高中数学函数与方程思想
- 格式:doc
- 大小:402.00 KB
- 文档页数:13
函数与方程的思想 函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其它内容时,起着重要作用;方程思想是解决各类计算问题的基本思想,是培养运算能力的基础,高考把函数与方程思想作为重要思想方法重点来考查.函数是高中数学的主线,它用联系和运动、变化的观点研究、描述客观世界中相互关联的量之间的依存关系,形成变量数学的一大重要基础和分支. 函数思想以函数知识做基石,用运动变化的观点分析、研究数学对象间的数量关系,使函数知识的应用得到极大的扩展,丰富并优化了数学解题活动,给数学解题带来很强的创新能力. 因此,函数思想是数学高考常考的热点. 函数思想在高考中的应用主要是函数的概念、性质及图像的应用.方程的思想,就是分析数学问题中各个量及其关系,运用数学语言建立方程或方程组、不等式或不等式组或构造方程或方程组、不等式或不等式组,通过求方程或方程组、不等式或不等式组的解的情况,使问题得以解决.函数思想与方程思想的联系十分密切,解方程()0f x =就是求函数()y f x =当函数值为零时自变量x 的值;求综合方程()()f x g x =的根或根的个数就是求函数()y f x =与()y g x =的图像的交点横坐标或交点个数,正是这些联系,促成了函数与方程思想在数学解题中的互化互换,丰富了数学解题的思想宝库.函数与方程的思想在解题应用中主要体现在两个方面:(1) 借助有关初等函数的图象性质,解有关求值、解(证)方程(等式)或不等式,讨论参数的取值范围等问题;(2) 通过建立函数式或构造中间函数把所要研究的问题转化为相应的函数模型,由所构造的函数的性质、结论得出问题的解.由于函数在高中数学中的举足轻重的地位,因而函数与方程的思想一直是高考考查的重点,对基本初等函数的图象及性质要牢固掌握,另外函数与方程的思想在解析几何、立体几何、数列等知识中的广泛应用也要重视.一、函数思想的应用1.显化函数关系在方程、不等式、数列、圆锥曲线等数学问题中,将原有隐含的函数关系凸显出来,从而利用函数知识或函数方法解决问题.【例1】已知,,若点在线段上,则的最大值为()(2,5)A (4,1)B (,)P x y AB 2x y -A.−1B.3C.7D.8【分析】本题是解析几何问题,由所在直线方程可得x 与y 的函数关系,转化为函数求值域的问题。
高中数学_必须掌握的六种常用的数学思想方法数学思想方法与数学基础知识相比较,它有较高的地位和层次。
数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。
而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。
常用数学思想方法有:1、数形结合的思想方法2、分类讨论的思想方法3、函数与方程的思想方法4、转化(化归)的思想方法5、分类讨论的思想方法6、整体的思想方法。
更多数学思维方法,请参阅《高中数学_快速解题的六种数学思维方法》。
一、数形结合的数学思想方法数学中的知识,有的本身就可以看作是数形的结合。
如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。
1、导读:2、相关内容:3、再现性题组:1.如果θ是第二象限的角,且满足cos θ2-sinθ2=1-sinθ,那么θ2是_____。
A.第一象限角B.第三象限角C.可能第一象限角,也可能第三象限角D.第二象限角2.如果实数x、y满足等式(x-2)2+y2=3,那么yx的最大值是_____。
A. 12B.33C.32D. 34、巩固性题组:1.已知5x+12y=60,则x y22+的最小值是_____。
A. 6013 B. 135C. 1312D. 12.方程2x=x2+2x+1的实数解的个数是_____。
A. 1B. 2C. 3D.以上都不对3.方程x=10sinx的实根的个数是_______。
二、分类讨论的数学思想方法①问题所涉及到的数学概念是分类进行定义的。
如|a|的定义分a>0、a=0、a<0三种情况。
这种分类讨论题型可以称为概念型。
②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。
高中数学思想方法高中数学思想方法高中数学思想方法1第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础高考把函数与方程思想作为七种重要思想方法重点来考查第二:数形结合思想(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的.分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查第七:或然与必然的思想(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点高中数学思想方法2近年来,高考命题方向很明显地朝着对知识网络交汇点、数学思想方法及对数学能力的考查发展,考生在复习的过程中,应对所学知识进行及时的梳理,这里既包含对基础知识的整理,也包括对数学思想方法的总结。
高考数学中的函数与方程高考数学是每年高中生面临的一次重要考试,数学作为高考的一门重要科目,其涵盖面之广、难度之大,常常使得很多学生对此望而却步。
其中,函数与方程是数学必不可少的一部分,不仅在高中应用数学中占据重要地位,也是高考数学中最为基础、最为重要的部分之一。
本文将就高考数学中函数与方程的相关内容,从概念、公式、实例等方面进行阐述。
一、函数函数是数学中最基础的概念之一,其在高考数学中占据着非常重要的地位。
在高中阶段,我们对于函数的学习主要集中在初步的认识和使用上,主要包括函数的定义、性质、图像等方面。
在高考数学中,函数的重点则主要在函数的运用和特殊情况的分析上。
关于函数,常见的定义是:把一个自变量集合中的每一个元素和一个因变量集合中的一个元素对应起来的规则。
其表示方式可以是f(x) = x+1、y=x^2+3x-4等等。
在高考数学中,我们需要根据实际情况将问题转化成函数的形式,然后根据函数的特性进行分析和计算。
我们在高中数学中学习的一些常见函数,如线性函数、二次函数、指数函数、对数函数等,高考中都可能出现。
这些函数在应用中均具有重要意义,例如线性函数可以用于描述比例关系,二次函数可以用于描述抛物线运动,指数函数和对数函数可以用于处理利率、收益等问题。
二、方程在高考数学中,方程与函数密不可分。
函数和方程之间的关系在高中时就有所涉及,到了高考阶段则更为深入和难度更大。
方程的含义和定义大家都比较清楚,在此就不再赘述。
根据它的形式,方程可分为一元方程、多元方程、二元一次方程、二元二次方程等等。
而在实际问题中,方程的表达方式并不限于这些形式,一些特殊的方程如分式方程、绝对值方程等在高考数学中也有一定的应用。
方程的解题方法非常多,我们在初中阶段就应该掌握一些基本的解题技巧。
如一元方程可以使用逆运算、加减变形等方式进行求解,二元一次方程可以使用代入、消元等方式求解。
而在高考中,我们不仅需要掌握这些基本解题技巧,还需要善于运用不同的解题思路和方法来处理问题。
函数与方程思想在高中数学解题中的应用【摘要】函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决。
【关键词】函数与方程思想;高中数学;应用什么是函数和方程思想?简单地说,就是学会用函数和变量来思考,学会转化已知与未知的关系,对函数和方程思想的考查,主要是考查能不能用函数和方程思想指导解题,在用函数和方程思想指导解题时要经常思考下面一些问题:是否需要把一个代数式看成一个函数,是否需要把字母看作变量,如果把一个代数式看成了函数,把一个或几个字母看成了变量,那么这个函数有什么性质,如果一个问题从表面上看不是一个函数问题,能否构造一个函数来帮助解题,是否需要把一个等式看作为一个含未知数的方程,如果是一个方程,那么这个方程的根(例如根的虚实,正负,范围等)有什么要求?一、把字母看作变量或把代数式看作函数规律技巧提炼:1.函数方程思想就是用函数、方程的观点和方法处量变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想.(1)函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量之间的相互制约关系,最后解决问题,这就是函数思想.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:①根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;②根据需要构造函数,利用函数的相关知识解决问题.(2)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想.2.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法来支援,函数与方程之间的辩证关系,形成了函数方程思想.综上所述,在高中数学教学过程中重视函数与方程思想方法的渗透,可以深化学生对基础知识的理解,进一步完善学生的知识结构,优化思维品质,提高学生分析问题,解决问题能力,提高学生的数学素养。
一、高中数学重要数学思想一、函数方程思想函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想。
1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想;2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想;3.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想。
二、数形结合思想数形结合是中学数学中四种重要思想方法之一,对于所研究的代数问题,有时可研究其对应几何的性质使问题得以解决(以形助数);或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形),这种解决问题的方法称之为数形结合。
1.数形结合与数形转化的目的是为了发挥形的生动性和直观性,发挥数的思路的规范性与严密性,两者相辅相成,扬长避短。
2.恩格斯是这样来定义数学的:“数学是研究现实世界的量的关系与空间形式的科学”。
这就是说:数形结合是数学的本质特征,宇宙间万事万物无不是数和形的和谐的统一。
因此,数学学习中突出数形结合思想正是充分把握住了数学的精髓和灵魂。
3.数形结合的本质是:几何图形的性质反映了数量关系,数量关系决定了几何图形的性质。
4.华罗庚先生曾指出:“数缺性时少直观,形少数时难入微;数形结合百般好,隔裂分家万事非。
”数形结合作为一种数学思想方法的应用大致分为两种情形:或借助于数的精确性来阐明形的某些属性,或者借助于形的几何直观性来阐明数之间的某种关系.5.把数作为手段的数形结合主要体现在解析几何中,历年高考的解答题都有关于这个方面的考查(即用代数方法研究几何问题)。
高中数学函数知识点总结高中数学函数知识点总结篇一一、增函数和减函数一般地,设函数f(x)的定义域为I:如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数。
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2),那么就是f(x)在这个区间上是减函数。
二、单调区间单调区间是指函数在某一区间内的函数值Y,随自变量X增大而增大(或减小)恒成立。
如果函数y=f(x)在某个区间是增函数或减函数。
那么就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y= f(x)的单调区间。
一、指数函数的定义指数函数的一般形式为y=a^x(a0且≠1) (x∈R)。
二、指数函数的性质1、曲线沿x轴方向向左无限延展〈=〉函数的定义域为(-∞,+∞)2、曲线在x轴上方,而且向左或向右随着x值的减小或增大无限靠近X轴(x轴是曲线的渐近线)〈=〉函数的值域为(0,+∞)一、对数与对数函数定义1、对数:一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
2、对数函数:一般地,函数y=log(a)X,(其中a是常数,a0且a不等于1)叫做对数函数,它实际上就是指数函数的反函数,因此指数函数里对于a的规定,同样适用于对数函数。
二、方法点拨在解决函数的综合性问题时,要根据题目的具体情况把问题分解为若干小问题一次解决,然后再整合解决的结果,这也是分类与整合思想的一个重要方面。
一、幂函数定义形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
二、性质幂函数不经过第三象限,如果该函数的指数的分子n是偶数,而分母m是任意整数,则y0,图像在第一;二象限。
这时(-1)^p的指数p的奇偶性无关。
高中数学基本数学思想:函数与方程思想在数列中的应用函数思想和方程思想是学习数列的两大精髓.“从基本量出发,知三求二.”这是方程思想的体现.而“将数列看成一种特殊的函数,等差、等比数列的通项公式和前n项和公式都是关于n的函数.”则蕴含了数列中的函数思想.借助有关函数、方程的性质来解决数列问题,常能起到化难为易的功效。
以下是小编给大家带来的方程思想在数列上的应用,仅供考生阅读。
函数与方程思想在数列中的应用(含具体案例)本文列举几例分类剖析:一、方程思想1.知三求二等差(或等比)数列{an}的通项公式,前n项和公式集中了等差(或等比)数列的五个基本元素a1、d(或q)、n、an、Sn.“知三求二”是等差(或等比)数列最基本的题型,通过解方程的方法达到解决问题的目的.例1等差数列{an}的前n项和为Sn,已知a10=30,a20=50,(1)求数列{an}的通项公式;(2)若Sn=242,求n的值.解(1)由a10=a1+9d=30,a20=a1+19d=50,解得a1=12,因为n∈N*,所以n=11.2.转化为基本量在等差(等比)数列中,如果求得a1和d(q),那么其它的量立即可得.例2在等比数列{an}中,已知a6―a4=24,a3a5=64,求{an}的前8项的和S8.解a6―a4=a1q3(q2―1)=24.(1)由a3a5=(a1q3)2=64,得a1q3=±8.将a1q3=―8代入(1),得q2=―2(舍去);将a1q3=8代入(1),得q=±2.当q=2时,a1=1,S8=255;当q=―2时,a1=―1,S8=85.3.加减消元法利用Sn求an利用Sn求an是求通项公式的一种重要方法,其实这种方法就是方程思想中加减消元法的运用.例3(2011年佛山二模)已知数列{an}、{bn}中,对任何正整数n都有:a1b1+a2b2+a3b3+…+an―1bn―1+anbn=(n―1)?2n+1.若数列{bn}是首项为1、公比为2的等比数列,求数列{an}的通项公式.解将等式左边看成Sn,令Sn=a1b1+a2b2+a3b3+…+an―1bn―1+anbn.依题意Sn=(n―1)?2n+1,(1)又构造Sn―1=a1b1+a2b2+a3b3+…+an―1bn―1=(n―2)?2n―1+1,(2)两式相减可得Sn―Sn―1=an?bn=n?2n―1(n≥2).又因为数列{bn}的通项公式为bn=2n―1,所以an=n (n≥2).当n=1,由题设式子可得a1=1,符合an=n.从而对一切n∈N*,都有an=n.所以数列{an}的通项公式是an=n.4.等差、等比的综合问题这一类的综合问题往往还是回归到数列的基本量去建立方程组.例4设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列,求数列{an}的通项公式.解根据求和定义和等差中项建立关于a1,a2,a3的方程组.由已知得a1+a2+a3=7,(a1+3)+(a3+4)2=3a2.解得a2=2.设数列{an}的公比为q,由a2=2,可得a1=2q,a3=2q.又S3=7,可知2q+2+2q=7,即2q2―5q+2=0,解得q1=2,q2=12.由题意得q>1,所以q=2.可得a1=1,从而数列{an}的通项为an=2n―1.二、函数思想数列是一类定义在正整数或它的有限子集上的特殊函数.可见,任何数列问题都蕴含着函数的本质及意义,具有函数的一些固有特征.如一次、二次函数的性质、函数的单调性、周期性等在数列中有广泛的应用.如等差数列{an}的通项公式an=a1+(n―1)d=dn+(a1―d),前n项和的公式Sn=na1+n(n―1)2d=d2n2+(a1―d2)n,当d≠0时,可以看作自变量n的一次和二次函数.因此我们在解决数列问题时,应充分利用函数有关知识,以它的概念、图象、性质为纽带,架起函数与数列间的桥梁,揭示了它们间的内在联系,从而有效地分解数列问题.1.运用函数解析式解数列问题在等差数列中,Sn是关于n的二次函数,故可用研究二次函数的方法进行解题.例5等差数列{an}的前n项的和为Sn,且S10=100,S100=10,求S110,并求出当n为何值时Sn有最大值.分析显然公差d≠0,所以Sn是n的二次函数且无常数项.解设Sn=an2+bn(a≠0),则a×102+b×10=100,a×1002+b×100=10.解得a=―11100,b=11110.所以Sn=―11100n2+11110n.从而S110=―11100×1102+11110×110=―110.函数Sn=―11100n2+11110n的对称轴为n=111102×11100=55211=50211.因为n∈N*,所以n=50时Sn有最大值.2.利用函数单调性解数列问题通过构造函数,求导判断函数的单调性,从而证明数列的单调性.例6已知数列{an}中an=ln(1+n)n (n≥2),求证an>an+1.解设f(x)=ln(1+x)x(x≥2),则f ′(x)=x1+x―ln(1+x)x2. 因为x≥2,所以x1+x<1,ln(1+x)>1,所以f ′(x)<0.即f(x)在[2,+∞)上是单调减函数.故当n≥2时,an>an+1.例7已知数列{an}是公差为1的等差数列,bn=1+anan.(1)若a1=―52,求数列{bn}中的最大项和最小项的值;(2)若对任意的n∈N*,都有bn≤b8成立,求a1的取值范围.(1)分析最大、最小是函数的一个特征,一般可以从研究函数的单调性入手,用来研究函数最大值或最小值的方法同样适用于研究数列的最大项或最小项.解由题设易得an=n―72,所以bn=2n―52n―7.由bn=2n―52n―7=1+22n―7,可考察函数f(x)=1+22x―7的单调性.当x<72时,f(x)为减函数,且f(x)<1;当x>72时,f(x)为减函数,且f(x)>1.所以数列{bn}的最大项为b4=3,最小项为b3=―1.(2)分析由于对任意的n∈N*,都有bn≤b8成立,本题实际上就是求数列{bn}中的最大项.由于bn=1+1n―1+a1,故可以考察函数f(x)=1+1x―1+a1的形态.解由题,得an=n―1+a1,所以bn=1+1n―1+a1.考察函数f(x)=1+1x―1+a1,当x<1―a1时,f(x)为减函数,且f(x)<1;当x>1―a1时,f(x)为减函数,且f(x)>1.所以要使b8是最大项,当且仅当7<1―a1<8,所以a1的取值范围是―73.利用函数周期性解数列问题例8数列{an}中a1=a2=1,a3=2,anan+1an+2an+3=an+an+1+an+2+an+3且anan+1an+2≠1成立.试求S100=a1+a2+…+a100的值.分析从递推式不易直接求通项,观察前几项a1=1,a2=1,a3=2,a4=4,a5=1,a6=1,a7=2,a8=4,a9=1,…可猜测该数列是以4为周期的周期数列.解由已知两式相减得通过上述实例的分析与说明,我们可以发现,在数列的教学中,应重视方程函数思想的渗透,应该把函数概念、图象、性质有机地融入到数列中,通过数列与函数知识的相互交汇,使学生的知识网络得以不断优化与完善,同时也使学生的思维能力得以不断发展与提高.高中数学思想方法介绍,高中数学解题思想方法与讲解数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。
函数与方程思想在解题中的应用摘要:函数与方程思想是中学数学中的基本思想。
其中,函数思想是用变化的观点分析数学问题中的数量关系,建立函数、利用函数的性质解题;方程思想是将问题中的数量关系运用数学语言转化为方程模型来解题。
它们还密切相关,有时需要互相转化来解决问题。
本文主要阐述函数与方程思想的地位和作用,函数与方程思想的概念及它们在解集合、不等式、数列等方面的应用,包括运用函数思想、方程思想,函数和方程统一思想。
关键词:数学思想;函数思想; 方程思想; 函数与方程思想数学知识可以记忆一时,但数学思想和方法却随时随地发挥作用,使人受益终身。
近年来我国许多考纲已明确提出不仅要考察学生的数学知识和思维能力,还要考察学生思想方法的运用能力。
其中函数与方程的思想是众多考试考查的最基本的数学思想方法之一。
学生仅仅学习了函数与方程的知识是不够的,应通过解题和对解题过程的反思来领悟函数与方程的思想。
一、函数与方程思想的地位和作用数学思想是人们对现实世界空间形式和数量关系的本质认识,它是思维加工的产物,比一般的数学概念和数学方法具有更高的概括性和抽象性,因而更深刻,更本质。
可以说,数学思想是数学知识的核心,是数学的精髓和灵魂。
目前高中阶段主要数学思想有:函数与方程、数形结合、分类与整合、划归与转化、特殊与一般、有限与无限、或然与必然。
函数与方程思想,既是函数思想与方程思想的体现,也是两种思想综合运用的体现,是研究变量与函数、相等与不等过程中的基本数学思想。
函数与方程思想作为高中数学思想方法的重点,对学生的要求也越来越高。
考试中心指出:“高考把函数与方程的思想作为七种思想方法的重点来考查,使用选择题和填空题考查函数与方程思想的基本运算,而在解答题中,则从更深的层次,在知识网络的交汇处,从思想方法与相关能力相结合的角度进行深入考查。
”我们仅仅学习了函数与方程知识,在解决问题时往往是被动的,而建立了函数与方程思想,才能主动地去思考一些问题。
专题函数与方程思想一、考点回顾函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。
函数与方程的思想是中学数学的基本思想,也是历年高考的重点。
1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。
2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。
方程思想是动中求静,研究运动中的等量关系;3.函数方程思想的几种重要形式(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。
(2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要;(4)函数f(x)=(1+x)^n (n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题;(5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。
二、经典例题剖析(根据近几年高考命题知识点及热点做相应的试题剖析,要求例题不得少于8个)1. (湖北卷)关于x的方程(x2-1)2-|x2-1|+k=0,给出下列四个命题:①存在实数k,使得方程恰有2个不同的实根;②存在实数k,使得方程恰有4个不同的实根;③存在实数k,使得方程恰有5个不同的实根;④存在实数k,使得方程恰有8个不同的实根.其中假命题的个数是( ).A. 0B. 1C. 2D. 4解析:本题是关于函数、方程解的选择题,考查换元法及方程根的讨论,属一题多选型试题,要求考生具有较强的分析问题和解决问题的能力.思路分析:1. 根据题意可令|x 2-1|=t(t≥0),则方程化为t 2-t +k =0,(*)作出函数t =|x 2-1|的图象,结合函数的图象可知①当t =0或t >1时,原方程有两上不等的根,②当0<t <1时,原方程有4个根,③当t =1时,原方程有3个根.(1)当k =-2时,方程(*)有一个正根t =2,相应的原方程的解有2个;(2)当k =14时,方程(*)有两个相等正根t =12,相应的原方程的解有4个; (3)当k =0时,此时方程(*)有两个不等根t =0或t =1,故此时原方程有5个根;(4)当0<k <14时,方程(*)有两个不等正根,且此时方程(*)有两正根且均小于1,故相应的满足方程|x 2-1|=t 的解有8个,故选A.2. 由函数f(x)=(x 2-1)2-|x 2-1|的图象(如下图)及动直线g(x)=k 可得出答案为A.3. 设t =|x 2-1|(t≥0),t 2-t +k =0,方程的判别式为Δ=1-4k ,由k 的取值依据Δ>0、△=0、△<0从而得出解的个数.4. 设函数f(x)=,利用数轴标根法得出函数与x 轴的交点个数为5个,以及函数的单调性大体上画出函数的图象,从而得出答案A. 答案:A点评:思路1、思路2、思路4都是利用函数图象求解,但研究的目标函数有别,思路2利用函数的奇偶性以及交轨法直观求解,很好地体现了数形结合的数学思想,是数形结合法中值得肯定的一种方法;思路3利用方程的根的个数问题去求解,但讨论较为复杂,又是我们的弱点,有利于培养我们思维的科学性、严谨性、抽象性、逻辑推理能力等基本素质.2. (广东卷)已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( ). A. 5 B. 4 C. 3 D. 2解析:设等差数列的首项为a 1,公差为d 据题意得:答案:C点评:运用等差、等比数列的基本量(a 1,d ,q)列方程,方程组是求解数列基本问题的通法.3. (安徽卷)已知<α<π,tanα+cotα=-.(1)求tanα的值;(2)求的值.解析:(1)由tanα+cotα=-103得3tan2α+10tanα+3=0,即tanα=-3或tanα=-13, 又3π4<α<π,所以tanα=-13=为所求.答案: 点评:第(1)问是对方程思想方法灵活考查,能否把条件tanα+cotα=-103变形为关于tanα的一元二次方程,取决于解题的目标意识和是否对方程思想方法的深刻把握和理解.4. (江西卷)若不等式x 2+ax +1≥0对于一切x ∈(0,12]成立,则a 的最小值是( ).A. 0 B. -2 C. -52D. -3 解析:与x 2+ax +1≥0在R上恒成立相比,本题的难度有所增加.思路分析:1. 分离变量,有a≥-(x +1x ),x ∈(0,12]恒成立.右端的最大值为-52,故选C.2. 看成关于a 的不等式,由f(0)≥0,且f(12)≥0可求得a 的范围. 3. 设f(x)=x 2+ax +1,结合二次函数图象,分对称轴在区间的内外三种情况进行讨论.4. f(x)=x 2+1,g(x)=-ax ,则结合图形(象)知原问题等价于f(12)≥g(12),即a≥-52.5. 利用选项,代入检验,D不成立,而C成立.故选C.答案:C点评:思路1~4具有函数观点,可谓高屋建瓴.思路5又充分利用了题型特点.5. (全国卷Ⅱ)已知抛物线x 2=4y 的焦点为F,A、B是抛物线上的两动点,且(λ>0).过A 、B两点分别作抛物线的切线,设其交点为M.(1)证明为定值; (2)设△ABM 的面积为S ,写出S =f(λ)的表达式,并求S 的最小值.解:(1)证明:由已知条件,得F(0,1),λ>0.设A(x 1,y 1),B(x 2,y 2).由,得(-x 1,1-y 1)=λ(x 2,y 2-1),即将①式两边平方并把代入得 ③ 解②、③式得y 1=λ,y 2=1λ,且有x 1x 2=-λx 22=-4λy 2=-4,抛物线方程为y =14x 2,求导得y′=12x.所以过抛物线上A 、B 两点的切线方程分别是y =12x 1(x -x 1)+y 1,y =12x 2(x -x 2)+y 2, 即. 解出两条切线的交点M 的坐标为,所以= .所以为定值,其值为0. (2)由(1)知在△ABM 中,FM ⊥AB ,因而S =12|AB| |FM|. |FM|=====.因为|AF|、|BF|分别等于A 、B 到抛物线准线y =-1的距离,所以|AB|=|AF|+|BF|=y 1+y 2+2=λ+1λ+2=()2.于是S =12|AB| |FM|=12()3由≥2知S≥4,且当λ=1时,S 取得最小值4.点评:在解析几何中考查三角形面积最值问题是高考的重点和热点,求解的关键是建立面积的目标函数,再求函数最值,至于如何求最值应视函数式的特点而定,本题是用均值定理求最值的.6. 设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x <0时,f′(x)·g(x)+f(x)·g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是( ).A. (-3,0)∪(3,+∞) B. (-3,0)∪(0,3)C. (-∞,-3)∪(3,+∞) D. (-∞,-3)∪(0,3)解析:以函数为中心,考查通性通法,设F(x)=f(x)g(x),由f(x),g(x)分别是定义在R 上的奇函数和偶函数,所以F(-x)=f(-x)g(-x)=-f(x)g(x)=-F(x),即F(x)为奇函数.又当x <0时,F′(x)=f ′(x)g(x)+f(x)g′(x)>0,所以x <0时,F(x)为增函数.因为奇函数在对称区间上的单调性相同,所以x >0时,F(x)也为增函数.因为F(-3)=f(-3)g(-3)=0=-F(3).如上图,是一个符合题意的图象,观察知不等式F(x)<0的解集是(-∞,-3)∪(0,3),所以选D.答案:D点评:善于根据题意构造、抽象出函数关系式是用函数思想解题的关键.题中就是构建函数F(x)=f(x)g(x),再根据题意明确该函数的性质,然后由不等式解集与函数图象间的关系使问题获得解决的.7. 函数f(x)是定义在[0,1]上的增函数,满足f(x)=2f(x 2)且f(1)=1,在每一个区间(](i =1,2……)上,y =f(x)的图象都是斜率为同一常数k 的直线的一部分.(1) 求f(0)及f(12),f(14)的值,并归纳出f()(i =1,2,……)的表达式; (2)设直线x =,x =,x 轴及y =f(x)的图象围成的梯形的面积为a i (i =1,2,……),记S(k)=lim n→∞(a 1+a 2+…a n ),求S(k)的表达式,并写出其定义域和最小值. 解析:以函数为细节,注重命题结构网络化,(1)由f(0)=2f(0),得f(0)=0.由f(1)=2f(12)及f(1)=1,得 f(12)=12f(1)=12.同理,f(14)=12f(12)=14. 归纳得f()=(i =1,2,……).(2)当<x≤=时,所以{a n }是首项为12(1-k 4),公比为14的等比数列,所以.S(k)的定义域为{k|0<k≤1},当k =1时取得最小值12. 点评:高考命题寻求知识网络化已是大势所趋,而函数是把各章知识组合在一起的最好的“粘合剂”.高考试题注重知识的联系,新而不偏,活而不怪.这样的导向,就要求在学习中必须以数学思想指导知识、方法的运用,注意培养我们用联系的观点去思考问题的习惯.8. 对任意实数k ,直线:y =kx +b 与椭圆:(0≤θ<2π)恒有公共点,则b 取值范围是 .解析:方法1,椭圆方程为,将直线方程y =kx +b 代入椭圆方程并整理得. 由直线与椭圆恒有公共点得化简得由题意知对任意实数k,该式恒成立,则Δ′=12(b-1)2-4[16-(b-1)2]≤0,即-1≤b≤3方法2,已知椭圆与y轴交于两点(0,-1),(0,3).对任意实数k,直线:y=kx+b与椭圆恒有公共点,则(0,b)在椭圆内(包括椭圆圆周)即有≤1,得-1≤b≤3.点评:方法1是运用方程的思想解题,这是解析几何变几何问题为代数问题的方法.方法2运用数形结合的思想解题,是相应的变代数问题为几何问题的方法.高考试题中设置一题多解的试题就是为了考查学生思维的深度和灵活运用数学思想方法分析问题和解决问题的能力.评判出能力与素养上的差异.三、方法总结与2008年高考预测(一)方法总结1.函数描述了自然界中量的依存关系,反映了一个事物随着另一个事物变化而变化的关系和规律。
函数与方程的思想在高中数学中的应用作者:陈少婉来源:《广东教育·高中》2017年第01期函数与方程的思想是高中数学的基本思想之一,是通过建立函数或方程,运用函数的图像、性质等去分析问题,解决问题;更重要的是产生函数或方程的方法,能上升到思想高度主动思考问题.运用函数与方程的相互转化解决零点问题、构建函数解决不等关系问题与最值问题、利用方程的思想解决消参求值问题以及切点弦问题等等,是近年高考的热点和重难点.下面举例说明函数与方程的思想在高中数学解题中的应用.一、零点问题中的函数与方程思想函数的零点问题是近几年高考题的高频考点和重难点.许多函数问题要用方程的知识与方法来支持;许多方程的问题,需要用函数的知识与方法去解决.函数思想是对函数内容在更高层次上的抽象、概括与提炼,方程问题的函数视角就是利用函数的图像、性质来研究方程的根及范围问题.1.1.与函数的零点或方程的根或函数图像的交点个数问题例题1.1.(1)已知函数y=f(x)的周期为2,当x∈[-1,1]时,f(x)=x2,那么函数y=f (x)的图像与函数y=|lgx|的图像的交点共有()A. 10个B. 9个C. 8个D. 1个综上所述,原方程有4个实根.点评:函数零点问题的解题思路主要有两个方向,一是算出来,即利用方程求根,运用方程的思想求解,二是画出来,即转化为函数图像与轴的交点问题或者两个函数图像的交点问题,运用函数的思想以及数形结合的思想求解.在解题过程中,函数与方程相互转化.本题根据分段函数不同区间的特征,综合运用解方程、构造函数,讨论单调性等方法求解.1.2求参数的值或取值范围问题例题1.2. 已知函数f(x)=|x2-1|,g(x)=x2+ax+2,x∈R,若函数h(x)=f(x)+g (x)+2在(0,2)上有两个零点x1,x2求实数a的取值范围.点评:运用函数的思想转化零点问题,构造的函数不同,解法也不同,但用到的思想方法是相同的,在解题中要注意函数与方程的相互转化.1.3.借助零点,考查导数探究函数的性质例题1.3. 设函数f(x)=e2x-alnx.(Ⅰ)讨论f(x)的导函数f′(x)的零点的个数;值范围,体现了函数的思想.解题时要注意自变量c的取值范围,即函数定义域的确定.三、立体几何中的函数方程思想函数方程思想不仅在代数解题中发挥着重要的作用,而且在立体几何中也有着巧妙的应用.在立体几何的动点问题、最值问题和逆向问题中,通常要运用函数与方程的思想求解.3.1利用函数的图像及性质解决立几中动点的轨迹问题例题3.1. 如图,动点P在正方体ABCD-A1B1C1D1的对角线BD1上. 过点P作垂直于平面BB1D1D的直线,与正方体表面相交于M,N. 设BP=x,MN=y,则函数y=f(x)的图像大致是()点评:本题是一道立体几何与函数图像相结合的题目,主要考查了函数图像的变化.由于题目中给出了自变量和因变量,如能求出函数解析式,问题即可获解.因此,可根据几何体的特征和条件分析两个变量的变化情况,通过M,N,P作底面的垂线作出M,N在平面ABCD 内的正投影,保持其长度不变,从而把空间问题平面化,建立一次函数模型.3.2利用方程的思想解立体几何逆向题例题3.2. 如图,已知四棱台ABCDA1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P,Q分别在棱DD1,BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角PQDA的余弦值为,求四面体ADPQ的体积.解析:由题设知,AA1,AB,AD两两垂直,以A为坐标原点,AB,AD,AA1所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则相关各点的坐标为A(0,0,0),B1(3,0,6),D(0,6,0),D1(0,3,6),Q(6,m,0),其中m=BQ,0≤m≤6.点评:本题是一道立体几何逆向题.通过设定变量m,λ利用二面角PQDA的余弦值为以及PQ∥平面ABB1A1的条件建立等量关系,求出变量m,λ的值,体现了方程的思想.3.3运用函数的思想解决立几中的最值问题例题3.3. 如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成角最小时,求线段BQ的长.解析:以{,,}为正交基底建立如图所示的空间直角坐标系A-xyz,则各点的坐标为B (1,总之,作为高中数学基础知识的重要内容,数学思想与数学方法属于教学中的重点,也是学生学习过程中的难点.通过思想与方法的学习能够真正理解数学的价值和意义.函数与方程的思想是高中数学的基本思想方法之一,也是高考的重中之中,是掌握许多数学知识的基础. 运用函数与方程的思想方法去解题,才举一反三,融会贯通,才能俯瞰题目,达到“一览众山小”的境界.函数与方程思想的运用在高中数学中无处不在,在解题中应注意体会,归纳总结,形成方法和能力.责任编辑徐国坚。
高中数学基本数学思想1.转化与化归思想:是把那些待解决或难解决的问题化归到已有知识范围内可解问题的一种重要的基本数学思想.这种化归应是等价转化,即要求转化过程中的前因后果应是充分必要的,这样才能保证转化后所得结果仍为原题的结果. 高中数学中新知识的学习过程,就是一个在已有知识和新概念的基础上进行化归的过程.因此,化归思想在数学中无处不在. 化归思想在解题教学中的的运用可概括为:化未知为已知,化难为易,化繁为简.从而达到知识迁移使问题获得解决.但若化归不当也可能使问题的解决陷入困境. 例证2.逻辑划分思想(即分类与整合思想):是当数学对象的本质属性在局部上有不同点而又不便化归为单一本质属性的问题解决时,而根据其不同点选择适当的划分标准分类求解,并综合得出答案的一种基本数学思想.但要注意按划分标准所分各类间应满足互相排斥,不重复,不遗漏,最简洁的要求. 在解题教学中常用的划分标准有:按定义划分;按公式或定理的适用范围划分;按运算法则的适用条件范围划分;按函数性质划分;按图形的位置和形状的变化划分;按结论可能出现的不同情况划分等.需说明的是: 有些问题既可用分类思想求解又可运用化归思想或数形结合思想等将其转化到一个新的知识环境中去考虑,而避免分类求解.运用分类思想的关键是寻找引起分类的原因和找准划分标准. 例证3. 函数与方程思想(即联系思想或运动变化的思想):就是用运动和变化的观点去分析研究具体问题中的数量关系,抽象其数量特征,建立函数关系式,利用函数或方程有关知识解决问题的一种重要的基本数学思想.4. 数形结合思想:将数学问题中抽象的数量关系表现为一定的几何图形的性质(或位置关系);或者把几何图形的性质(或位置关系)抽象为适当的数量关系,使抽象思维与形象思维结合起来,实现抽象的数量关系与直观的具体形象的联系和转化,从而使隐蔽的条件明朗化,是化难为易,探索解题思维途径的重要的基本数学思想.5. 整体思想:处理数学问题的着眼点或在整体或在局部.它是从整体角度出发,分析条件与目标之间的结构关系,对应关系,相互联系及变化规律,从而找出最优解题途径的重要的数学思想.它是控制论,信息论,系统论中“整体—部分—整体”原则在数学中的体现.在解题中,为了便于掌握和运用整体思想,可将这一思想概括为:记住已知(用过哪些条件?还有哪些条件未用上?如何创造机会把未用上的条件用上?),想着目标(向着目标步步推理,必要时可利用图形标示出已知和求证);看联系,抓变化,或化归;或数形转换,寻求解答.一般来说,整体范围看得越大,解法可能越好.在整体思想指导下,解题技巧只需记住已知,想着目标, 步步正确推理就够了.中学数学中还有一些数学思想,如:集合的思想;补集思想;归纳与递推思想;对称思想;逆反思想;类比思想;参变数思想有限与无限的思想;特殊与一般的思想。
一次函数与方程一次函数和方程是高中数学中的重要内容,其涉及到直线的方程、斜率、截距等概念。
以下就一次函数和方程进行详细介绍。
一、一次函数一次函数是指函数中只有一项是一次幂的函数,即f(x) = kx + b 的形式,其中k和b是常数。
它的图像为一条直线,称为直线函数,其自变量为x,因变量为y。
其中,k叫做直线的斜率,表示直线的倾斜程度;b叫做直线的截距,表示直线与y轴的交点。
在一次函数中,自变量和因变量通常分别称为x和y,其中x代表自变量,y代表因变量。
1.一次函数的定义域和值域一次函数的定义域是全体实数集,即Df = R。
而一次函数的值域可以通过观察斜率来推断,当k>0时,y的值域为[0,+∞),当k<0时,y的值域为(-∞,0],当k=0时,y的值域为b。
也可以通过求导的方式来确定一次函数的值域。
2.一次函数的性质(1)一次函数是一种线性函数,其图像为一条直线。
(2)斜率为正表示函数单调递增,斜率为负表示函数单调递减。
(3)当斜率k=0时,函数图像为一条水平直线,函数为常函数,截距b为函数的值。
(4)当截距b=0时,函数图像经过原点,称该函数为原点在原处的函数。
(5)当截距b不等于0时,直线与y轴相交于点(0,b),其y坐标为截距b,斜率为k。
二、一次方程一次方程是指方程中只有一项是一次幂的方程,即ax+b=0的形式,其中a和b是常数,且a不等于0。
一次方程的解为x=-b/a,表示方程的解在x轴上的位置。
一次方程中,未知量通常表示为x。
1.一次方程的解法(1)移项法:将方程中已知项移至等式的另一侧,使未知量单独一侧,然后相应地整合方程的两侧,得到未知量的解。
(2)消元法:将方程中含有未知量的项相消,使得未知量单独一项,然后相应地整合方程的两侧,得到未知量的解。
(3)代入法:将方程中一个已知量代入另一个方程中,用代入公式求出未知量的解。
2.一次方程的性质(1)可以通过移项将一次方程变化为确定的形式,形式为x=b/a。
高中数学中函数与方程思想的研究函数与方程思想是数学学科中的两个重要思想,也是解决实际问题的重要方法。
在高中数学教学中,函数与方程思想的应用对于提高学生的数学素养和解决问题的能力具有重要意义。
本文旨在探讨函数与方程思想在普通高中教学中的实践研究,以期为优化高中数学教学提供参考。
普通高中教学的主要目标是培养学生的创新精神和实践能力,为其未来的发展奠定基础。
在这个过程中,数学学科作为一门重要的基础课程,需要着重培养学生的逻辑思维和解决问题的能力。
函数与方程思想作为数学学科的基本思想,也是解决高中数学教学问题的关键。
在普通高中教学中,函数与方程思想的实践主要包括以下环节:教学准备:教师需要深入理解函数与方程思想的概念和特点,掌握其在解决问题中的应用方法。
同时,教师应结合具体的教学内容和教学目标,准备好相应的教案和学案。
教学目标制定:教师需要明确函数与方程思想的教学目标,包括知识目标、能力目标和情感目标。
同时,教师需要根据学生的实际情况和需求,制定相应的教学计划。
教学实施:教师在课堂上需要采用多种教学方法和手段,如案例教学、探究式教学等,引导学生理解和掌握函数与方程思想,并运用它们解决实际问题。
教学反思:教师需要及时反思自己的教学过程和效果,发现问题并及时改进,以便更好地提高教学质量和效果。
以高中数学中“函数”章节的教学为例,教师可以通过以下方式将函数与方程思想融入教学中:帮助学生理解函数的概念和性质,如定义域、值域、单调性等,为后续的应用奠定基础。
通过实例让学生了解函数在解决实际问题中的应用,如利用函数解析式解决行程问题、利润问题等。
引导学生通过方程或不等式的方式描述实际问题,然后利用函数的性质和相关算法求解。
例如,帮助学生理解以下题目:某公司为了营销一款产品,计划在三个方面进行投入(x1, x2, x3),已知产品总成本为C元。
试求C关于x1, x2, x3的函数关系式。
教师可以引导学生列出成本与投入之间的方程,然后通过调整方程的形式,使学生理解函数关系式的意义和应用。
函数与方程的思想方法在解题中的应用何登文数列、解析几何、立体几何、不等式及实际应用问题是高中数学的几个重要内容,在高考试题中占了较大的比例,能否顺利的解答这几类问题,直接影响到学生的高考成绩。
函数与方程思想从某些方面来说,给我们指出了解决这些问题的思路和方法。
将这些问题转化为相应的函数或方程,我们就可以应用函数和方程的性质来解决问题了。
下面,我们通过例题来说明它们的应用。
一、利用函数与方程的思想解答数列问题例1、已知数列的通项公式n a =-2n +6n+2,这个数列的最大项的值是多少?从第几项起以后的项均为负值?分析:数列是以自然数n 为变量的点列函数,因此,我们在处理数列问题是,往往将其转化函数问题,利用相应函数的性质来求解。
解:∵ n a =-2n +6n+2,∴n a 可以看作是关于n 的二次函数,利用二次函数的性质,当n=-62--=3时,n a 有最大值11。
令-2n +6n+2≤0 解得 n ≥7∴从第七项起以后的项均为负值。
此题利用了数列的函数特性求解,使得问题简单化,使用了化未知为已知的思维方法。
例2、已知数列﹛n a ﹜是等差数列,若n s =10,2n s =50,求3n s 。
分析:本题我们可以用“等差数列中,依次取每k 项作和,其和仍成等差数列”的性质来求解,即ns、2ns-ns、3ns-2ns成等差数列,此时公差d=50-20=30,所以3ns=2ns-ns+2ns+d=50-10+50+30=120.这样很直接。
另外,在等差数列中211()22()22n d dn d d n n n n a s a +-==+-是关于n 的一次函数,因此,我们可以利用一次函数的点共线的性质求解。
解:∵﹛n a ﹜是等差数列,∴n n s ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭也是等差数列,是关于n 的一次函数,∴ 23,,2,,3,23n n n n n n n n n s s s ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭三点共线,∴35010102323n n n n n n n n n s --=-- 解得3n s =120。
函数与方程思想数学思想是数学活动的指导思想,是数学活动的一般概括。
它是从整体和思维的更高层次上指导考生有效地认识数学本质,运用数学知识发现、完善数学知识结构,探寻解题的方向和途径。
通过概括、比较上升为数学能力,并通过数学思想的运用,培养学生初步的科学方法论,提高思维素质,增强思维能力。
数学思想的教学使中学数学教学进一步走向现代化。
第一轮复习中,数学思想尚处于隐含、渗透的阶段。
第二轮复习有必要明确地突出其重要作用,使考生清楚地认识到只有在数学思想的指导下的解题活动,才是科学的解题活动,才具有很强的能动作用和创造作用。
从高考的实际出发,本书只强调现行热点的函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想。
函数是高中数学的主线,它用联系和运动、变化的观点研究、描述客观世界中相互关联的量之间的依存关系,形成变量数学的一大重要基础和分枝。
函数思想以函数知识做基石,用运动变化的观点分析和研究数学对象间的数量关系,使函数知识的应用得到极大的扩展,丰富并优化了数学解题活动,给数学解题带来一股很强的创新能力。
因此,越来越成为数学高考的长考不衰的热点。
函数思想在高考中的应用主要是函数的概念。
性质及图像的应用,包括显化、转换、构造、建立函数关系解题四个方面。
方程思想是从问题的数量关系出发,运用数学语言将问题中的条件转化为方程、不等式或它们的混合组,通过解方程(组)、不等式(组)或其混合组使问题获解。
包括待定系数法,换无法、转换法和构造方程法四个方面。
函数思想与方程思想的联系十分密切。
解方程f (x )=0就是求函数y =f (x )当函数值为零时自变量x 的值;求综合方程f (x )=g (x )的根或根的个数就是求函数y=f (x )与y =g (x )的图像的交点或交点个数;合参数的方程f (x , y , t )=0和参数方程更是具有函数因素,属能随参数的变化而变化的动态方程。
它所研究的数学对象已经不是一些孤立的点,而是具有某种共性的几何曲线。
正是这些联系,促成了函数与方程思想在数学解题中的互化互换,丰富了数学解题的思想宝库。
1.显化函数关系在方程、不等式、最值、数列、圆锥曲线等数学问题中,将原有隐含的函数关系凸显出来,从而使用函数知识或函数方法使问题获解.例题1.在数列{a n }中,a 1=15,以后各项由 a n +1=a n -32,求数列{a n }的前n 项和的最大值.分析:由题设易知数列{a n }为等差数列,其通项的一个充要条件形式就是 n的一次函数,a n = An +B ,(A 、B ∈R )欲求前n 项和S n 的最大值只需利用a n 的单调性转化为a n >o ,a n +1<0即可获解.解:∵ a n +1=a n -32, ∴ d =a n -1-a n =-32, ∵ a 1=15, ∴ a n =15-32(n -1),由⎩⎨⎧<>+001n n a a , 即⎪⎩⎪⎨⎧<->--032150)1(3215n n , 解得245<n <247(n ∈ N ),即n =23.故数列{a n }的前23项的和最大. 点拨解疑:数列是定义在自然数集N 上的特殊函数,等差、等比数列的通项公式,前n 项和公式都具有隐含的函数关系,都可以看成n 的函数.在解等差数列、等比数列问题中,有意识地凸现其函数关系、从而用函数思想或函数方法研究、解决问题,不仅常能获得简便优秀的解法,且能促进科学思维的培养,提高发散思维的水平.2.转换函数关系在函数性态、曲线性质或不等式的综合问题、恒成立问题中逆求参数的取值范围,按照原有的函数关系很难奏效时,灵活转换思维角度,放弃题设的主参限制,挑选合适的主变元,揭示它与其它变元的函数关系,切人问题本质,从而使原问题获解.例题2.已知函数f (x )=1421lg 2+-⋅++a a a x x , 其中为常数,若当x ∈(-∞, 1]时, f (x )有意义,求实数a 的取值范围.分析:参数a 深含在一个复杂的复合函数的表达式中,欲直接建立关于a 的不等式(组)非常困难,故应转换思维角度,设法从原式中把a 分离出来,重新认识a 与其它变元(x )的依存关系,利用新的函数关系,常可使原问题“柳暗花明”.解:14212+-⋅++a a a x x >0, 且a 2-a +1=(a -21)2+43>0, ∴ 1+2x +4x ·a >0, a >)2141(x x +-, 当x ∈(-∞, 1]时, y =x 41与y =x 21都是减函数, ∴ y =)2141(x x +-在(-∞, 1]上是增函数,)2141(x x +-max =-43, ∴ a >-43, 故a 的取值范围是(-43, +∞). 点拨解疑:发掘、提炼多变元问题中变元间的相互依存、相互制约的关系、反客为主,主客换位,创设新的函数,并利用新函数的性质创造性地使原问题获解,是解题人思维品质高的表现.本题主客换位后,利用新建函数y =)2141(x x +-的单调性转换为函数最值巧妙地求出了实数a 的取值范围.此法也叫主元法.3.构造函数关系在数学各分支形形色色的数学问题或综合题中,将非函数问题的条件或结论、通过类比、联想、抽象、概括等手段,构造某些函数关系,利用函数思想和方法使原问题获解,是函数思想解题的更高层次的体现,构造时,要深入审题,充分发掘题设中可类比、联想的因素,促进思维迁移.例题3.a 为何值时,不等式a 2+2a -sin 2x -2a cos x >2对任意实数x 都成立.分析:由例2易想到分离变量a 和x ,转化为a 的二次函数的最值解决,但实际解题中却无法直接从原不等式中分离出参数a ,深入审题知思维屏障产生于sin 2x 与cos x 的不和谐性.以此为突破口,利用整体思想、换元、将原不等式先转换为cos x 的二次不等式,再利用新构造的函数关系求解.略解:令 t =cos x ,则sin 2x =1-t 2,t ∈[-1, 1],不等式化为 t 2-2at +a 2+2a -3>0在 t ∈[-1, 1]上恒成立,设f (t )= t 2-2at +a 2+2a -3=(t -a ))2+2a -3.当a ≤-1时,f (t )min =f (-1)=a 2+4a -2;当-1<a <1且时,f (t )min =f (a )=2a -3;当a ≥1时,f (t )min =f (1)=a 2-2.原问题等价于当t ∈[-1,1]时f (t )min >0.即所求的a 值为下列不等式组的解.(1) ⎩⎨⎧>-+-≤02412a a a 或 (2) ⎩⎨⎧>-<<-03211a a 或(3) ⎩⎨⎧>->0212a a , 依次解得a <-2-6或a ≠0或a >2,故所求a 的取值范围是a <-2-6或a >2.点拨解疑:① 不等式恒成立问题的基本解法是转化为函数最值问题,利用函数性质解决,但本题无法分离参数,不能转化为例2中的较简单情形,只好对含参数a 的二次函数最值依对称轴位置分情况讨论,利用函数性质: f (t )>0,对t ∈[-1, 1]恒成立等价于f (t )min >0,t ∈[-1,1], 使问题解决.② 在解题中综合使用了函数思想,数形结合思想,分类讨论思想和化归思想及换元法,对思维品质要求较高.例题4.如图,已知ABCD 是边长为4的正方形,E 、F 分别是AB 、AD 的中点,GC 垂直于ABCD 所在平面,且GC =2,求点B 到平面EFG的距离.分析:距离的概念常由最小值定义,故可设法将点B 到平面的距离通过构造函数关系,建立一个二次函数关系式,转化为二次函数的最值解决.解:连接EC 、AC 、BD 、EF 、FG ,分别交AC 于H 、O ,连CH .因ABCD为正方形.故BD ⊥AC ,由已知易得BD 与平面GEF 内的直线GH 是异面直线,由此可将点B 到平面GEF 的距离转化为两异面直线BD 、GH 的距离,建立两异面直线上任意两点距离的一个二次函数关系式.在GH 上任取一点K ,作KL ⊥AC ,垂足为L ,连结KO ,设KL =x ,利用Rt △KLH ∽Rt △GCH ,可得LO 2=2)2223(-x , ∴ KO 2=x 2+2)2223(-x =2)116(211-x +114,(其中0≤x ≤2), 所以KO 的最小值为11112,即点B 到平面EFC 的距离. 点拨解疑:函数最值法求距离是函数思想应用较高层次,解题的关键是在于选取变元构造恰当的二次函数,应注意积累有关技巧。
4.建立函数关系对于实际问题,在正确过好事理关,文理关,明白题意后,根据题目的要求,选择相应的函数关系建立数学模型,利用函数的性质解决问题,是函数思想应用的一个热点,也是高考的热点.例题5.某小区要建一座八边形的休闲小区,它的主体造型的平面图是由两个相同的矩形ABCD 和EFGH 构成的面积为200平方米的十字形地域,计划在正方形MNPQ 上建一座花坛,造价为每平方米4200元,在四旁四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为每平方米210元,再在四个空角上铺草坪,造价为每平方米80元.(1)设总造价为S 元,AD 长为x 米,试建立S关于x 的函数关系式;(2)当x 为何值时S 最小,并求出这个最小值.分析:细心审读题意,由平面几何知识,找出图形总面积的关系式,进而由三类不同的的建筑要求,不同的造价得出三类不同地域上的建筑费用,从而得出总造价S 关于x 的函数式,此即(1)的目标函数式,再根据目标函数S (x )的结构特征,选择常用的方法求其最值。
解:(1)设DQ =y 米,∵ AD =x 米, 则x 2+4xy =200, ∴ y =x x 42002-, 由题意 S =4200x 2+210·4xy +80·2y 2=38000+4000x 2+2400000x . (2) ∵ x >0 ∴ S ≥38000+281016⨯=118000,当且仅当4000x 2=2400000x,即x 4=100(米)时取等号.故当x =10米时,总造价最小,最小值为118000元.点拨解疑:① 若直接由x 建立目标函数S (x )较困难时,可考虑增设变元,沟通关系,实现联系后,再消去增设的变元,得到题目所需S 关于x 函数式.此法叫参数法,基本步骤是:先引参,建立S 关于x 、y 的关系式S (x , y ).再消参,整理得目标函数S (x ).它可以在应用题的建模过程中化解难点,缩短建模过程.② 求目标函数的最值的常用方法中,分式型函数y =ax +xb (a .b 为正数)适宜用重要不等式法,即平均值不等式法.5.待定系数法把题目中待定的未知数(或参数)和已知数的等量关系揭示出来,建立方程(组)求出未知数的值,是待定系数法的基本形式,也是方程思想的一种基本应用.例题6.是否存在常数 a ,b ,c ,使得等式1·22+2·32+3·42+……+n (n +1)2=12)1(+n n (an 2+bn +c )对于一切自然数n 都成立?并证明你的结论. 分析:本例属存在型探索题,但也是待定系数法的典型题目,问题要求含三个待定常数a ,b ,c 的等式对一切自然数都成立,易联想到用赋值法、此等式必然对a ,b ,c 所取的任何具体的自然数的值都成立.令n =1,2,3,建立a ,b ,c 的三元方程组,转化为方程组是否有解,问题便不难解决了.略解:假设存在a ,b ,c ,使题设的等式成立,令n =1,2,3,得⎪⎪⎪⎩⎪⎪⎪⎨⎧++=++=++=c b a c b a c b a 3970)24(2122)(614, 解得⎪⎩⎪⎨⎧===10113c b a , 下面用数学归纳法证明(略:读者自行完成)点拨解疑:待定系数法的实质就是方程思想的应用,由于待定系数法是数学的一大基本方法,因而赋予方程思想的应用以广阔空间,高中数学中比比皆是,诸如已知函数式及某特殊函数值,求待定系数或底数或指数的值,已知数列的类型及某特殊项或前n 项和的值,求通项公式或前n 项和公式中的待定系数,已知曲线方程的类型,由某些已知数求方程中待定系数的值等等.6.转换方程形式把题目中给定的方程根据题意转换形式,凸现其隐含条件,充分发挥其方程性质,有关方程的解的定理(如韦达定理,判别式、实根分布的充要条件)使原问题获解,是方程思想应用的又一个方面.例题7.设二次函数f (x )=ax 2十bx 十c (a > 0),方程f (x )-x =0的两个根满足0<x 1<x 2<a1, (1)当x ∈(0,x 1)时,证明:x <f (x )<x 1;(2)设函数f (x )的图像关于直线x =x 0对称,证明x 0<21x . 分析:本例是有一定难度的代数推理题,审题中要细心分清函数f (x )与方程f (x )-x =0是两个不同的条件,x =x 0是函数f (x )的对称轴,x 1,x 2则是方程f (x )-x =0的根,它们之间的联系通过a ,b ,c 隐蔽地给出,因而充分利用二次函数的性质,引进辅助函数g (x )=f (x )-x ,凸现已知条件的联系,是解题的关键.证明:(1)令g (x )=f (x )-x ,因为x 1,x 2是方程f (x )-x =0的根,所以不妨设g (x )=a (x -x 1)(x -x 2), 当x ∈(0, a 1)时,由于x 1<x 2,∴ (x -x 1)(x -x 2)>0, 又a >0, ∴ g (x )=a (x -x 1)(x -x 2)>0,即x <f (x ),而x 1-f (x )=x 1-x +x -f (x )=x 1-x -g (x )=x 1-x -a (x -x 1)(x -x 2)= (x 1-x )[1+a (x -x 2)],又∵ 0<x <x 1<x 2<a1, ∴ x 1-x >0, 1+a (x -x 2)=ax +1-ax 2>1-ax 2>0, 得x 1-f (x )>0, ∴ f (x )<x 1即x <f (x )<x 1;(2)由题意知 x 0=-ab 2, ∵ x 1,x 2是方程f (x )-x =0的根, 即 x 1,x 2是方程ax 2+(b -1)x +2=0的根.∴ x 1+x 2=ab 1--, ∴ x 0=-a b 2=a x x a 21)(21-+=21x 1+21(x 2- a1), ∵ x 2< a1, ∴ x 0<21x . 点拨解疑:① 本题为1997年理科24题,由于缺乏用方程思想解题的意识和能力,不会转换方程形式,沟通与二次函数的联系,加之题中涉及字母多达6个(x ,x 1,x 2,a ,b ,c )不会处理.当年平均得分仅为1分,难度系数为0.09、说明方程思想对解题能力提高很重要.② 从二次方程根的研究应注意从代数形式与几何意义两方面进行,并相互联系,促进深化.代数形式上应全面考虑根的判别式面,根与系数的关系(韦达定理)与求根公式.几何意义上应全面考查抛物线的顶点、张口方向,对称轴,单调区间及实根分布的充要条件.③ 超越方程(对数方程等)的解的情况研究适宜于转换为二次方程的实根分布解决.7.构造方程法分析题目中的未知量,根据条件布列关于未知数的方程(组),使原问题得到解决,叫构造方程法,是应用方程思想解决非方程问题的极富创造力的一个方面.例题8.已知tan αtan β=3,tan 2βα-=2,求cos(α+β). 分析:由题设的表面信息,企图由三角函数的恒等变形得到目标,将徒劳无功,极其艰难.因为欲求cos(α+β),必须先求cos α,cos β,sin α,sin β四个中间变量的值,然而题设仅有两个方程,欲挖掘隐含,联立求解,将非常费力,转换思维角度,欲求cos(α+β).先求cos αcos β=x ,sin αsin β=y 这两个未知数的值,转换为建立关于x ,y 的方程组,由 tana αtan β=3即xy =3得到一个方程,再由tan 2βα-=2设法演化出含x ,y 的方程,问题便迎刃而解. 解:∵ tan 2βα-=2, ∴ cos(α-β)=)2(tan 1)2(tan 122βαβα-+--=-53, 设cos αcos β=x ,sin αsin β=y ,∴⎪⎩⎪⎨⎧=-=-=+353)cos(x y y x βα, 解得⎪⎩⎪⎨⎧-=-=309203y x , ∴ cos(α+β)=x -y =103. 点拨解疑:① 本例是用方程思想解三角问题的范例,② 若题目条件分散,联系隐蔽,难于发掘或解题过程十分繁难,应主动应用基本数学思想方法,灵活转换思维角度,寻求优秀解法.例题9.已知x ∈[21, 2], 求函数y =x x 25-的最小值. 分析:函数问题方程解.对函数形态的研究,常常因函数与方程的密切联系,转化为方程问题,应用方程思想解决.本例即可转化为方程在[21, 2]有解的充要条件来解答.略解;原函数变形为y 2x 2-5x +2=0,x ∈[21, 2]有解的充要条件为:(1) ⎪⎪⎩⎪⎪⎨⎧≤⋅><0)2()21(225212522f f y y 或或 (2) ⎪⎪⎩⎪⎪⎨⎧≥≥≥-=∆≤≤0)2(0)21(0825*******f f y y 或,不等式组(1) 无解;解不等式组(2)得2≤y ≤425, ∴ y min =2, 此时x =21或x =2. 点拨解疑:① 本例体现了函数与方程思想的相互转化,相互补充,提供了构造方程(或函数)解题的又一途径,扩展了解题思维的空间.② 本例应用方程思想解决时,易误为方程有两个实根,而从判别式考虑,未注意到是在区间[21, 2]上有实根,必须用区间上的根的原理解决,审题时应注意两类情况的区别,不可混为一谈.8.建立方程模型数学应用题的数学模型为方程,或必须使用待定系数法确定某些字母的值时,应建立相应的方程(组),把问题转化为方程求解.例题10.某车间生产某种产品,固定成本2万元,每生产 1件产品成本增加 100元.根据经验,当年产量少于400件时,总收益R (成本与总利润的和,单位:元)是年产量Q (单位:件)的二次函数,当年产量不少于400件时,R 是Q分析:题面信息易知, 该题为求分段函数的最值,且两段上的函数模型已经给出.因而,解题的关键是确定各段上函数解析式的系数(字母)的值,应使用待定系数法(即方程思想).审题中还需弄清“收益”、“成本”、“利润”等概念以及它们之间的关系,扫清语言障碍,过好事理关、文理关,特别注意:总利润=总收益一总成本.解:当Q <400时,设R =f (Q )=aQ 2+bQ +c ,由给定数据,得⎪⎩⎪⎨⎧++=++=++=c b a c b a c b a 35035011375020020080000505023750222, 解得⎪⎪⎩⎪⎪⎨⎧==-=050021c b a , 故R =f (Q )=-21Q 2+500Q , 当Q ≥400时, 设Q =dQ +e , 由给定数据,得⎩⎨⎧+=+=ed e d 65013250050012500, 解得d =50, e =100000, 故R =50Q +100000, ∴ R =f (Q )=⎪⎩⎪⎨⎧≥+<<+-400100000504000500212Q Q Q Q Q ,设总利润为y 元,则y =R -100Q -20000=⎪⎩⎪⎨⎧≥+-<<-+-4008000050400020000400212Q Q Q Q Q ,当Q <400时,y 是增函数,所以y <60000,当Q ≥400时,y 是减函数,所以y ≤-50×400+80000=60000,故每年生产400件时产品利润最大,最大利润为60000元.点拨解疑:① 应用方程模型解应用题是一种基本题型.审题时务必审清题意,过好事理关,读懂符号语言、图形、表格与专业用语,过好文理关.② 解完后,应根据实际问题反思,评价解的合理性.9.函数思想与方程思想的联用在解综合题中,解决一个问题常常不止需要一种数学思想,而是两种数学思想方法的联用.例如函数思想与方程思想的联用.它们间的相互转换一步步使问题获得解决,转换的途径为函数十方程十函数,或方程十函数一方程.例题11.若抛物线 y =-x 2十mx -1和两端点 A (0, 3),B (3, 0)的线段AB有两个不同的交点,求m 的取值范围.分析:先由方程思想将曲线的交点问题转化的方程的解的问题再由方程有解转化为二次函数的实根分布问题,再通过解不等式(组)得到所求范围.解:线段AB 的方程为33y x +=1 (0≤x ≤3)代入y =-x 2十mx -1得 x 2-(m +1)x +4=0, (0≤x ≤3), 原命题等价于f (x )= x 2-(m +1)x +4在[0, 3]上有两个不等的实数根,故应有⎪⎪⎩⎪⎪⎨⎧≥++-=>=<+<>-+=∆04)1(39)3(04)0(3210016)1(2m f f m m , 解得3<m ≤310, 故m 的取值范围是(3, 310].基本练习题1.若数列中{a n }中,a 1=15, 以后各项由a n +1=a n -32确定,则{a n }的前 项之和最大。