泡沫金属材料制备技术
- 格式:docx
- 大小:78.69 KB
- 文档页数:6
泡沫铝及其制备方法泡沫铝是一种由铝金属制成的轻质多孔材料。
它的低密度、高强度和优异的导热性使其具有很大的应用潜力。
泡沫铝可以用于吸能材料、隔热材料、噪音隔离材料和过滤材料等领域。
本文将探讨泡沫铝的制备方法。
泡沫铝的制备方法主要有两种:粉末冶金法和预加工法。
粉末冶金法是制备泡沫金属的一种常见方法。
首先,将球形高纯度铝粉与空气混合在一起,形成一种类似于面团状的混合物。
然后,将混合物在特定的压力下压制成一块密度较高的烧结块。
接下来,将这块烧结块放入高温炉中,在氮气气氛中进行烧结。
在烧结的过程中,铝粉表面的氮气会沉积形成氮化铝薄膜,防止铝粉在烧结过程中熔化。
最后,将烧结块放入酸性溶液中进行腐蚀处理,使铝粉溶解,形成泡孔结构,最终得到泡沫铝。
预加工法是另一种制备泡沫铝的方法。
与粉末冶金法不同,预加工法是通过机械加工的方式来制备泡沫铝。
首先,将铝板或铝棒切割成所需尺寸。
然后,在铝板或铝棒上进行钻孔,并用锯片将孔周围的材料切割成泡孔结构。
接下来,将切割好的铝材用化学通道进行腐蚀处理,使铝材表面形成氧化膜。
最后,将腐蚀处理后的铝材经过表面处理和清洗,得到泡沫铝。
无论是粉末冶金法还是预加工法,都有一些关键步骤和参数需要控制,以确保泡沫铝的质量和性能。
在粉末冶金法中,烧结温度、烧结时间和烧结压力是可以调节的参数。
较高的烧结温度和较长的烧结时间可以使烧结后的材料具有更高的强度。
在预加工法中,钻孔的直径和间距以及腐蚀液的成分和浓度也是非常重要的。
合理的参数选择可以实现所需的泡沫铝孔径和密度。
总之,泡沫铝是一种十分有潜力的材料,具有广泛应用的前景。
粉末冶金法和预加工法是制备泡沫铝的两种常见方法。
不同的方法有不同的优势和限制,可以根据具体需求来选择合适的方法。
在制备过程中,需要控制关键参数以获得高质量的泡沫铝材料。
随着科学技术的发展,泡沫铝的制备方法也将得到进一步的改进和创新,为其应用领域的拓展提供更多可能性。
泡沫金属的介绍及制备泡沫金属是一种具有网状结构的金属材料,具有多孔、轻质、吸能等特点,广泛应用于航天航空、汽车、石油化工、建筑和生物医学等领域。
泡沫金属的制备方法有物理发泡法、化学发泡法和合金熔浇法等。
物理发泡法是利用金属粉末与发泡剂混合,通过高温炉将混合物熔化,发泡剂在熔融过程中释放出气体,使金属熔液形成气泡。
通过调整熔融温度、发泡剂添加量和冷却速率等参数,可以控制泡沫金属的孔隙率、孔径大小和形状。
化学发泡法是在金属粉末中添加化学反应剂,如水和一些添加剂,通过反应产生氢气或其他气体。
在高温下,氢气被金属熔融体吸收,形成气泡,使金属熔液膨胀。
利用化学发泡法可以制备具有更高孔隙率和更大孔径的泡沫金属。
合金熔浇法是将金属合金熔化后注入预先制备好的多孔陶瓷模具中,通过真空抽吸或压力注入等手段,将金属熔液填充到模具中的孔隙中,然后经过冷却固化,形成泡沫金属。
合金熔浇法可以制备泡沫金属的孔隙形状和密度更加均匀,同时具有较高的抗压强度和较低的气孔率。
泡沫金属具有以下几个显著的特点:1.轻质高强:泡沫金属的孔隙率通常可以达到80%以上,因此具有很小的密度。
同时,由于金属的连续结构,泡沫金属具有优异的强度和刚度。
2.吸能减震:泡沫金属可以吸收和分散冲击能量,具有较好的减震和吸能性能。
在航天航空领域的燃料箱、汽车碰撞缓冲装置和防弹材料等方面具有广泛的应用。
3.导热性能好:由于泡沫金属的连续结构,其导热性能较好。
可以用作散热器材料,有效降低电子设备和发动机等高温部件的温度。
4.吸声性能好:泡沫金属的多孔结构可以有效吸收和分散声音能量,具有良好的吸音性能。
在建筑和汽车领域被广泛应用于隔音材料。
5.生物相容性好:由于泡沫金属具有金属的特性,如抗腐蚀性和生物相容性,因此可以在生物医学领域应用于植入材料。
总之,泡沫金属具有轻质高强、吸能减震、导热性能好、吸声性能好和生物相容性好等优良特性。
随着科学技术的发展,泡沫金属在各个领域的应用将会进一步扩大。
泡沫金属材料的制备与性能研究近年来,泡沫材料作为一种新型材料,被广泛应用于隔热、吸声、过滤、减震等领域。
而在这篇文章中,我们将集中讨论其中的一种——泡沫金属材料,探究其制备和性能方面的研究。
一、泡沫金属材料的制备泡沫金属材料的制备主要有三种方法:粉末冶金法、自发性膨胀法和前驱体法。
1.粉末冶金法粉末冶金法是通过在高温状态下将粉末压实,然后在惰性气氛或真空条件下进行高温退火,使金属粉末热膨胀形成泡孔的方法制备泡沫金属材料。
因为这种方法所得到的泡沫材料的孔径比其它两种方法得到的材料要细小,所以在一些领域中,其应用范围相对较窄。
2.自发性膨胀法自发性膨胀法是将金属粉末放进钢管中,在加热到一定温度后,金属粉末在其自身内部发生氧化还原反应,放出气体,使得热膨胀的金属粉末形成空心结构的泡沫材料。
这种方法得到的泡沫材料具有较大的孔径和比表面积和气膜厚度,所以在催化剂、吸附材料等领域中有着广泛的应用。
3.前驱体法前驱体法是在高分子聚合物溶液中先形成金属络合物,然后将其加热至一定温度,分解出气体形成泡孔的方法制备泡沫金属材料。
这种方法制备的泡沫材料具有均匀的孔径、较高的开孔率、高比表面积和良好的机械性能,所以在热阻隔、吸声等领域中有着广泛的应用。
二、泡沫金属材料的性能泡沫金属材料由于具有空心结构,所以其密度非常之小。
与普通金属相比,泡沫金属材料的抗压性能和比强度非常之高,同时其导热性和导电性能也比较强。
1.抗压性能泡沫金属在制备过程中,其空心孔隙的大小和分布会对其抗压性能产生一定影响。
一般来说,孔径越小,分布越均匀的泡沫材料其抗压性能就越好。
而当孔径较大时,由于其容易发生屈曲、断裂等现象,所以其抗压性能相对较弱。
2.导热性能泡沫金属材料的导热性能与其密度有关,密度越低,导热性能越强。
当空气孔隙率达到95%以上时,泡沫金属材料的热传导系数将会小于1W/mk,而这也是其他材料所不能比拟的。
因此,泡沫金属材料的导热性能表现出了卓越的隔热性能。
泡沫金属泡沫金属是一种与众不同的材料,它具有独特的结构和性能。
这种材料由金属薄片组成,形成一个类似于海绵的结构。
泡沫金属通常用于吸声、隔热、过滤和结构支撑等领域。
本文将介绍泡沫金属的制备方法、结构特点以及应用领域等内容。
一、制备方法泡沫金属的制备方法主要有两种:物理泡沫法和化学泡沫法。
物理泡沫法是将金属薄片堆叠在一起,然后在高温环境下进行烧结。
这个过程中,金属薄片之间的空隙被保留下来,形成了泡沫状结构。
物理泡沫法制备的泡沫金属具有均匀的孔隙结构和良好的机械性能。
化学泡沫法是通过在金属薄片上涂覆一层特殊的泡沫剂,然后在高温环境下进行热解或燃烧。
泡沫剂在高温下分解产生气体,形成气泡,使金属薄片膨胀并形成泡沫状结构。
化学泡沫法制备的泡沫金属具有较大的孔隙度和较低的密度。
二、结构特点泡沫金属的结构特点是其最大的优点之一。
泡沫金属的结构类似于海绵,具有大量的孔隙。
这些孔隙可以提供较大的表面积,从而增加与外界环境的接触面积。
此外,泡沫金属的孔隙大小和分布可以根据需求进行调节。
这种可调节的结构使得泡沫金属在吸声、隔热和过滤等领域具有广泛的应用。
泡沫金属的结构还具有良好的机械性能。
由于金属薄片之间的交叉连接,泡沫金属具有较高的强度和刚度。
这种结构可以使泡沫金属承受较大的载荷,从而在结构支撑方面具有潜力。
三、应用领域泡沫金属由于其独特的结构和性能,被广泛应用于各个领域。
在声学方面,泡沫金属因其良好的吸声性能被用于吸音材料的制备。
泡沫金属可以通过调节孔隙结构和密度来实现不同频率范围内的吸声效果。
因此,它在音响室、汽车制造和船舶建造等领域有着广泛的应用。
在隔热方面,泡沫金属可以作为保温隔热材料来减少能量的传导和散失。
由于泡沫金属的结构具有大量的孔隙,可以形成一个有效的隔热层。
这种材料在建筑、石油化工和航天航空等领域中被广泛应用。
在过滤方面,泡沫金属可用于空气和液体的过滤。
由于其高表面积和可调节的孔隙结构,泡沫金属可以有效地去除悬浮颗粒和杂质。
泡沫金属的制备力学性能及其应用泡沫金属是指金属材料在冶金过程中通过特殊方法制得的具有开放孔隙结构的材料。
泡沫金属具有低密度、高比强度、优异的吸能性能、良好的导热性能等特点,因此被广泛应用于汽车、航空航天、建筑、能源储存等领域。
泡沫金属的制备方法多种多样,常见的有聚合物模板法、发泡剂法、自发性发泡法等。
其中,聚合物模板法是最常见的制备方法之一、首先,将金属粉末与粘结剂混合,然后将混合物填充到聚合物模板中,通过高温处理使粘结剂烧结,最后将聚合物模板去除,得到具有孔隙结构的泡沫金属。
泡沫金属具有优异的力学性能。
它具有高比强度和高吸能性能,可以有效地吸收能量和缓解冲击。
由于其孔隙结构的存在,泡沫金属具有优异的吸震性能,减小了任何外部力对机械结构的影响,因此泡沫金属常被用作冲击吸收材料、振动控制材料等。
此外,泡沫金属还具有良好的导热性能,可以作为热传导材料在热管理领域得到应用。
泡沫金属在汽车领域有广泛的应用。
它可以用来制作汽车碰撞保护材料,能够有效地吸收碰撞能量,保护车辆内部的人员安全。
此外,泡沫金属还可以应用于汽车排放系统中,用于减轻噪音和振动。
同样,在航空航天领域,泡沫金属也有重要的应用。
它可以用于制作航空航天器的结构材料、燃料储存材料等。
另外,泡沫金属还可以用于建筑领域。
其低密度和高比强度使其成为一种理想的建筑材料,可以用于制作轻质墙板、隔音材料、隔热材料等。
此外,由于泡沫金属具有优异的导热性能,它还可以用于太阳能热能储存系统以及建筑物的能源效率改善。
总之,泡沫金属作为一种具有开放孔隙结构的材料,具有低密度、高比强度、良好的吸能性能和导热性能等特点,因而在各个领域都有广泛的应用。
随着科技的进步,泡沫金属的制备方法将会更加多样化,其应用领域也将进一步扩展。
泡沫金属的制备及其在航空航天领域的应用研究泡沫金属是由金属膜片之间的空隙组成的一种多孔材料,具有低密度、高强度和优异的吸能性能。
因此,泡沫金属已经成为航空航天领域中的重要材料之一。
本文将介绍泡沫金属的制备方法和在航空航天领域的应用研究进展。
一、泡沫金属的制备方法泡沫金属制备的基本原理是用脱模剂将预制的金属膜片分隔开来,并在其表面形成底部保护层。
然后,通过各种方法加入金属的孔道,形成连通的泡沫状结构。
常用的泡沫金属制备方法有以下几种:1. 模板法:模板法是通过将金属液浸渍在导电或非导电模板中,通过氧化、还原或电解反应,将纳米、微米或毫米级金属颗粒均匀沉积到模板孔洞中,然后再通过退火、烧结或溶解模板的方式获得泡沫金属。
2. 溶液法:溶液法是将金属盐溶解在有机或无机溶剂中,再加入还原剂或沉淀剂,使金属离子还原成原始金属,并在待反应的工艺条件下形成泡沫金属。
3. 反渗透法:反渗透法是将金属膜片置于内部受到压缩气体的反渗透区域内,然后将水分子透过膜片发生膨胀,其气泡成为抗剪切的靠拢和相互支撑的力,最终形成多孔泡沫金属。
以上方法各有其特点,对于不同金属材料,选择不同的制备方法具有一定的优劣之处。
例如,模板法相对简单,控制精确度高,但仅适用于制备薄壁泡沫金属;溶液法制备速度快,成品密度低,但安全性有待提高。
二、泡沫金属在航空航天领域的应用研究进展1. 引擎隔板泡沫金属具有低密度和高强度等特性,已广泛用于航空发动机的隔板。
其可阻隔来自不同部位的工作介质,拥有优异的隔音和隔热效果,还可热回收,降低燃料消耗量和减少工作环境污染。
2. 飞行器结构泡沫金属还可用于航空器结构的轻量化设计中,如飞机梁、机翼材料和飞行器隔板等部位。
采用泡沫金属制造的轻量化飞机构件,可以降低金属消耗,提高载荷能力,减轻飞机自重负担。
3. 航天器外壳泡沫金属还可用于航天器热控制外壳。
由于泡沫金属具有良好的吸热能力和隔热能力,因此可将热传递限制在特定区域,避免航天器表面温度过高或过低,提高航天器的使用寿命。
1.2.1浇注法(A)熔体发泡法这种方法的工艺过程是:向熔融的金属中加入增粘剂,使其粘度提高,然后加入发泡剂,发泡剂在高温下分解产生气体,通过气体的膨胀使金属发泡,然后使其冷却下来或者浇注可以得到泡沫金属。
常用的发泡剂为TIHZ、ZrH:等金属氢化物。
(B)颗粒浇注法这种方法通过把熔融金属浇注到充满散状颗粒的模中,而获得具有连通的蜂窝状结构或海绵状结构的泡沫金属。
这些颗粒可以是耐热和可溶的(如氯化钠)时,它们可以从铸件中被浸洗掉,形成具有连通孔隙的多孔金属;当使用松散的非可溶性填料(如多孔陶土球、泡沫玻璃、空心刚玉球、泡沫碳等无机填料)时,则可获得金属一颗粒复合体。
(C)球形颗粒加入法先将金属在塔竭中熔化,然后加入颗粒或中空球并同时进行搅拌,使这些颗粒均匀地分散到金属熔体中去,使金属的温度降低,当金属熔体的粘度足以使金属熔体不再发生偏析和分层时,即颗粒物质在金属熔体中被固定了,此时停止搅拌并让熔体凝固下来。
这种方法适用于制备高熔点的泡沫金属,如泡沫钨等。
(D)失蜡浇注法此法采用液态高熔点物质充填海绵状泡沫塑料的孔隙,使之硬化后,加热使塑料气化而获得海绵状孔隙的铸型。
将液态金属浇入此铸型,冷却凝固后除去高熔点物质后,便得到与原海绵状泡沫塑料模具有相同结构的泡沫金属。
1.2.2沉积法(A)电镀法该方法是将所需的金属镀到经过硬化和化学预镀的聚氨基甲酸乙脂表面上,并达到所需的厚度,再通过热分解法将聚氨基甲酸乙脂去掉,得到具有非常均匀孔隙分布及相当高孔隙率的泡沫金属。
(B)阴极溅镀沉积法通过在一定的惰性气体压力下对一基片进行溅射,从而得到被捕获惰性气体原子均匀分布的金属片,然后把它加热到高于其熔点的温度,并一直加热到足以加热使那些被捕获的气体膨胀,形成具有封闭孔的蜂窝状的泡沫金属。
(C)气相蒸发沉积法在较高的惰性气氛中缓慢蒸发金属材料,形成金属烟。
金属烟在自身重力和惰性气流携带下沉积,疏松地堆砌起来,形成亚微米尺度的多孔泡沫结构。
泡沫铝的制备技术泡沫铝是一种具有轻质、高强度和良好吸能特性的新型材料。
它由铝合金制备而成,通过控制气体发泡剂在融化的铝合金中释放气体,形成气孔结构。
在本文中,我将详细介绍泡沫铝的制备技术。
1.铝合金材料准备:选择适合的铝合金材料作为原料。
常用的铝合金包括铝硅合金、铝镁合金和铝锰合金等。
合金中的铝含量通常在80%以上。
2.铝合金材料预处理:将铝合金材料进行破碎、筛分和清洁处理。
破碎可以增加原料的表面积,有利于气体发泡剂的扩散和释放。
筛分可以控制原料的粒径范围,使气体发泡剂均匀地分布在铝合金中。
清洁处理可以去除杂质,提高泡沫铝的质量。
3.铝合金材料熔化:将预处理后的铝合金材料放入特定的熔炉中进行高温熔化。
铝合金的熔点通常在600-900摄氏度之间,熔化温度根据具体合金的种类和要求进行控制。
4.气体发泡剂注入:在铝合金熔融状态下,将气体发泡剂注入熔融金属中。
常用的气体发泡剂包括钠硼酸、钠铝酸盐和钠氢杂酸等。
气体发泡剂的选择和注入量可以根据要求进行调整,以得到所需的气孔结构。
5.发泡:在气体发泡剂注入后,通过搅拌或其他搅动方式,将气体发泡剂均匀地分散在铝合金中。
随着气体的释放,铝合金中形成大量的气孔结构。
气孔的大小和分布可以通过调整气体发泡剂的类型和用量来控制。
6.冷却和固化:在发泡过程中,由于气孔的形成,铝合金会逐渐冷却固化。
冷却过程中,泡沫铝的形状和结构会逐渐稳定。
7.切割和后处理:冷却固化后的泡沫铝可以进行切割和后处理。
切割可以根据具体需要,制作出不同形状和尺寸的泡沫铝制品。
后处理可以包括表面处理、热处理和物理性能测试等。
以上是泡沫铝的基本制备技术。
不同的制备方法和工艺参数会对泡沫铝的性能和结构产生不同的影响。
因此,在实际制备过程中需要根据具体要求进行优化和调整。
随着科学技术的不断进步,泡沫铝的制备技术也将得到更多的改进和发展,为泡沫铝的应用提供更广阔的空间。
泡沫金属材料制备技术1.引言金属泡沫或金属多孔材料是80年代后期国际上迅速发展起来的一种具有优异的物理特性和良好的机械性能的新型工程材料。
它具备的优异物理性能,如比重小、刚度大、比表面大、减震性能好、消声效果好、电磁屏蔽性能高等,使其在一些高技术领域获得了广泛应用[1-3]。
泡沫铝合金材料是一种在铝合金基体中分布有大量微小气孔结构的超轻型铝合金材料。
其开发研究始于20世纪40年代,最早的泡沫铝制备工艺是Sosnick于1948年提出的在铝熔体中以气化汞为气体来源制备泡沫铝合金的做法,该工艺还申请了美国专利[2]。
1956年,美国科学家Elliot完善了泡沫铝制备理论,并提出以可热分解气体的发泡剂来代替汞,从而给泡沫金属材料的工艺发展指明了方向,同年他采用熔体发泡法成功制造出泡沫铝。
随后人们开发使用了多种发泡剂如TiH2、ZrH2、ErH2、MgH2等。
到了20世纪80年代末90年代初,泡沫铝材料的研究取得重大突破,日本九州工业研究所于1991年开发出泡沫铝工业化生产的工业路线。
1992年M. F. Ashby第一次系统总结了泡沫金属的制备、性能和应用。
90年代以来,国外科研机构和大学推出了多种制备高性能泡沫铝的工艺方法,如德国不来梅德夫雷霍夫实用材料研究所研制的粉末发泡法,德国的连续喷吹气体制备泡沫铝法(DE4139020),日本日立造船技术研究所的发泡法等。
目前已经实现了采用金属发泡法和渗流铸造法来生产各种尺寸规模的泡沫铝部件,从高速列车到航天飞机的一系列领域都可以找到泡沫铝的身影[1]。
国内研究机构对泡沫铝的研究起步于20世纪80年代中期,目前国内主要的研究机构有东南大学、东北大学、昆明理工大学、大连理工大学等。
我国学者研制了一些具有独创性的生产工艺,并进行了大量的理论和实验研究。
其中东南大学材料系开展研究的时间最早,尤其在粉末冶金法制备泡沫铝工艺方面的成就较突出。
金属泡沫材料既可作为许多场合的功能材料,也可作为某些场合的结构材料,而一般情况下它兼有功能和结构双重作用,是一种性能优异的多用途工程材料。
金属泡沫材料具有一定的强度、延伸率和加工性能,可用于结构材料。
目前多用在汽车工业、航空工业以及建筑工业中。
一般来说,作为结构材料使用的金属泡沫材料需要闭孔结构,而作为功能材料使用的多孔材料则需要通孔结构。
多孔材料的应用领域主要取决于以下几方面因素[3]:(1) 组织形貌:孔隙类型(通孔或闭孔)、孔隙率、孔隙尺寸范围以及内表面面积;(2) 冶金因素:金属或合金的显微组织;(3) 工艺因素:多孔材料的加工性能以及它们与传统材料构成的复合材料的加工性能;(4) 经济因素:生产成本以及大量生产的可行性如何。
汽车是金属泡沫材料最有希望也是最大的应用领域。
目前,轻质、高刚度同时具有吸能和隔音性能的铝泡沫材料已经在汽车上得到应用,如顶盖板、底盖板以及滑动顶板等需要高刚度以避免扭曲变形和振动的构件。
德国汽车制造商Karmann在跑车上采用三明治式复合泡沫铝板取代锻造钢板制造汽车的横壁板和后板,重量下降25%而刚度提高700%。
另外,金属泡沫材料还具有吸能和隔音等多重功能[3-5]。
在航空领域,多孔网状金属一般用作轻质、传热的支撑结构,可用于机翼金属外壳的支撑体、导弹的防外壳高温坍塌支撑体、雷达镜的反射材料等[2]。
如果采用定向凝固方法把发动机叶片制成多孔结构,不仅不会恶化叶片的力学性能(在叶片的受力方向上孔洞不会造成应力集中),而且还将极大减轻发动机重量,提高叶片的冷却能力,将有效地提高发动机性能。
在建筑领域,金属泡沫材料一般用于制造质量轻、硬度高、有耐火性能要求的元件或结构件。
另外,在生物材料方面,钛等多孔材料由于与人体组织有良好的相容性且对人体无害而广泛应用,如骨科、牙科等。
如果采用定向凝固的方法制造多孔人工骨,除了有利于骨组织的生长,还能通过孔隙率来调整弹性模量,使其与人骨相近,同时具有很好的减振效果,在保证力学性能的同时能实现结构和性能上与人骨的进一步亲和[6]。
还可以采用金属泡沫材料,特别是烧结方法制备的泡沫铜来制造轴承,具有价格低、结构简单的优点,适用于多种场合。
目前已在电动马达、小发动机等要求传递力矩较小的轴上使用[7]。
过滤与分离方面,金属泡沫材料具有优良的渗透性,适合于制备多种过滤器。
利用通孔多孔金属的孔隙对流体介质中固体粒子的阻留和捕集作用,将气体或液体进行过滤与分离,从而达到介质的净化或分离作用。
多孔金属过滤器可用于从液体(如石油、汽油、致冷剂、聚合物熔体和悬浮液等)或空气和其它气流中滤掉固体颗粒[2]。
金属泡沫材料具有很大的比表面积,也适合于制造热交换器件,通孔体适用于换热器、加热器和散热器。
闭孔金属泡沫材料的导热系数很低,仅为纯金属的1/5~1/150,可用作绝热材料,其强度及耐热性能(泡沫金属,尤其是泡沫铝的耐热温度远远超过其熔点)优于相应的传统材料。
在化学工业中,催化剂的效率依赖于催化剂与气体或液体接触的表面积,传统上常采用孔隙率很高的材料或者多孔陶瓷材料。
金属泡沫材料由于比表面大且有较高的强度、韧性和导热性能,可以取代这些传统材料而用作催化剂载体。
如基于金属泡沫材料的催化剂可用于碳氢化物的深度氧化、乙醇的选择性氧化、石油化工中的己烷重组等反应工程。
金属泡沫材料还可用于吸声材料。
吸声材料需要同时具有优良的吸声效率、透声损失、透气性、耐火性和结构强度[2]。
金属泡沫材料被广泛用于建筑和自动办公设备等,兼具装饰的功能。
在汽车上,可用于既要求高吸声性能又要求良好绝缘性能的零部件。
金属泡沫材料也可在流体流量控制领域得到广泛应用。
一般认为,用粉末冶金方法制备的材料制造的流体限流器比传统的千分尺限流器具有更高的可靠性和精确度[3]。
金属泡沫材料已用于风洞的流体校直器以及气体或液体的计量器、自动化系统中的信号控制延时器等。
金属泡沫材料还具有优异的电磁波吸收性能,可用于电磁屏蔽、电磁兼容器件。
关于金属泡沫材料的应用主要存在两个制约,一是金属泡沫材料的生产成本高,在一般的民用领域不能得到广泛应用;而是金属泡沫材料的生产工艺复杂,难以控制,要得到孔结构均匀和可再生的金属泡沫非常困难。
2. 金属泡沫材料的制备方法铝合金泡沫金属的制备方法有很多,根据金属或合金被处理时物理状态的不同,获得金属泡沫材料的制造方法可以划分为四类[3]:液相法、粉末固相法、离子法(金属离子溶液)以及气相法(金属蒸气或气态金属间化合物),其中气体吹入法、熔体发泡法、粉末冶金法以及渗流铸造法是最常用的制备方法。
2.1 连续气体吹入法连续气体吹入法是加拿大Alcan国际有限公司在20世纪80~90年代开发的,其原理是在液态金属中加入很细的陶瓷粉末或能与液态金属反应生成稳定颗粒的合金元素作为增稠剂以提高液态金属的粘度,阻止金属中的气泡逸出[3,5],以制备金属泡沫材料的方法。
气体吹入法的原理如图1所示。
首先在熔融的金属中加入增稠剂,加入增稠剂的体积百分数一般为10~20%,颗粒的平均尺寸为5~20μm。
常用的增稠剂包括碳化硅、氧化铝以及氧化镁颗粒。
增稠剂颗粒尺寸和加入量有一个适当的范围,太高或者太低均会影响金属泡沫材料的制备。
随后,通过一个可以震动的喷嘴通入空气、氮气、氩气或者它们的混合气体,并不停搅拌。
搅拌的作用是在液态金属中形成细小的气泡,并使气泡均匀分布。
由于增稠剂的作用,产生的气泡在上升的过程中不能聚集长大,上升到泡沫-液体界面时被收集起来,通过传送带予以冷却,冷却下来后可以进行切割,可以获得需要的金属泡沫材料。
也可以在金属泡沫还处于半固态时对其进行轧制,以获得平整的表面。
气体吹入法制备的金属泡沫材料的孔隙率为80~98%,密度为0.069~0.54g/cm 3,平均气孔尺寸为3~25mm,平均孔壁厚度为50~85μm。
通过调整搅拌速率或者喷嘴的震动频率以及其它参数可以获得不同气孔尺寸的泡沫材料。
此法的优点是可以连续生产大块的泡沫金属材料,而且与其它制备方法相比成本最低;缺点是增稠剂颗粒的润湿问题和颗粒分布不均匀、发泡过程难以控制、气泡分布不均匀且局部气泡尺寸过大以及加工性能差、脆性较大等[3,。
此法一般用于制造泡沫铝合金。
2.2 熔体发泡法熔体发泡法的基本原理[3,8-10]是将能够产生气体的发泡剂加入到液态金属中,发泡剂受热分解产生气体并使液态金属发泡,冷却后即可得到泡沫金属,制备工艺图见图2。
常用发泡剂为金属氢化物,如用于生产泡沫铝的TiH2、ZrH2和CaH2,用于生产泡沫锌和泡沫铅的MgH2和ErH2等。
常用的增稠剂为金属Ca和MnO2,加入量一般为1.5~3%;也可以向金属液中吹入氧气、空气或者其它气体及其混合气体,原位合成金属氧化物作为增稠剂;也可以加入粉末状氧化铝、碳化硅、铝渣、泡沫铝屑或者其它金属粘度增强剂[3]。
日本神户钢铁SHINKO Wire开发了Alporas法,并利用此法实现了规模化工业生产泡沫铝板材,图3为Alporas泡沫铝产品。
图2 Alporas法制备工艺图(以纯铝为例)[3]图3 Alporas泡沫铝产品该方法制备的多孔泡沫铝是一种超轻闭孔结构材料,制品的密度为0.18~0.24g/cm3,孔径为4.5mm,具有规则的孔结构,是最具有商业价值的泡沫材料。
但目前该方法还存在:1)孔结构控制困难;2)不能连续生产;2)泡沫金属平均孔径过大(1~10mm)及包含过多的脆性相,对材料抗弯强度、拉伸强度产生不利影响等问题。
该法的优点是可以适用于黑色泡沫金属的生产;缺点是制备泡沫金属的工艺过程控制比较困难,容易形成不均匀的泡沫组织,大泡沫集中在中心部分,越靠近边缘泡沫尺寸越小,且密度越高[9]。
另外,由于熔体温度很高,发泡剂投入熔体后立即起泡,无法使发泡剂均匀分散到熔体中。
2.3 粉末发泡法粉末发泡法的工艺流程图如图4所示[3]。
粉末发泡法的基本原理是将一种或多种金属粉末与发泡剂混合,然后将混合粉末通过挤压或者热等静压压制成致密的半固态的半成品。
最后将挤压后的可发泡半成品加热到母体金属熔点温度以上,使发泡剂产生气体分解,从而在金属内部产生气泡。
当熔化后的金属膨胀到所要求的密度以后,将金属冷却到熔点温度以下进行凝固,从而得到稳定的、均匀分布的内部气孔结构。
通过调整发泡剂的含量以及其它工艺参数如温度和加热速率等,可以控制泡沫金属成品的密度。
发泡剂一般为金属氢化物。
本方法不仅适用于铝及其合金,也适用于锡、锌、黄铜、铅、金、钢等金属和合金。
图4 粉末发泡法制备工艺及产品也可以将混合后的粉末放入压铸机的压射腔内,加热使粉末发泡变为半固态,然后将半固态的金属压射到铸型内,可以得到近净型的泡沫金属零件。
但如果工艺过程控制不好,会产生大量的缺陷。
将混合后的粉末填充在两张其它金属薄板之间,还可以生产三明治式复合材料。