的思想,并用两束相向照射的激光,首次实现了对水溶液中玻璃小球的捕获,建立了第一套利用光压操纵微粒的工具。
1986年,A. Ashkin 等人又发现,单独一束强聚焦的激光束就足以形成三维稳定的光学势阱,可以吸引微粒并把它局限在焦点附近,于是第一台光镊装置就诞生了【5,6】。
也因此,光镊的正式名称为“单光束梯度力势阱” (single-beam optical gradient force trap)。
由于使用光镊来捕获操纵样品具有非接触性、无机械损伤等优点,这使得光镊在生物学领域表现出了突出的优势。
这些年来,随着研究的深入和技术的不断完善,光镊在生物学的应用对象由细胞和细胞器逐步扩展到了大分子和单分子等。
目前,光镊常被用来研究生物过程中的细胞和分子的运动过程【7—10】,也常被用来测量生物过程中的一些力学特征【11-14】。
1.2光镊的原理与特点众所周知,光具有能量和动量,但是在实际应用中人们经常利用了光的能量,却很少利用光的动量.究其原因,这主要是因为在生活中我们接触到的自然光和照明光等的力学效应都很小,无法引起人们可以直接感受到或观察到的宏观效应。
而科学家们利用激光所具有的高亮度和优良的方向性,使得光的力学效应在显微镜下显现了出来,在这里我们要介绍的光镊技术正是以这种光的力学效应为基础发展起来的。
1.2.1光压与单光束梯度力光阱光与物质相互作用的过程中既有能量的传递,也有动量的传递,动量的传递常常表现为压力,简称光压.1987年,麦克斯韦根据电磁波理论论证了光压的存在,并推导出了光压力的计算公式.1901年,俄国人П。
激光光镊技术的原理应用及发展激光光镊技术是一种利用激光束对微小颗粒进行操控的技术,其原理基于光与物质的相互作用。
激光光镊技术已经在生物医学、材料科学、纳米技术等领域得到了广泛应用,并且在未来有着广阔的发展前景。
激光光镊技术的原理基于光的力学效应。
当激光束聚焦到一个小区域内时,光束中的光子与物质发生相互作用,使得物质受到一个力的作用。
这个力被称为光力学力,它可以通过调节激光束的强度、频率和偏振等参数来控制。
当激光束聚焦到一个微小颗粒上时,光力学力可以使得颗粒受到一个稳定的力,从而实现对其位置的精确控制。
激光光镊技术的应用领域非常广泛。
在生物医学领域,激光光镊技术可以用于细胞操控、细胞分离、细胞注射等操作。
通过激光光镊技术,可以实现对单个细胞的精确操控,从而进行细胞实验、药物筛选等研究。
在材料科学领域,激光光镊技术可以用于纳米材料的制备和操控。
通过激光光镊技术,可以实现对纳米材料的精确操控,从而制备出具有特定结构和功能的纳米材料。
在纳米技术领域,激光光镊技术可以用于纳米的操控和纳米设备的制造。
通过激光光镊技术,可以实现对纳米的精确操控,从而实现纳米设备的制造和操作。
激光光镊技术的发展前景非常广阔。
随着激光技术的不断进步,激光光镊技术的精度和稳定性将会得到进一步提升。
同时,激光光镊技术的应用领域也将不断拓展,将会在更多领域发挥重要作用。
例如,在生物医学领域,激光光镊技术可以用于癌症治疗、基因编辑等前沿研究。
在材料科学领域,激光光镊技术可以用于纳米材料的合成和改性。
在纳米技术领域,激光光镊技术可以用于纳米的制造和应用。
激光光镊技术是一种利用激光束对微小颗粒进行操控的技术,其原理基于光与物质的相互作用。
激光光镊技术在生物医学、材料科学、纳米技术等领域得到了广泛应用,并且在未来有着广阔的发展前景。
随着激光技术的不断进步,激光光镊技术的精度和稳定性将会得到进一步提升,其应用领域也将不断拓展。
激光光镊技术的原理应用及发展激光光镊技术是一种利用激光束对微小颗粒进行操控的技术,其原理基于光与物质的相互作用。
光的力学效应-系列实验主要内容 (1)一光的力学效应-历史与未来 (2)二光镊技术 (4)三创建光的力学效应教学实验的意义 (14)四光的线性动量实验 (16)五实验小结 (24)六结束语 (24)主要内容光的力学效应?光有力量吗?光子与物体的相互作用光携带有能量和动量(线性动量和角动量),光与物体相互作用时彼此交换能量和动量.光子能量:υhE=光子动量:λ/hP=光的动量是光的基本属性之一。
光与人类生活的关系非常密切,伴随科学的发展和人类文明的进步,人们对光的认识也越来越深入。
光与物质相互作用—光的效应光的效应:在光的作用下,物体宏观上产生的各种现象光的热学效应:光与物体相互作用时物体的温度发生变化.—常见现象光的力学效应:光与物质间交换动量,使受光照射的物体获得一个力或力矩,物体发生位移,速度和角度的变化. —难以察觉(光电效应,磁光效应,光化学效应, …)本讲光的力学效应主要内容安排:一. 光的力学效应-历史与未来1. 光-动量-光压-力2. 普通光和激光的力学效应3. 激光的力学效应 (微观,界观,宏观)4.光镊--光的力学效应的典型二. 光镊技术1. 原理-单光束梯度力光阱2. 特点和功能3. 应用列举三.创建光的力学效应系列实验的意义1. 线性动量2. 角动量四.光的线性动量实验1. 实验预习和基础2. 实验内容五.结束语一. 光的力学效应-历史与未来光---动量--- 光压---力1616年开普勒---提出光压的概念从光的粒子性观念出发---具有一定动量的光子入射到物体上时无论是被吸收或反射,光子的动量都会发生变化,因而必然会有力作用在物体上,这种作用力我们通常称为光压。
康普顿效应历史上,康普顿效应是光子学说的重要实验依据,也是光子具有动量的直接证明。
典型的例子有X光的康普顿散射。
1923年美国物理学家康普顿在研究X射线光子与自由电子之间的弹性碰撞,解释了实验观察到的各种现象。
在这一弹性碰撞过程中,光子与电子相互作用,不仅要遵循能量守恒定律,而且要遵循动量守恒定律。
试述OT的实验的原理及应用OT(Optical Tweezers,光镊)是一种基于激光束的技术,利用光束对微小物体施加的光强梯度力可将其捕获、操纵及测量。
光镊技术具有极高的精度和灵活性,已在生物医学领域、物理学领域、纳米技术领域等多个领域得到广泛应用。
光镊技术的实验原理是利用激光束对微观物体施加光强梯度力。
当激光束通过具有高折射率和低吸收率的微观物体时,会在物体两侧形成光强梯度。
在光强梯度的作用下,微观物体会朝向光强较高的位置移动。
具体来说,激光束通过一块物质时,光线会一部分被反射,一部分被折射,形成驻波光场。
当微观物体位于驻波光场中心,所受总光学力为零;当微观物体发生偏离时,物体受到光束形成光强梯度力的作用,从而被拉向较强光强区域,最终位置恢复到中心位置。
光镊技术的应用非常广泛。
在生物医学领域,光镊技术可用于单个细胞或细胞内器官的操纵和研究。
通过捕获和操纵细胞,可以研究细胞的力学性质、运动机制以及细胞内分子的相互作用。
同时,光镊技术还可用于研究细胞力的传递和生物流变学等领域。
例如,可以在一个细胞上施加力,观察其对相邻细胞的影响。
此外,光镊还可以用于分析DNA、RNA和蛋白质等分子的物理性质和相互作用,有助于揭示生物分子的结构和功能。
除了生物医学领域,光镊技术也在物理学研究中得到广泛应用。
例如,在凝聚态物理学研究中可以利用光镊技术探索微观粒子间的相互作用力,研究纳米材料的力学性质以及物质间的相互作用。
通过调节光束的参数,可以控制和操纵微观粒子的运动和排列,进而研究凝聚态物理学中的多体现象。
此外,光镊技术还可用于研究和操作纳米材料,如碳纳米管、纳米颗粒等。
光镊技术在纳米技术中也有广泛的应用。
由于光镊技术的高精度和灵活性,它可用于纳米加工和纳米装配。
例如,通过光镊技术可以将多个纳米粒子组装起来构造纳米器件,如纳米电路和纳米机器人。
此外,光镊还可以用于纳米材料的表征和研究。
通过操纵纳米颗粒的运动,可以了解其形态和性质。
有关于光镊原理的生活应用1. 什么是光镊光镊是指利用光束的力对微小粒子进行捕捉、操作或测量的一种技术。
光镊利用光束与物质之间的相互作用力,通过调节光束的强度、聚焦度和波长等参数,实现对微观颗粒的精确操控。
2. 光镊原理光镊的原理基于光的性质和物质的微观结构。
当光束照射到物质上时,光的能量会被物质吸收,从而产生反作用力。
光镊利用这种反作用力,通过调节光束的参数,使其对微小粒子产生的力达到捕捉或操作的目的。
3. 光镊的生活应用3.1 生物学研究光镊在生物学研究中具有广泛的应用。
通过调节光束的参数,可以将光镊应用于单细胞分析、细胞捕捉和操控、细胞成像等领域。
光镊可以对微小的细胞结构进行精确定位,实现对细胞的非侵入式操作和观察。
3.2 纳米技术研究在纳米技术研究中,光镊也发挥着重要的作用。
通过控制光束的参数,可以实现对纳米粒子的精确定位和操控。
光镊在纳米材料的合成、纳米流体的输送和纳米器件的组装等方面具有潜在的应用价值。
3.3 光学通信光镊在光学通信领域的应用也日趋重要。
光镊可以实现对光纤中的光信号进行控制和调整,提高光信号的传输质量和速率。
光镊在光纤网络的建设和光纤通信设备的优化中有着重要的作用。
3.4 医疗器械光镊在医疗器械领域的应用也逐渐增多。
光镊可以用于人体内部的微创手术,通过控制光束在人体组织中的聚焦和操控,实现对病变组织的准确治疗。
光镊具有非侵入性、高精度和自动化等优势,对提高手术安全性和治疗效果具有重要意义。
3.5 材料科学研究在材料科学研究中,光镊也发挥着关键的作用。
光镊可以对材料的微观结构进行精确分析和操作,帮助科学家研究材料的性质和改善材料的性能。
光镊在材料制备、材料测试和材料表征等方面具有广泛的应用和发展前景。
4. 总结光镊作为一种利用光束对微观颗粒进行捕捉、操作或测量的技术,在生物学研究、纳米技术研究、光学通信、医疗器械和材料科学研究等领域具有广泛的应用。
光镊的原理基于光的性质和物质的微观结构,通过调节光束的参数实现对微小粒子的精确操控。
光镊原理及其应用摘要:激光的发明使得光的力学效应走向了实际应用。
本文介绍了光镊技术的基本原理及其在生物科学方面的一些应用。
关键词:光镊;光的力学效应;生物科学;应用1 引言光镊是A. Ashkin[1]在关于光与微粒子相互作用实验的基础上于1986年发明的。
光镊在问世之初被看作是微小宏观粒子的操控手段,并渐渐成了光的力学效应的研究和应用最活跃的领域之一。
近20年来光镊技术的研究和应用得到了迅速的发展,特别是在生命科学领域,光镊已成为研究单个细胞和生物大分子行为不可或缺的有效工具。
2 基本原理光镊的基本原理在于光与物质微粒之间的动量传递的力学效应。
对于直径大于波长的米氏散射粒子来说,光镊的势阱原理可以用几何光学来解释[1~3]。
如图1(a)所示。
入射光线A将光子的动量以辐射压的形式作用于粒子小球,力的作用方向与光线入射方向相同。
A经过若干反射、折射后,以光线A’出射。
入射光线的辐射压减去出射光线的辐射压为粒子小球所受的净剩力F A。
图1(b)为作用力简图,实际力的作用过程较此复杂,A’应为所有(包括反射光透射光)出射光线辐射压的合力,但结果与此相似,小球受轴向指向焦点的力。
对于直径小于激光波长的瑞利散射颗粒,适用于波动光学理论[1]和电磁模型。
波动光学理论(也是光镊的基本理论)认为,在光轴方向有一对作用力:与入射光同向正比于光强的散射力和与光强梯度同向正比与强度梯度的梯度力。
在折射率为n m的介质中,折射率为n p 的瑞利粒子所受的背离焦点的散射力为[1]F scat =n m P scat/ c (1)这里P scat为被散射的光功率。
或用光强I0和有效折射率m = n p / n m表示为(2)对于极化率为α的球形瑞利粒子所受的指向焦点的梯度力为(3)这样,在焦点处形成势阱的标准为指向焦点的梯度力与背离焦点的散射力之比大于1,即两者的合力指向焦点,即有(4)若粒子小球在横向(垂直于光轴方向)偏离中心位置,也会受到一个指向光束中心的作用力使小球锁在焦点处。
光镊技术技术原理:光与物质相互作的本质是光的电磁场与组成物质的带电粒子相互作用的结果,具体的物理过程依赖于与之相互作用的物质的性质。
以透明电介质小球作模型,设小球的大小等于或大于光波长,小球的折射率n1大于周围媒质的折射率n2,采用几何光学近似。
单光束梯度力光镊原理由一束高度会聚的激光束构成的。
在强会聚的光场中,粒子在X—Y—Z三个方向都将受到一指向光最强点(焦点)的梯度力。
Z方向受的力的方向与光传播方向相反,也就是说光对粒子不仅有推力还有拉力,粒子被约束在光最亮点附近。
技术特点:1)光镊是以光场的形式与物体交换动量的结果,光镊是一种特殊的“无形”镊子,没有机械镊子夹持物体有集中的受力点,光镊的操作是非接触的、无损的。
2)光具有的穿透特性,光镊可以越过透明屏障,穿过封闭系统的表层(细胞膜)操控其内部微粒(细胞器),也可以透过封闭的样品池的外壁,操控池内微粒,实现真正的无菌操作。
3)光镊更多的是在液体中工作,能够保持细胞生存的“天然”环境。
因此,光镊技术特别适合用于对活体生物细胞、细胞器以及生物大分子的操控和研究。
4)光镊操控微粒的尺度在几十纳米到几十微米,这也是生物大分子、细胞器、细胞的尺度范围。
在该尺度范围光镊是唯一的操作手。
5)光镊的所有机械部件离捕获对象的距离都远大于捕获对象的尺度(~1000倍),因此光镊是以“遥控”的方式,远距离工作的。
6)光镊操控微粒直接展现在显示屏,是可视性,完全暴露在我们视野中的细胞为研究者提供了进行下一步工作的极大方便。
目前还没有其它实验技术比光镊研究操控活体能如此得心应手。
7)光镊是微小力的探针。
光镊对微粒的操控不是刚性的,类似弹簧,在操作过程中能实时感应微小的负荷。
因此,光镊是极其灵敏的力传感器,力的分辨精度高达几飞牛。
8)光镊与其它技术手段结合,如常规显微镜所配置的荧光,相差,微针等,还有激光刀,近场光学显微镜,共聚焦显微镜,光谱仪等。
目前还没有能够直接深入到细胞内操控单分子的技术和方法,而光镊已实现了在体外操控单个大分子,实时追踪其运动,获取单分子静态和动态的力学性质等,成为生物学领域不可或缺的一种独立的技术。
激光光镊技术及其应用陈 君传统的机械镊子夹持物体时必须用镊尖接触物体,然后施加一定压力,物体才能被夹住。
而光镊则不同,它是基于光的力学效应使物体受到光束的束缚,然后通过移动光束来迁移或翻转物体。
与机械镊子相比,光镊夹持和操纵物体的方式是温和而非机械接触的,能够无损伤地捕获和操作微小的活细胞及纳米量级的颗粒。
光镊为研究微观世界提供了一种新手段,可以预见,在21世纪,作为纳米科技和生命科学领域得力工具的光镊技术必将具有广阔的应用前景,也必将成为本研究领域不可或缺的技术手段之一。
一、激光光镊的渊源与特点激光光镊技术早期也称为激光捕获技术,它利用聚焦的激光束夹起并操纵细胞、细菌或原子等尺度约在几纳米到几十微米之间的微粒。
早在1969年,光镊技术的发明人贝尔实验室的阿什金(A.Ashkin )就首次实现了激光驱动微米粒子。
此后他又发现微粒会在横向被吸入光束(当微粒的折射率大于周围介质折射率时)。
在研究了这两种现象之后,他又利用相对传播的两束激光实现了双光束光阱。
1970年,他利用多光束激光的三维势阱成功夹起并移动了水溶液中的小玻璃珠,后来这种激光夹持微粒的技术经过不断改进,所能捕获的粒子越来越小。
1985年,阿什金开始采用单光束夹持细菌、病毒等微小生物体,并在1987年利用1064纳米的红外激光成功夹起病毒。
但由于活性体对可视波段激光具有强烈的吸收作用,因此早期实验在对细菌的操作过程中存在活细胞损伤的问题,后来阿什金发现红外光对大多数生物细胞和有机体是相对透明的,所以为了避免损伤活细胞组织,在用于大多数生物研究的光镊装置中以800~950纳米的红外激光配合一定的功率操作。
光镊自诞生以来已在微米尺度量级的粒子操控和粒子间相互作用的研究中发挥了重要作用,成为这一尺度微粒的特有操控研究设备。
由于它是用“无形”的光束来实现非机械接触弹性捕获微粒,因此不会对样品产生机械损伤,又由于光镊的所有机械部件离捕获对象的距离都远大于捕获对象的尺度,是“遥控”操作,因而几乎不干扰粒子的周围环境。