晶体化学式计算
- 格式:ppt
- 大小:4.73 MB
- 文档页数:45
矿物晶体化学式计算方法矿物晶体化学式计算方法一、有关晶体化学式的几个基本问题1.化学通式与晶体化学式化学通式(chemical formula)是指简单意义上的、用以表达矿物化学成分的分子式,又可简单地称为矿物化学式、矿物分子式。
晶体化学式(crystal-chemical formula)是指能够反映矿物中各元素结构位置的化学分子式,即能反映矿物的晶体化学特征。
举例:(1)钾长石的化学通式为:KAlSi3O8或K2O⋅Al2O3⋅6SiO2,而其晶体化学式则必须表示为K[AlSi3O8];(2)磁铁矿的化学式可以写为:Fe3O4,但其晶体化学式为:FeO⋅Fe2O3。
(3)具Al2SiO5化学式的三种同质多像矿物:红柱石、蓝晶石和夕线石具有不同的晶体化学式:2. 矿物中的水自然界中的矿物很多是含水的,这些水在矿物中可以三种不同的形式存在:吸附水、结晶水和结构水。
层间水等。
由于H3O+与K+大小相近,白云母KAl2[AlSi3O10](OH)2在风化过程中K+易被H3O+置换形成水云母(K, H3O+)Al2[AlSi3O10](OH)2。
由于结晶水和结构水要占据一定的矿物晶格位置,所以在计算矿物晶体化学式要考虑它们的数量。
3. 定比原理定比是指组成矿物化学成分中的原子、离子、分子之间的重量百分比是整数比,即恒定值。
举例:(1) 某产地的磁铁矿的化学分析结果为:FeO=31.25%,Fe2O3=68.75%,已知它们的分子量分别为:71.85和159.70。
因此,FeO和Fe2O3的分子比为:FeO:Fe2O3=(31.25/71.85):68.75/159.70)=1.01:1因此,磁铁矿的化学式可写为:FeO Fe2O3或Fe3O4。
(2) 某金绿宝石的化学成分为BeO=19.8%,Al2O3=80.2%,它们的分子量分别为25和102,因此两者之间的分子比为:BeO:Al2O3=(19.8/25) 80.2/102)=1:1金绿宝石的化学式可简写为BeO Al2O3或BeAl2O4。
------------------------------------------------------------精品文档-------------------------------------------------------- 成岩成矿矿物学––矿物晶体化学式计算方法矿物晶体化学式计算方法一、有关晶体化学式的几个基本问题1.化学通式与晶体化学式化学通式(chemical formula)是指简单意义上的、用以表达矿物化学成分的分子式,又可简单地称为矿物化学式、矿物分子式。
晶体化学式(crystal-chemical formula)是指能够反映矿物中各元素结构位置的化学分子式,即能反映矿物的晶体化学特征。
举例:(1)钾长石的化学通式为:KAlSiO或KO?AlO?6SiO,而其晶体化学式则282332必须表示为K[AlSiO];83(2)磁铁矿的化学式可以写为:FeO,但其晶体化学式为:FeO?FeO。
3432(3)具AlSiO化学式的三种同质多像矿物:红柱石、蓝晶石和夕线石具有不同的晶52体化学式:2. 矿物中的水自然界中的矿物很多是含水的,这些水在矿物中可以三种不同的形式存在:吸附水、结晶水和结构水。
吸附水:吸附水以机械吸附方式成中性水分子状态存在于矿物表面或其内部。
吸附水不参加矿物晶格,可以是薄膜水、毛细管水、胶体水等。
当温度高于110?C 时则逸散,它可以呈气态、液态和固态存在于矿物中。
吸附水不写入矿物分子式。
结晶水:结晶是成中性水分子参加矿物晶格并占据一定构造位置。
常作为配位体围绕某一离子形成络阴离子。
结晶水的数量与矿物的其它组份呈简单比例。
如石膏:Ca[SO] ?2HO。
24++-+等离子形式参加H、OHH(或称化合水):常以OO表示,结构水呈H、结构水32-+离子少见,O最常见。
H矿物晶格。
占据一定构造位置,具有一定比例。
通常以OH3+++与HO + HO。
结构水如沸石水、层间水等。
第七章 晶体结构第一节 晶体的基本概念一、晶体概述固态物质按其组成粒子(分子、原子或离子等)在空间排列是否长程有序分成晶体(Crystal )和非晶体(又称为无定形体、玻璃体等)两类。
所谓长程有序,是指组成固态物质的粒子在三维空间按一定方式周期性的重复排列,从而使晶体成为长程有序结构。
长程有序体现了平移对称性等晶体的性质。
与晶体相反,非晶体(Non-crystal )内部的粒子(分子、原子或离子等)在空间排列不是长程有序的,而是杂乱无章的排列。
例如橡胶、玻璃等都是非晶体。
晶体内部各部分的宏观性质相同,称为晶体性质的均匀性。
非晶体也有均匀性,尽管起因与晶体不同。
晶体特有的性质是异向性、自范性、对称性、确定的熔点、X 光衍射效应、晶体的缺陷等。
对于长程有序的晶体结构来说,若了解了其周期性重复单位的结构及排列方式,就了解了整个晶体的结构。
可见,周期性重复单位对认识晶体结构非常重要。
在长程有序的晶体结构中,周期性重复的单位(一般是平行六面体)有多种不同的选取方法。
按照对称性高、体积尽量小的原则选择的周期性重复单位(平面上的重复单位是平行四边形,空间中的重复单位是平行六面体),就是正当晶胞,一般称为晶胞(Crystal cell )。
二、晶胞及以晶胞为基础的计算1. 晶胞的两个要素晶胞是代表晶体结构的最小单元,它有两个要素:一是晶胞的大小、型式,晶胞的大小可由晶胞参数确定,晶胞的型式是指素晶胞或复晶胞。
二是晶胞的内容,是指晶胞中原子的种类和位置,表示原子位置要用分数坐标。
晶体可由三个不相平行的矢量a , b , c 划分成晶胞,适量a , b , c 的长度a , b , c 及其相互之间的夹角α, β, γ称为晶胞参数,其中α是矢量b 和c 之间的交角,β是矢量a 和c 之间的交角,γ是矢量a 和b 之间的交角。
素晶胞是指只包含一个重复单位的晶胞,复晶胞是指只包含一个以上重复单位的晶胞。
分数坐标是指原子在晶胞中的坐标参数(x , y , z ),坐标参数(x , y , z )是由晶胞原点指向原子的矢量r 用单位矢量a , b , c 表达,即r = x a + y b + z c如图所示晶体,小球和大球的分数坐标分别为 小球:)21,21,21( ),21,0,0( ),0,21,0( ),0,0,21( 大球:)21,21,0( ),21,0,21( ),0,21,21( ),0,0,0( 2. 以晶胞为基础的计算(1)根据晶体的化学式计算密度:D =ZM/N A V ,M 是晶体化学式的相对式量,Z 是一个晶胞中包含化学式的个数,V 是晶胞的体积,N A 是阿佛加德罗常数。
晶体化学式计算范文晶体化学是固体化学中的一个重要分支,研究晶体的结构、性质和合成方法。
晶体是一种高度有序的固体,具有明确而规则的晶格结构。
晶体化学式的计算是了解晶体结构和晶体性质的关键一步。
首先,晶体是由一个或多个晶体结构单元(晶胞)重复排列而成的。
晶体结构单元是晶体中最小的可重复单元,具有晶胞内各原子或离子的坐标位置和周围环境的信息。
晶胞的形状和大小由晶体的晶系决定,晶系包括立方晶系、四方晶系、正交晶系、六方晶系等。
晶体化学式的计算需要知道晶体中各种元素的相对位置和数量,以及晶体中离子或原子的配位方式。
在晶体化学中,主要采用X射线衍射、电子衍射和中子衍射等技术来确定晶体的结构。
这些技术可以通过测量晶体衍射角度和强度来确定晶体的晶胞参数和晶格类型。
晶胞参数包括晶胞的边长、夹角和原子位置。
晶体中的原子或离子是按照一定的配位方式排列的。
配位是指每个原子或离子周围有多少个邻近原子或离子与其相连。
常见的配位方式包括线性配位、方向配位和面心配位等。
根据配位方式可以确定晶胞中每个原子或离子的相对位置和周围环境。
晶体化学式计算的过程中还要考虑晶体的化学组成,即晶体中存在哪些元素以及元素的相对比例。
在晶体结构中,元素以化学式的形式表示,化学式包括元素符号和相对比例。
例如,在NaCl晶体中,化学式为NaCl,表示每个Na原子周围有一个Cl原子。
晶体化学式的计算除了实验技术外,还可以通过计算机模拟方法得到。
分子动力学模拟、量子力学计算和晶体结构数据库是常用的计算方法。
分子动力学模拟可以模拟晶体中原子或离子的运动轨迹和能量变化,通过优化计算可以得到晶体的稳定结构。
量子力学计算可以计算晶体中原子或离子的电子态和电子密度分布,从而确定晶体的化学成分和结构。
晶体结构数据库收集了大量已知晶体的结构信息,可以通过查询和比对来确定晶体化学式。
总之,晶体化学式计算是了解晶体结构和性质的重要一步,需要采用实验技术和计算方法相结合的方式进行。