泡沫金属的研究及其应用进展
- 格式:pdf
- 大小:297.76 KB
- 文档页数:5
泡沫金属用途
泡沫金属是一种具有多孔结构的材料,由于其特殊的性质和结构,被广泛应用于各个领域。
以下是泡沫金属的一些常见用途:
1. 降噪减振:泡沫金属具有优异的声学性能,可以用于制造降噪材料和减振装置,用于汽车、飞机、建筑、电子设备等领域,减少噪音和振动的传递和影响。
2. 过滤和分离:泡沫金属具有良好的过滤和分离性能,可以用于液体、气体的过滤和分离,如石油和天然气的分离、水处理、污水处理、空气净化等领域。
3. 热管理:泡沫金属具有良好的导热和散热性能,可以用于制造散热器、热交换器、热管等散热设备,以提高热管理效果,广泛应用于电子、电力、冶金等行业。
4. 催化剂载体:泡沫金属具有高比表面积和良好的孔隙结构,可以作为催化剂的载体,用于化学反应、催化裂化、电化学等领域,提高反应效率和催化活性。
5. 结构材料:由于其轻质、高强度和抗压性能,泡沫金属可以用于制造结构材料,如船舶、桥梁、建筑物等,增强结构的强度和稳定性。
总之,泡沫金属具有多样化的用途,可以在降噪、过滤、热管理、催化等领域发挥重要作用,广泛应用于汽车、建筑、化工、能源等各个行业和领域。
泡沫金属材料的制备与性能研究近年来,泡沫材料作为一种新型材料,被广泛应用于隔热、吸声、过滤、减震等领域。
而在这篇文章中,我们将集中讨论其中的一种——泡沫金属材料,探究其制备和性能方面的研究。
一、泡沫金属材料的制备泡沫金属材料的制备主要有三种方法:粉末冶金法、自发性膨胀法和前驱体法。
1.粉末冶金法粉末冶金法是通过在高温状态下将粉末压实,然后在惰性气氛或真空条件下进行高温退火,使金属粉末热膨胀形成泡孔的方法制备泡沫金属材料。
因为这种方法所得到的泡沫材料的孔径比其它两种方法得到的材料要细小,所以在一些领域中,其应用范围相对较窄。
2.自发性膨胀法自发性膨胀法是将金属粉末放进钢管中,在加热到一定温度后,金属粉末在其自身内部发生氧化还原反应,放出气体,使得热膨胀的金属粉末形成空心结构的泡沫材料。
这种方法得到的泡沫材料具有较大的孔径和比表面积和气膜厚度,所以在催化剂、吸附材料等领域中有着广泛的应用。
3.前驱体法前驱体法是在高分子聚合物溶液中先形成金属络合物,然后将其加热至一定温度,分解出气体形成泡孔的方法制备泡沫金属材料。
这种方法制备的泡沫材料具有均匀的孔径、较高的开孔率、高比表面积和良好的机械性能,所以在热阻隔、吸声等领域中有着广泛的应用。
二、泡沫金属材料的性能泡沫金属材料由于具有空心结构,所以其密度非常之小。
与普通金属相比,泡沫金属材料的抗压性能和比强度非常之高,同时其导热性和导电性能也比较强。
1.抗压性能泡沫金属在制备过程中,其空心孔隙的大小和分布会对其抗压性能产生一定影响。
一般来说,孔径越小,分布越均匀的泡沫材料其抗压性能就越好。
而当孔径较大时,由于其容易发生屈曲、断裂等现象,所以其抗压性能相对较弱。
2.导热性能泡沫金属材料的导热性能与其密度有关,密度越低,导热性能越强。
当空气孔隙率达到95%以上时,泡沫金属材料的热传导系数将会小于1W/mk,而这也是其他材料所不能比拟的。
因此,泡沫金属材料的导热性能表现出了卓越的隔热性能。
收稿日期:2004-04-07.基金项目:云南省自然科学基金重点项目(项目编号:2000E0003Z ).第一作者简介:左孝青(1964~),男,副教授.主要研究方向:多孔材料.E -mail :zxqdzhm @hot 泡沫金属的性能及应用研究进展左孝青1,孙加林2(1.昆明理工大学材料与冶金工程学院,云南昆明 650093; 2.昆明贵金属研究所,云南昆明 650221)摘要:对泡沫金属的性能和应用研究现状进行了全面综述,性能方面主要包括泡沫金属的力学性能、能量吸收性、热性能、导电性能、声学性能及阻尼性,应用方面主要进行了结构和功能应用的分析,并就泡沫金属的性能和应用发展的前沿问题进行了讨论,指出了性能研究和应用研究的发展方向,对泡沫金属的性能研究和应用开发具有重要意义.关键词:泡沫金属;性能;应用;综述中图分类号:TB383文献标识码:A 文章编号:1007-855X (2005)01-0013-05Properties and Applications of Foa med MetalsZUO X iao 2qing 1,SUN Jia 2lin 2(1.Faculty of Materials and Metallurgical Engineering ,K unming University of Science and T echnology ,K unming 650093,China ;2.Kunming Precious Metals Institute ,Kunming 650221,China )Abstract :The properties and applications of foamed metals are reviewed.The section of property demonstrates me 2chanical property ,energy absorption ,thermal capacity ,conductance ,sound absorption and dumping performance of metal foams ,while another section introduces many structural and functional applications.In addition ,further de 2veloping tendency of property research and applications of foamed metal are put forward.Therefore ,there exists a great significance for both the property research and application of cellular metals.K ey words :foamed metals ;properties ;applications ;review0引言泡沫金属一种是集力学性能、热电性能、声学等性能于一体的宏观结构-功能一体化的材料,是多种结构或装置(如超轻结构、冲击缓冲、散热和热交换等)的可选材料.泡沫金属的多功能特性对应用的决定作用非常明显,应结合应用对象,进行与功能组合对应的结构-性能优化设计.文中就泡沫金属的性能研究和应用进行了详细综述,并对进一步发展的前沿性问题进行了讨论,提出了性能研究及应用发展的建议.1泡沫金属的性能1.1结构特征[1]泡沫金属从结构上可分为闭孔和通孔泡沫金属两种.前者含有大量独立存在的气孔,而后者则是连续贯通的三维多孔结构.其结构表征参数主要有孔隙率、孔径、通孔度比重及比表面积等.一般来说,多孔泡沫金属材料具有如下几个结构特征:(1)重量轻,比重小:泡沫金属是金属和气体的混合物,比重仅为同体积金属的1/50~3/5;(2)高孔隙率:一般多孔泡沫金属的孔隙率为40%~90%,而海绵状发泡金属材料的孔隙率可高达98%;(3)比表面积大:泡沫金属的比表面积可达10~40cm 2/cm 3;(4)孔径范围较大:通过工艺控制,可获得的孔径在微米至厘米级之间.1.2性能影响泡沫金属性能的因素有:(1)基体金属的性能;(2)相对密度;(3)孔结构类型(开口或者闭孔);(4)第30卷第1期2005年2月 昆明理工大学学报(理工版)Journal of Kunming U niversity of Science and Technology (Science and Technology )Vol.30 No 11 Feb.200541昆明理工大学学报(理工版) 第30卷孔结构的均匀性;(5)孔径大小;(6)孔的形状和孔结构的各向异性性;(7)孔壁的连接性;(8)缺陷(如孔壁的不完整性等),以上因素中,相对密度对泡沫金属性能的影响最大[2].1.2.1机械性能1)杨氏模量.开孔泡沫与闭孔泡沫由于结构的不同,其杨氏模量值相差很大.开口泡沫的变形主要是通过通孔的连接部分进行的,闭孔泡沫由于闭孔间存在孔壁,所以相同密度的闭孔泡沫其杨氏模量值比开孔泡沫的大几个数量级,孔尺寸、形状对杨氏模量的影响较小[3].对杨氏模量影响最大的因素是泡沫的相对密度,杨氏模量与密度的关系[4]为: E/Es=(ρ/ρs)2 (open-cell)(1) E/Es=(ρ/ρs)2+(1-Φ)(ρ/ρs)(closed-cell)(2)式(1),(2)中,E为杨氏模量,ρ为密度,Φ为闭孔泡沫孔结构中,孔的连接部分占总实体部分的百分比,下标s表示实体金属的性能.另外,泡沫金属的变形会引起其孔结构的变化,最终导致杨氏模量的变化.一般地,杨氏模量随应变的增加而减小[5].2)压缩性能及能量吸收特性.多孔金属泡沫一般为韧性的,其压缩应力-应变曲线应变严重滞后于应力,包含一个很长的平缓段,是一种具有低、常压应力下高能量吸收特性的轻质高阻尼及能量吸收材料,适合制作轻质、耐高温、阻燃的能量(如冲击能量)吸收器.3)拉伸性能.由于壁及连接边的断裂机制和相互关系的不确定性,泡沫金属的抗拉强度很难估算.一般地,其抗拉强度与其压缩应力应变曲线的平台应力相当.1.2.2电性能及电磁屏蔽性能泡沫金属具有独特的导电性,使之能应用于非金属泡沫(陶瓷和塑料泡沫)所不能胜任的导电环境(如电极材料).泡沫金属的电导性主要与泡沫基体的电导性有关.然而,泡沫金属的电导率由于:(1)其中大量非导电孔隙的存在;(2)基体中的非导电物质(如氧化物);(3)与电压降方向垂直排列的连接边和孔壁对电导不起作用等因素的影响,比实体金属的电导率要低得多.泡沫金属的电导率与相对密度的关系[6]为: ρ/ρ0=Z(σ/σ0)t(3)式中,ρ/ρ0-泡沫金属的相对电导率;σ/σ0-泡沫金属的相对密度;Z-常数,约等于1;t-常数,约等于2.另外,泡沫金属还具有电磁屏蔽效应,有资料表明,铝泡沫(Alulight)的电磁屏蔽效果与相同厚度的铝板材相当,并优于相同质量的硅钢片[7].1.2.3热性能1)熔点.泡沫金属的熔点与基体材料的基本相同,但受泡沫中非金属相(氧化物、增粘剂等)的影响,使泡沫金属的熔点温度高于理论熔点.高温长时的氧化,甚至会使泡沫铝完全氧化为泡沫陶瓷[8].2)热膨胀系数.泡沫金属的热膨胀系数与基体材料的热膨胀系数大致相同.3)热导率.泡沫金属的热导率比基体材料的热导率低得多.与导电性一样,泡沫金属的导热性主要与泡沫基体的导热本性有关,气体、辐射、对流的作用较小,但其精确计算要比其电导率复杂.热导率主要构成因素有:基体的导热、气体的导热、对流及辐射,并受表面氧化物的影响.通常情况下,仅仅考虑基体材料的导热,常用与相对密度的关系表达泡沫金属的热导率[9].λ=λ0(ρ/ρ0)t(4) s式中,λs-泡沫金属的热导率,λ0-基体材料的热导率,ρ-泡沫金属的密度,ρ0-基体材料的密度,t-常数(根据渗透理论,3维泡沫取值2[10]).1.2.4声学性能1)隔音、吸音性能.控制噪音的方法主要有两种:隔音和吸音.泡沫铝由于密度较低,质量小,因此,在隔音上应用并不理想.泡沫铝的吸音特性与泡沫的厚度、密度、孔径及表面状态有关.一般地,吸音系数可通过:增加厚度、降低密度、适当增大孔径、增加表面开口度(表面加工、喷砂、压制、轧制、表面钻孔)、表面加多孔面板等措施而提高.单一泡沫结构具有较好的吸音效果,但比不上玻璃纤维类传统吸音材料,特别是在低频(1000Hz )以下,其吸音系数要低得多.然而,可利用泡沫金属与其他吸音材料的组合,或从吸音结构上进行改进等方法,获得高性能吸音器,如AlSi 12泡沫+玻璃纤维+空气垫的组合,表现出了优越的吸音特性[11].在要求吸音、耐高温、防潮、耐久性环境中,泡沫铝比传统吸音材料有优势.2)结构阻尼性能.当某结构的本征频率与外界声波或震动频率发生共振时,声波或震动会被该结构所衰减.结构阻尼衰减的原因是内摩擦导致的震动能向热能的转换,产生的热量通过周围环境散发.泡沫金属的阻尼特性随孔壁厚的减小、泡沫结构中的缺陷数量的增多、泡沫中陶瓷相的增加而增大[12].2泡沫金属的应用目前,通过现有金属材料的多孔化以实现高性能、多功能化,开发高附加价值的泡沫金属材料产品受到了广泛的关注.泡沫金属的应用应考虑其“多性能特点组合”的优势,如“低密度+能量吸收特性”、“低密度+吸音特性+耐热+不吸水”等.多孔泡沫金属的应用主要有防火和吸(隔)音板、冲击能量吸收材料、建筑板(如超轻结构组元,三明治结构材料)、半导体气体扩散盘、紧凑热交换器和核心装置、液流控制装置、热交换和热绝缘器、过滤器、声音和能量的吸收装置等.泡沫金属在航空、航天、船舶、电子、汽车制造、建筑、包装、装饰材料、体育器材等领域中的应用正在不断扩大中.2.1能量吸收轻量结构应用闭孔泡沫(如铝泡沫)由于制备成本相对低,因此在结构应用上受到了广泛的关注,如承受较低压载荷下的能量吸收件等.理论上讲,泡沫金属由于孔壁上约束的减少,在应力-应变曲线上,有很长的波动平台段,会产生大的塑性应变,具有显著的能量吸收特性.然而,实际构件的表现并非如此,如在剪切带中的过早失效,以及弯曲导致的拉伸应力下低的拉伸强度等.令人鼓舞的是,已经证明如果能够在10~1mm 尺度上获得均匀细小的泡沫孔结构,问题就可以得到解决[13].因此,相应的制备技术的研究开发就显得非常必要和迫切.多孔泡沫金属轻质、能量吸收及阻尼性能,缓冲器和吸震器是重要的用途,如汽车的结构件(防冲挡、门栏、乘员室构件);航空仪表的保护外壳,航天飞机的起落架;此外,还有提升机、转运系统的安全缓冲器、高速磨床防护罩吸能内衬;活动建筑(房)等[14].也可考虑用于电梯的轻形结构件[15]、包装材料[16]、泡沫三明治复杂结构机械零件[17]、体育器材[18]、装饰[19]、水上结构件[20]、太空船结构件[21]等.2.2功能应用2.2.1生物医学材料利用Ti 或Co -Cr 合金泡沫与人体的生物相容性,可用于人体骨骼或牙齿的替代材料,Mg 泡沫也有望作为人工骨头的材料[22],多孔Ni -Ti 形状记忆合金由于好的机械性能、耐腐蚀性能和形状记忆效应,也可作为人体骨骼的替代物[23].2.2.2过滤分离材料与粉末冶金微孔金属相比,通孔泡沫金属的孔径和孔隙率较大,可用于过滤液体、空气或其它气流中的固体颗粒或某些活性物质.泡沫金属过滤器主要用于从液体〔石油、汽油、致冷剂、聚合物熔体、含水悬浮液〕、空气或其它气流中滤掉固体颗粒[1].2.2.3热交换器材料通孔铜和铝泡沫可作为热交换器材料[24].通孔规则排列的孔结构,在不降低热交换效率的前提下,可减小压力降,在微电子等高(热)能量领域有广泛的应用前景.2.2.4催化载体由于金属泡沫在韧性和热导率方面的优势,是催化载体材料的又一选择[25],如将催化剂浆料涂于薄的泡沫金属片表面,后通过成型(如轧制)和高温处理,可以用于电厂废气氮氧化物(NO X )等的处理.2.2.5液体的存储与传输[26]与传统的粉末冶金材料(如自润滑轴承)相比,泡沫金属的液体存储量更大,应用范围更广:水的存储51第1期 左孝青,孙加林:泡沫金属的性能及应用研究进展61昆明理工大学学报(理工版) 第30卷和缓慢释放进行湿度控制;香水的存储和缓慢蒸发等;在压力的驱动下,泡沫中的液体还可作毛细运动等.2.2.6消音材料、噪音控制由于成本和效率方面的优势,熔模铸造法或沉积法制备的泡沫可以取代现有的消音器材料,目前已制备出最大直径100mm的泡沫消音器[27].开口刚性泡沫可以用于噪音控制[28],对闭孔金属泡沫的噪音控制作用,也进行了研究[29].半圆柱状的Alporas泡沫铝和钢背或混凝土背组成的吸音装置已开发应用于高速公路桥、地铁的噪音控制[30].泡沫金属克服了石棉、玻璃棉等消音材料长期使用易老化、吸水后消声性能下降的缺点,耐热性好,在高温下不释放有害气体,不吸湿,是一种优良的环保型消音及噪音控制材料.2.2.7电池电极材料开口的铅泡沫作为铅酸蓄电池的骨架,取代现有的铅网格,可以减轻电池的重量[31];Ni泡沫电极在可充电NiCd或NiMe H电池中已有了实际的应用[32,33].2.2.8阻火器高热导率的铝、铜泡沫可以用来阻止火焰的传播.据报道,开口泡沫可以对传播速度为550m/s的火焰进行有效的拦截[27].2.2.9水净化多孔金属可以减少水中溶解的离子浓度.污水通过通孔泡沫时,离子与金属泡沫的骨架发生氧化还原反应.如用铝泡沫对Cr离子(6价)的净化[34].3泡沫金属的性能研究及应用发展3.1结构—性能关系研究泡沫金属是一种结构敏感性材料,其力学性能、电磁性能、热性能都与结构有直接的关系,最近的研究情况及研究方法主要有:1)B.Illerhaus[35]等人用320kV的XRD管,采用3D micro tomograp hy技术对铝泡沫和空心铁球的变形形貌进行了无损测量,可以测量泡沫结构分布、平均孔壁厚等,类似的XC T(Computed X-ray To2 mograp hy)报道还有文献[36]等,为泡沫金属变形过程的实时观察提供了手段.2)从有限元(如ABAQ U S等)、边界元数值模拟角度进行泡沫金属孔结构(含结构分布)和力学性能(如应力-应变关系)的关系、泡沫金属材料器件的优化设计的研究[37].3)从实体金属的变形理论出发,通过参数的变换,用于泡沫金属的力学性能研究[38];4)从分形理论[39]对结构和性能进行研究;5)从微观、介观的不同角度对理想和真实泡沫结构和性能进行研究.因此,从孔结构的个体-孔单元及不同单元组合出发,采用先进的方法手段和理论,结合应用对象,研究孔结构、结构分布及其形貌对材料性能及器件使用性能的影响规律,对泡沫结构进行优化设计,为高性能金属泡沫及其产品的研制提供理论基础和依据,是目前泡沫金属性能研究的必然发展趋势.3.2应用泡沫金属的研究开发已有50多年的历史,但真正的规模化产业应用并不多,国内这一现象尤为明显.除了制备技术、性能、成本等因素外,泡沫金属的应用发展应考虑其“多性能特点组合”的优势,可考虑通过以下方法实现:1)数值模拟分析,进行材料多功能使用性能的综合优化设计;2)材料性能比较,如金属泡沫与有机泡沫的性能比较,进行综合优化设计;3)与实体金属混用(如泡沫铝芯三明治板),可提高金属泡沫的力学性能、材料的性能各向同性性及可靠性.因此,需要开发金属泡沫与实体金属的连接技术,研制低成本一体化制备技术,考虑材料的腐蚀、构件(如汽车构件)的几何尺寸及尺寸精度等问题;4)开发高性能泡沫及其低成本连续化生产技术,提高泡沫金属的性/价比,提高金属泡沫比之于其他非金属泡沫(如有机泡沫)的竞争力;5)采用系统化的新材料新投资评估体系,如材料投资方法学(IMM ,Invest ment Met hodology for new Materials )[40],对可能的应用及投资等进行科学的评估,缩短投资开发周期,降低风险,促进泡沫金属材料产业化的发展.参考文献:[1]赵增典,张勇,李杰.泡沫金属的研究及其应用进展[J ].轻合金加工技术,1998,26(11):1~10.[2]Warren W E ,Kraynik A M.Foam Mechanics :t he Linear Elastic Res ponse of Two -Dimensional Spatially PeriodicCellular Materials.Mechanics of Materials[J ].1988,55(1):341~346.[3]Nieh T G ,Higashi K ,Wadswort h J.Effect of Cell Morphology on t he Compressive Properties of Open -cell Alu 2minum Foams[J ].Mater Sci Eng A ,1999,283:105~110[4]G ibs on L J ,Ashby M F.Cellular S olids :Structure and Properties[M].Cambridge ,U K:Cambridge University Press ,1997.189.[5]K ovacik J ,Simancik F.Metal Foam and Porous Metal Structure[M ].M I T Verlag ,Bremen ,1999.303.[6]Mepura ,Data Sheets ,Mepura Gmbh.Ranshofen[C ].Austria ,1995.[7]Park E S ,Poste S D.Ceramic Foams[P ].U S Patent :4808558,1989.[8]K ovacik J.The T Behaviour of P orous Metals Made by G ASAR Process[J ].Acta Mater.1998,46(15):5413~5422.[9]Stauffer D ,Aharony A.Introduction to Percolation Theory[M ].Taylor and Francis ,London ,1992.1~10.[10]Degischer H P.Handbook of Cellular Metals[M ].W IL E Y -VCH Gerlag GmbH ,2002.235.[11]K ovacik J ,Tobolka P ,Simancik F ,Metal Foam and Porous Metal Structure[M ].M I T Verlag ,Bremen 1999.405.[12]Degischer H P.Handbook of Cellular Metals[M ].W IL E Y -VCH Gerlag GmbH ,2002.Foreword.[13]王祝堂.泡沫铝材:生产工艺、组织性能及应用研究(3)[J ].轻合金加工技术,1999,27(12):1~2.[14]王芳,王录才.泡沫金属的研究与发展[J ].铸造设备研究,2000,(1):51.[15]Ashby M F ,Evans A G,Fleck N A ,et al.Metal F oams :A Design G uide[M].Butterworth -Heinermann ,Oxford ,2000.150.[16]Ashby M F ,Evans A G,Fleck N A ,et al.Metal F oams :A Design G uide[M].Butterworth -Heinermann ,Oxford ,2000.221.[17]Banhart J.Manu facture ,Characterisation and Application of CellUlar Metals and Metal F oams[J ].Progr Mater Sci.2001,46:617.[18]Ashby M F ,Evans A G,Fleck N A ,et al.Metal F oams :A Design G uide[M].Butterworth -Heinermann ,Oxford ,2000.233[19]G iamei A F.Metal foams [C ].In :Banhart J ,Eifert H ,editors.Proc.Fraunhofer U SA Symposium on MetalFoams ,Stanton ,U SA ,7~8October.Bremen :M I T Press -Verlag ,1997.63.[20]Cooks F H.Proc.Conf.Light Metals[C ].New Orleans ,U SA ,2~6March 1986,2:1019.[21]Bende W U ,Guo F H.Advances in Powder Metallurgy and Particulate Materials [M ].Capus J M ,German R M(ends ),Metal Powder Industries Federation ,Princeton ,1992,6:145.[22]ER G Inc.Oakland[EB/OL ].U SA ,http ://.[23]SEAC International B V.K irmpen ,Netherlands ,Product Data sheet of “Recemat ”[E B/OL ].http ://www.seac.nl ,1998.[24]Lida K ,Mizuno K ,K ondo K.Sound Wave Control Device[P ].U S Patent :4726444,1988.[25]王月.压缩率和密度对泡沫铝吸声性能的影响[J ].机械工程材料,2002,26(3):29~31.[26]Ashby M F ,Evans A G,Fleck N A ,et al.Metal F oams :A Design G uide[M].Butterworth -Heinermann ,Oxford ,2000.221.[27]Inco L td ,Canada.Product Data Sheet of “Incofoam ”[EB/OL ].http :// ,1998.[28]Matsumoto I ,Iwaki T ,Yanagihara N.Battery electrode[P ].U S Patent.4251603,1981.[29]Illerhaus B ,J asiuniene E ,K ottar A ,G oebels J.Processing and Properties of Lightweight Cellular Metals and Struc 2tures[C ].Edited by Amit Ghosh ,Tom Sanders and Dennis Claar ,TMS 2002.271~279.[30]Degischer H P ,K ottar A.in Metal Foams and Porous Metal Structures [M ].Banhart J ,Ashby M F ,Fleck N A(ends ),M I T Verlag ,Bremen 1999.213~220.[31]Degischer H P.Handbook of Cellular Metals[M ].W IL E Y -VCH Gerlag GmbH ,2002.286.[32]Ashby M F ,G ibson L J.Metal Foams[M ].Oxford Press ,1988.86.[33]张金娅,左孝青.通孔泡沫金属与分形理论[J ].昆明理工大学学报(理工版),2002,27(4):13~15.[34]Maine E M A.Innovation and Adoption of New Materials[D].PhD Thesis ,Cambridge University ,2000.5~20.71第1期 左孝青,孙加林:泡沫金属的性能及应用研究进展。
泡沫铝的应用及研究进展泡沫铝是一种由铝金属制成的多孔材料,具有轻质、高强度和良好的阻隔热性能等特点。
它的应用广泛,包括汽车、航空航天、建筑、电子等领域,并且在研究和开发方面有一系列的进展。
首先,泡沫铝在汽车领域有着广泛的应用。
泡沫铝可以用于汽车散热器和减震器等部件,其具有良好的导热性能和吸能能力,能够提高汽车的散热效果和行驶的稳定性。
此外,泡沫铝还可以用作汽车内饰材料,例如中控台等,具有较高的强度和轻质化的特点。
其次,泡沫铝在航空航天领域也有广泛的应用。
由于泡沫铝具有良好的轻质和高强度特性,能够减轻航空航天器的重量,提高其载荷能力和燃油效率。
泡沫铝可以用于制造航空航天器的结构件、隔热层、减振材料等,在提高航空航天器性能的同时降低了整体成本。
此外,泡沫铝在建筑领域也有一定的应用。
泡沫铝可以用作建筑隔热层,具有良好的阻隔热性能,能够有效减少建筑物内外温差,节能环保。
此外,泡沫铝还可以用作建筑装饰材料,例如墙板、天花板等,因为它具有轻质、易加工等特点,能够满足建筑物的外观要求。
另外,泡沫铝在电子领域也有一定的应用。
由于泡沫铝具有良好的导电性能和导热性能,能够用于制造电子器件和电子散热器,提高电子设备的性能和可靠性。
泡沫铝可以用于制造手机散热片、电脑散热器等,解决电子设备散热问题。
在研究和开发方面,目前泡沫铝的研究主要集中在材料性能的改进和制造工艺的优化上。
研究人员正在尝试通过改变泡沫铝的孔径、孔隙率和孔壁厚度等结构参数,以及掺杂适量的其他元素,提高泡沫铝的机械性能、导热性能和阻隔性能。
此外,研究人员还在探索新的制造工艺,如电解合金化方法、化学沉积法等,以提高泡沫铝的制备效率和产品质量。
总的来说,泡沫铝具有广泛的应用前景和研究潜力。
随着技术的不断革新和改进,相信泡沫铝在各个领域的应用将会更加广泛,为相关行业的发展带来更多的创新和机遇。
泡沫金属的制备力学性能及其应用泡沫金属是指金属材料在冶金过程中通过特殊方法制得的具有开放孔隙结构的材料。
泡沫金属具有低密度、高比强度、优异的吸能性能、良好的导热性能等特点,因此被广泛应用于汽车、航空航天、建筑、能源储存等领域。
泡沫金属的制备方法多种多样,常见的有聚合物模板法、发泡剂法、自发性发泡法等。
其中,聚合物模板法是最常见的制备方法之一、首先,将金属粉末与粘结剂混合,然后将混合物填充到聚合物模板中,通过高温处理使粘结剂烧结,最后将聚合物模板去除,得到具有孔隙结构的泡沫金属。
泡沫金属具有优异的力学性能。
它具有高比强度和高吸能性能,可以有效地吸收能量和缓解冲击。
由于其孔隙结构的存在,泡沫金属具有优异的吸震性能,减小了任何外部力对机械结构的影响,因此泡沫金属常被用作冲击吸收材料、振动控制材料等。
此外,泡沫金属还具有良好的导热性能,可以作为热传导材料在热管理领域得到应用。
泡沫金属在汽车领域有广泛的应用。
它可以用来制作汽车碰撞保护材料,能够有效地吸收碰撞能量,保护车辆内部的人员安全。
此外,泡沫金属还可以应用于汽车排放系统中,用于减轻噪音和振动。
同样,在航空航天领域,泡沫金属也有重要的应用。
它可以用于制作航空航天器的结构材料、燃料储存材料等。
另外,泡沫金属还可以用于建筑领域。
其低密度和高比强度使其成为一种理想的建筑材料,可以用于制作轻质墙板、隔音材料、隔热材料等。
此外,由于泡沫金属具有优异的导热性能,它还可以用于太阳能热能储存系统以及建筑物的能源效率改善。
总之,泡沫金属作为一种具有开放孔隙结构的材料,具有低密度、高比强度、良好的吸能性能和导热性能等特点,因而在各个领域都有广泛的应用。
随着科技的进步,泡沫金属的制备方法将会更加多样化,其应用领域也将进一步扩展。
泡沫金属的制备及其在航空航天领域的应用研究泡沫金属是由金属膜片之间的空隙组成的一种多孔材料,具有低密度、高强度和优异的吸能性能。
因此,泡沫金属已经成为航空航天领域中的重要材料之一。
本文将介绍泡沫金属的制备方法和在航空航天领域的应用研究进展。
一、泡沫金属的制备方法泡沫金属制备的基本原理是用脱模剂将预制的金属膜片分隔开来,并在其表面形成底部保护层。
然后,通过各种方法加入金属的孔道,形成连通的泡沫状结构。
常用的泡沫金属制备方法有以下几种:1. 模板法:模板法是通过将金属液浸渍在导电或非导电模板中,通过氧化、还原或电解反应,将纳米、微米或毫米级金属颗粒均匀沉积到模板孔洞中,然后再通过退火、烧结或溶解模板的方式获得泡沫金属。
2. 溶液法:溶液法是将金属盐溶解在有机或无机溶剂中,再加入还原剂或沉淀剂,使金属离子还原成原始金属,并在待反应的工艺条件下形成泡沫金属。
3. 反渗透法:反渗透法是将金属膜片置于内部受到压缩气体的反渗透区域内,然后将水分子透过膜片发生膨胀,其气泡成为抗剪切的靠拢和相互支撑的力,最终形成多孔泡沫金属。
以上方法各有其特点,对于不同金属材料,选择不同的制备方法具有一定的优劣之处。
例如,模板法相对简单,控制精确度高,但仅适用于制备薄壁泡沫金属;溶液法制备速度快,成品密度低,但安全性有待提高。
二、泡沫金属在航空航天领域的应用研究进展1. 引擎隔板泡沫金属具有低密度和高强度等特性,已广泛用于航空发动机的隔板。
其可阻隔来自不同部位的工作介质,拥有优异的隔音和隔热效果,还可热回收,降低燃料消耗量和减少工作环境污染。
2. 飞行器结构泡沫金属还可用于航空器结构的轻量化设计中,如飞机梁、机翼材料和飞行器隔板等部位。
采用泡沫金属制造的轻量化飞机构件,可以降低金属消耗,提高载荷能力,减轻飞机自重负担。
3. 航天器外壳泡沫金属还可用于航天器热控制外壳。
由于泡沫金属具有良好的吸热能力和隔热能力,因此可将热传递限制在特定区域,避免航天器表面温度过高或过低,提高航天器的使用寿命。
第22卷 第3期V ol 122 N o 13材 料 科 学 与 工 程 学 报Journal of Materials Science &Engineering总第89期Jun.2004文章编号:10042793X (2004)0320452205收稿日期:2003208225;修订日期:2003211212基金项目:云南省自然科学基金重点资助项目2000E0003Z作者简介:左孝青(1964-),男,副教授.研究方向:泡沫金属.E mail :zxqdzhhm @h 泡沫金属制备技术研究进展左孝青1,孙加林2(11昆明理工大学材料与冶金工程学院,云南昆明 650093;21昆明贵金属研究所,云南昆明 650221) 【摘 要】 本文对泡沫金属制备技术研究现状进行了综述,并就其发展的前沿问题进行了讨论,指出了泡沫金属制备技术的理论研究和工业化规模生产技术的发展方向,对泡沫金属的研究和开发具有重要意义。
【关键词】 泡沫金属;制备;综述中图分类号:T B383,T B34 文献标识码:AR evie w on Foam Metal Manu facture T echniquesZU O Xiao 2qing 1,SUN Jia 2lin2(11I nstitute of Materials and Metallurgy E ngineering ,K unming U niversity of Science and T echnology ,K unming 650093,China ;21K unming Precious Metals I nstitute.K unming 650221,China)【Abstract 】 The present manu facture techniques of foamed metals are reviewed and the problems of making foamed metals arediscussed in this paper.Ideals of further research and development of theory foundation and making metal foams ,especially on a large industrial scale ,are put forward.Therefore ,this research is very significant in the production of cellular metals.【K ey w ords 】 cellular metals ;foamed metals ;manu facture ;review1 前 言泡沫金属是一种结构一功能一体化的结构和功能材料,具有低密度、高孔隙率、闭孔或开孔的结构特征,其性能表现有能量吸收、吸音、电磁屏蔽、低的热电导率、结构阻尼性能、高比刚度等,是不同结构仪器或装置的可选材料,在汽车、航空航天、建筑、包装、热交换、电池极板等领域有广泛的应用。
泡沫金属—从基础研究到应用John Banhart材料科学部,哈恩-迈特纳研究所,柏林,德国材料科学部,柏林科技大学,柏林,德国Email:banhart@hmi.de1 前言固态金属泡沫,特别是基于轻金属,有许多不同性能的有趣组合,比如在联结中具有高强度的同时还具有低比重,或者高抗压强度与良好的能量吸收特性相结合。
基于这个原因,人们对这些材料的兴趣仍然在不断增长中。
泡沫金属的发展在评论文章和会议记录中有介绍[1-5]。
有一个专门的网页提供最新的信息[6]。
本文仅局限于闭孔铝合金泡沫的研究,其具有良好的市场推广潜力。
我们将首先回顾不同的制造路线,讨论基础研究的重要性,然后再讨论其应用。
表1泡沫金属基本发泡路线和铝基泡沫制造商直接发泡合金融化合金发泡产生气泡泡沫收集泡沫固化间接发泡制备发泡预制品预制品再熔化泡沫生成泡沫固化制造商(产品) Cymat, 加拿大(SAF)Foamtech, 韩国(Lasom)Hutte Kleinreichenbach(HKB), 奥地利(Metcomb)Shinko-Wire, 日本(Alporas)(Distributor:Gleich, 德国)制造商(产品)alm, 德国(AFS)Alulight, 奥地利(alulight)Gleich-IWE, 德国Schunk, 德国2 制备工艺泡沫铝的制备主要有两种方法(见表1)。
直接发泡法是通过向熔融金属中注入气体而产生泡沫,以使其中包含均匀分散的非金属颗粒。
另外,钛金属氢化物可以被添加到熔体中,其分解后具有相同的效果。
间接发泡法是通过加入均匀分散的发泡剂颗粒,大多为钛或锆的氢化物,而形成由铝混合物组成的固体预制品。
通过熔化,使预制品膨胀并形成泡沫。
2.1 熔体注气直接发泡法通过注入气体使铝或者铝合金发泡的技术,已经进入了商业开发阶段[7]。
碳化硅,氧化铝或其他陶瓷颗粒需要与合金混合而使之发泡。
增强颗粒的体积分数一般为10%至20%,平均粒径为5至20微米。