复数的概念及复数的四则运算
- 格式:doc
- 大小:41.00 KB
- 文档页数:3
复数的定义与四则运算法则复数是数学中的一种特殊数形式,由实部和虚部组成。
实部通常用实数表示,而虚部通常以虚数单位 i 表示。
复数的一般表示形式为 a + bi,其中 a 表示实部,b 表示虚部。
一、复数的定义复数的定义是通过引入虚数单位 i 而获得的。
虚数单位 i 的定义是i^2 = -1。
根据这个定义,我们可以得出两个重要的结论:i 的平方等于-1,而 -1 的平方根是 i。
二、虚数与实数虚数是指虚部不为零的复数。
当虚部 b 不为零时,复数 a + bi 称为虚数。
实部为零,即虚部 b 不为零时,复数 a + bi 称为纯虚数。
与实数不同的是,虚数和纯虚数在实轴上没有对应的点。
三、四则运算法则1. 加法法则:复数的加法满足交换律和结合律。
对于两个复数 a + bi 和 c + di,它们的和为 (a + c) + (b + d)i。
2. 减法法则:复数的减法也满足交换律和结合律。
对于两个复数 a + bi 和 c + di,它们的差为 (a - c) + (b - d)i。
3. 乘法法则:复数的乘法满足交换律、结合律和分配律。
对于两个复数 a + bi 和 c + di,它们的乘积为 (ac - bd) + (ad + bc)i。
4. 除法法则:复数的除法也满足交换律、结合律和分配律。
对于两个复数 a + bi 和 c + di(其中 c + di 不等于 0),它们的商为 [(ac + bd)/(c^2 + d^2)] + [(bc - ad)/(c^2 + d^2)]i。
四、共轭复数对于复数 a + bi,其中 a 表示实部,b 表示虚部。
那么复数 a - bi 称为其共轭复数。
共轭复数的一个重要性质是,两个复数的乘积的虚部为零。
五、复数的绝对值复数 a + bi 的绝对值等于它的模长,记作 |a + bi|,定义为 |a + bi| = √(a^2 + b^2)。
复数的模长是一个非负实数。
高中数学中的复数运算知识点总结在高中数学学习中,复数运算是一个重要的知识点。
复数是由实数和虚数构成的数,其运算包括四则运算、乘方运算等。
下面将对高中数学中的复数运算进行总结。
一、复数的定义复数是由实部和虚部构成的数,通常表示为a+bi,其中a为实部,b为虚部,i是虚数单位。
实部和虚部都是实数,虚部的系数b前面必须加上虚数单位i。
二、复数加法和减法1. 加法复数a+bi和c+di相加,实部和虚部分别相加即可,即(a+bi)+(c+di)=(a+c)+(b+d)i。
2. 减法复数a+bi和c+di相减,实部和虚部分别相减即可,即(a+bi)-(c+di)=(a-c)+(b-d)i。
三、复数乘法和除法1. 乘法复数a+bi和c+di相乘,按照分配律展开式进行计算,即(a+bi)(c+di) = (ac-bd)+(ad+bc)i。
2. 除法复数a+bi除以c+di,先将被除数和除数的虚部有理化,然后根据乘法的倒数性质进行计算。
先将除数的虚部变号,得到复数的共轭复数,然后将除数乘以其共轭复数,再将结果化简为标准形式即可。
四、复数的乘方和开方1. 乘方复数的乘方可以使用二项式定理进行展开,然后根据i的幂次去化简。
2. 开方复数的开方可以先将复数化为三角形式或指数形式,然后利用根式的性质进行计算。
五、复数的模和辐角1. 模复数a+bi的模用|a+bi|表示,|a+bi|=√(a²+b²)。
2. 辐角复数a+bi的辐角用θ表示,可以通过a和b的值以及复数所在象限求得,tanθ=b/a。
六、复数的共轭与倒数1. 共轭复数复数a+bi的共轭复数记作a-bi,共轭复数的实部相同,虚部的符号相反。
2. 复数的倒数复数a+bi的倒数记作1/(a+bi),倒数的实部和虚部由实部和虚部的比例求得。
综上所述,高中数学中的复数运算涉及到复数的加法、减法、乘法、除法,以及乘方、开方等运算。
同时,复数的模、辐角、共轭与倒数也是重要的概念。
复数的基本性质与四则运算复数是数学中的一种特殊数形式,由实数和虚数部分组成。
在实际应用中,复数广泛用于电路分析、信号处理、控制系统等领域。
本文将探讨复数的基本性质和四则运算。
一、复数的基本性质复数可以表示为a+bi的形式,其中a为实数部分,bi为虚数部分,i为虚数单位,满足i²=-1。
复数可以用复平面上的点来表示,实数部分对应横坐标,虚数部分对应纵坐标。
复数有许多基本性质,其中最重要的是共轭性。
对于复数z=a+bi,其共轭复数记作z*=a-bi。
共轭复数的实部相等,虚部互为相反数。
共轭性在复数的运算中具有重要作用,可以用于简化计算和证明定理。
二、复数的四则运算1. 加法和减法复数的加法和减法与实数的运算类似。
对于两个复数z1=a+bi和z2=c+di,其和为z1+z2=(a+c)+(b+d)i,差为z1-z2=(a-c)+(b-d)i。
通过实部和虚部的相加减,可以得到复数的和差。
2. 乘法复数的乘法是基于分配律和虚数单位i的平方等于-1进行计算的。
对于两个复数z1=a+bi和z2=c+di,其乘积为z1*z2=(ac-bd)+(ad+bc)i。
在计算过程中,可以使用分配律将复数的实部和虚部分别相乘,然后将结果相加。
3. 除法复数的除法涉及到分数的运算。
对于两个复数z1=a+bi和z2=c+di,其商为z1/z2=(ac+bd)/(c²+d²)+((bc-ad)/(c²+d²))i。
在计算过程中,需要将分子和分母同时乘以共轭复数,然后进行简化。
三、复数的应用举例复数的四则运算可以应用于解决实际问题。
例如,在电路分析中,复数可以用于描述电压和电流的相位关系;在信号处理中,复数可以用于频域分析和滤波器设计;在控制系统中,复数可以用于描述系统的稳定性和性能。
举个例子,假设有一个电路中的电压信号为V(t)=V0cos(ωt+φ),其中V0为幅值,ω为角频率,φ为相位角。
复数四则运算复数是由实数和虚数相结合而成的数,它由实部和虚部构成,它可以表示出一个点在复平面上的位置,复数的书写形式有两种:一种是标准形式,即 a + bi(a 为实部 b 为虚部);另一种是简写形式,即 z = a + bi。
实数:数就是我们所熟知的数,例如 0,1、2、3、4、5,以及无穷大或无穷小的正负数,它们的定义不仅受正数限制,也受负数制。
虚数:虚数是以“i”开头的单位,其中“i”代表负根号 -1。
虚数一般以 a + bi形式来表示,其中 a 为实部,b 为虚部,虚数的概念只在二元函数的图像中有意义,而不能在三元函数的图像中表示。
二、复数四则运算1、加法复数之间的加法运算,就是把两个复数实部和虚部分别相加,得到新的复数,例如:(3 + 5i) + (2 + 3i) = (3 + 2) + (5 + 3i) = 5 + 8i2、减法复数之间的减法运算,先把第二个复数的实部和虚部分别变成相反数,然后用加法计算出差值,例如:(3 + 5i) - (2 + 3i) = (3 -2) + (5 - 3i) = 1 + 2i3、乘法复数之间的乘法运算,是先将两个复数分别按照一定规则拆分开来,然后用公式乘出其积值,例如:(3 + 5i) (2 + 3i) = 3×2 + 3×3i + 5i×2 + 5i×3i = 6 + 15i - 10i - 15i = 6 - 15i4、除法复数之间的除法运算,首先将分母改写成乘法形式,然后将分子和分母分别按照一定规则拆分开来,最后用公式除出其商值,例如:(3 + 5i)÷ (2 + 3i) = (3 + 5i) (2 - 3i)÷ (2 + 3i) (2 - 3i) =(6 - 15i)÷ (4 - 9i) = (6 - 15i)÷ 13(2 - 3i) = 6/13 + (-15i)/13三、复数的性质1、复数可以与实数进行四则运算(加减乘除),但不能与实数求反元。
复数的基本概念与运算规则复数是数学中的一种数形式,可以表示为实部与虚部的和。
在复数中,虚部用i来表示,i为虚数单位,满足i² = -1。
复数的基本概念与运算规则是我们学习复数的基础,以下将对其进行详细介绍。
一、复数的基本概念复数由实部和虚部组成,一般表示为a + bi,其中a为实部,bi为虚部。
实部和虚部都可以是实数。
当虚部为0时,复数退化为实数。
反之,当实部为0时,复数退化为纯虚数。
二、复数的表示形式1. 笛卡尔形式:复数a + bi可以表示为有序对(a, b),其中a表示实部,b表示虚部。
2. 楔形式:复数a + bi可以表示为模长和辐角的形式。
其中模长是复数到原点的距离,辐角是复数与实轴的夹角。
三、复数的运算规则1. 加法运算:对于两个复数(a + bi)和(c + di),其和为(a + c) + (b +d)i。
即实部相加,虚部相加。
2. 减法运算:对于两个复数(a + bi)和(c + di),其差为(a - c) + (b - d)i。
即实部相减,虚部相减。
3. 乘法运算:对于两个复数(a + bi)和(c + di),其积为(ac - bd) + (ad+ bc)i。
即实部的乘积减去虚部的乘积,然后再加上实部和虚部的乘积。
4. 除法运算:对于两个复数(a + bi)和(c + di),其商为[(ac + bd)/(c² + d²)] + [(bc - ad)/(c² +d²)]i。
即实部的乘积加上虚部的乘积除以除数的模长的平方,然后再加上虚部的乘积减去实部的乘积除以除数的模长的平方。
4. 共轭运算:对于复数a + bi,其共轭为a - bi。
即实部不变,虚部取相反数。
五、复数的基本性质1. 加法满足交换律和结合律:对于任意复数a, b和c,有a + b = b + a和(a + b) + c = a + (b + c)。
2. 乘法满足交换律和结合律:对于任意复数a, b和c,有ab = ba和(ab)c = a(bc)。
复数与复数运算详细解析与归纳复数是数学中一种重要的概念,它包含了实数范围之外的数。
在本文中,我们将详细解析复数的定义、运算规则以及复数的归纳方法,旨在帮助读者更好地理解和应用复数。
一、复数的定义复数是由实数和虚数单位构成的数,通常表示为a+bi的形式,其中a和b都是实数,i是虚数单位,满足i²=-1。
复数由实部和虚部两部分组成,实部是实数部分,虚部是虚数部分。
二、复数的四则运算1. 加法:对应位置的实部和虚部分别相加。
2. 减法:对应位置的实部和虚部分别相减。
3. 乘法:按照分配律展开并合并同类项,同时注意i²的取值。
4. 除法:将除数乘以共轭复数的分子和分母,然后进行简化。
三、复数的性质与归纳1. 共轭复数:将复数的虚部取负数得到的数为共轭复数,记作z'。
共轭复数具有以下性质:a. 共轭复数的实部相等,虚部的符号相反。
b. 复数与它的共轭复数的乘积等于它的模的平方。
c. 对于实数,它的共轭复数等于它本身。
2. 复数的模和辐角:复数的模是复数到原点的距离,通常用|r|表示;辐角是复数与实轴正半轴之间的夹角,通常用θ表示。
复数的性质与归纳如下:a. 复数的模等于它与共轭复数的乘积的平方根。
b. 复数的辐角等于它在坐标平面上与实轴正半轴的夹角。
c. 两个复数相等,当且仅当它们的实部和虚部分别相等。
3. 欧拉公式:欧拉公式将复数的辐角表示为指数形式,可以用于简化复数的运算。
欧拉公式的表达式为e^(iθ) = cosθ + isinθ,其中e为自然对数的底数。
利用欧拉公式可以更方便地进行复数的乘方运算和三角函数的运算。
四、应用举例复数在物理学、工程学以及信号处理等领域有广泛的应用。
下面是一些常见的应用举例:1. 交流电路中的复数阻抗:复数可以用来表示交流电路中的电阻、电感和电容,进而分析电路中的电流和电压。
2. 复数频域分析:利用复数的欧拉公式,可以将信号在频域上进行分析和处理,例如傅里叶变换。
复数的基本运算及几何意义复数是由实部和虚部构成的数,可以用公式表示为 z = a + bi,其中a 是实部,b 是虚部,i 是虚数单位。
一、复数的四则运算1. 复数的加法:将实部和虚部分别相加即可。
例如:(2 + 3i) + (4 + 5i) = 6 + 8i2. 复数的减法:将实部和虚部分别相减即可。
例如:(2 + 3i) - (4 + 5i) = -2 - 2i3. 复数的乘法:根据分配律展开运算,注意 i 的平方为 -1。
例如:(2 + 3i) * (4 + 5i) = 8 + 22i - 15 = -7 + 22i4. 复数的除法:将分子乘以分母共轭复数,并进行合并化简。
例如:(2 + 3i) / (4 + 5i) = (2 + 3i) * (4 - 5i) / (4^2 + 5^2) = (8 + 7i) / 41二、复数在平面几何中的意义在平面直角坐标系中,复数可以看作是复平面上的点,实部对应横轴,虚部对应纵轴。
1. 复数的模:复数 z 的模表示为 |z|,是复平面上由原点到对应点的距离。
例如:z = 3 + 4i,则|z| = √(3^2 + 4^2) = 52. 复数的辐角:复数 z 的辐角表示为 arg(z),是复平面上由正实轴到对应位置向量的角度。
例如:z = 2 + 2i,则arg(z) = π/43. 欧拉公式:欧拉公式表示为e^(iθ) = cos(θ) + isin(θ),其中 e 是自然对数的底,i 是虚数单位,θ 是角度。
该公式将三角函数与指数函数联系了起来,是复数运算中的重要工具。
4. 复数的乘法及除法的几何意义:复数的乘法相当于平移、旋转和伸缩,在复平面上实现了几何变换。
复数的除法相当于平移、旋转和收缩,在复平面上实现了逆向几何变换。
综上所述,复数的基本运算包括加法、减法、乘法和除法,可以使用公式进行计算。
在平面几何中,复数可以表示为复平面上的点,模表示距离,辐角表示角度。
【数学知识点】复数的定义和四则运算公式我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i 称为虚数单位。
接下来分享复数的定义和四则运算公式。
复数是形如a+bi的数。
式中a,b为实数,i是一个满足i^2=-1的数,因为任何实数的平方不等于-1,所以i不是实数,而是实数以外的新的数。
在复数a+bi中,a称为复数的实部,b称为复数的虚部,i称为虚数单位。
当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部如果等于零,则称为纯虚数。
由上可知,复数集包含了实数集,因而是实数集的扩张。
复数常用形式z=a+bi叫做代数式。
(1)加法运算设z1=a+bi,z2=c+di是任意两个复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和:(a+bi)±(c+di)=(a±c)+(b±d)i。
(2)乘法运算设z1=a+bi,z2=c+di是任意两个复数,则:(a+bi)(c+di)=(ac-bd)+(bc+ad)i。
其实就是把两个复数相乘,类似两个多项式相乘,结果中i2=-1,把实部与虚部分别合并。
两个复数的积仍然是一个复数。
(3)除法运算复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商。
运算方法:可以把除法换算成乘法做,将分子分母同时乘上分母的共轭复数,再用乘法运算。
(1)共轭复数所对应的点关于实轴对称。
(2)两个复数:x+yi与x-yi称为共轭复数,它们的实部相等,虚部互为相反数。
(3)在复平面上,表示两个共轭复数的点关于X轴对称。
感谢您的阅读,祝您生活愉快。
2025届高考数学一轮复习——复数讲义【高考考情分析】复数是高考的必考内容,多出现在选择题中,近几年多选题、填空题形式也有考查,试题较为简单,属于送分题,主要考查复数的概念和复数的四则运算.【基础知识复习】1.复数的有关概念(1)复数相等:i i a b c d a c +=+⇔=且b d =(,,,)a b c d ∈R .(2)共轭复数:i a b +与i c d +共轭a c ⇔=且b d =-(,,,)a b c d ∈R .(3)复数的模:复数i(,)z a b a b =+∈R 对应的向量OZ 的模叫做z 的模,记作||z 或|i |a b +,即|||i |z a b =+=2.复数的几何意义(1)复数i(,)z a b a b −−−−→=+∈←−−−−R 一一对应复平面内的点(,)Z a b . (2)复数i(,)z a b a b −−−−→=+∈←−−−−R 一一对应平面向量((0,0),(,))OZ O Z a b . 3.复数的加、减、乘、除运算法则设12i,i(,,,)z a b z c d a b c d =+=+∈R ,则(1)加法:12(i)(i)()()i z z a b c d a c b d +=+++=+++;(2)减法:12(i)(i)()()i z z a b c d a c b d -=+-+=-+-;(3)乘法:12(i)(i)()()i z z a b c d ac bd bc ad ⋅=+⋅+=-++;(4)除法:122222i (i)(i)i(i 0)i (i)(i)z a b a b c d ac bd bc ad c d z c d c d c d c d c d++-+-===++≠++-++. 4.复数加法的运算律复数的加法满足交换律、结合律,即对任何123,,z z z ∈C ,有1221z z z z +=+,123123()()z z z z z z ++=++.5.复数加、减法的几何意义(1)复数加法的几何意义若复数12,z z 对应的向量12,OZ OZ 不共线,则复数12z z +是以12,OZ OZ 为两邻边的平行四边形的对角线OZ 所对应的复数.(2)复数减法的几何意义复数12z z -是1221OZ OZ Z Z -=所对应的复数.6.复数乘法的运算律:对于任意123z z z ∈C ,,,有交换律:1221z z z z =;结合律:123123()()z z z z z z =;乘法对加法的分配律:1231213()z z z z z z z +=+.【重点难点复习】1.复数的模的运算性质(1)1212z z z z ⋅=⋅;(2)()112220z z z z z =≠; (3)()11n n z z n *=∈N .2.共轭复数的相关运算(1)z z z =⇔为实数,0z z +=且0z z ≠⇔为纯虚数;(2)2222||||zz z z a b ===+;(3)2z z a +=,2i z z b -=;(4)1212z z z z ±=±,1212z z z z ⋅=⋅,()112220z z z z z ⎛⎫=≠ ⎪⎝⎭. 【基本方法与技能复习】求解复数相关问题的技巧(1)复数的分类、复数相等、复数的模、共轭复数的概念都与复数的实部和虚部有关,所以解答与复数概念有关的问题时,需先把所给复数化为i()a b a b +∈,R 的形式,再根据题意列方程(组)求解.(2)求复数的模时,直接根据复数的模的公式和性质进行计算.(3)复数问题实数化是解决复数问题最基本也是最重要的方法.(4)在复数的四则运算中,加、减、乘运算按多项式运算法则进行,把含有虚数单位i 的项看作一类同类项,不含i 的项看作另一类同类项;除法运算则需要分母实数化,解题中注意要把i 的幂化成最简形式.(5)由于复数、点、向量之间存在一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.【典型例题复习】1i =+,则z =( ) A.1i -- B.1i -+C.1i -D.1i + 2.【2024年新课标Ⅰ卷】已知1i z =--,则||z =( )3.【2023年新课标Ⅰ卷】已知1i 22i z -=+,则z z -=( ) A.i - B.i C.0 D.14.【2023年新课标Ⅰ卷】在复平面内,(13i)(3i)+-对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限5.【2022年新高考Ⅰ卷】若()i 11z -=,则z z +=( )A.-2B.-1C.1D.26.【2022年新高考Ⅰ卷】(22i)(12i)+-=( )A.24i -+B.24i --C.62i +D.62i - 答案以及解析1.答案:C1i =+,所以(1)(1i)z z =-+,即1i i z z z =-+-,即i 1i z =+,所以1i (1i)(i)1i i i(i)z ++-===--,故选C.1=+=11i 11i (1i)(1i)22z --==-+-11i 22=+=所以z =21i 1i=-+,故选C. 2.答案:C解析:|||1i |z =--==3.答案:A解析:因为1i(1i)(1i)2i1i22i2(1i)(1i)42z----====-++-,所以1i2z=,即iz z-=-.故选A.4.答案:A解析:(13i)(3i)3i9i368i+-=-++=+,在复平面内对应的点的坐标为(6,8),位于第一象限,故选A.5.答案:D解析:因为i(1)1z-=,所以111iiz=-=+,所以1iz=-,所以(1i)(1i)2z z+=++-=.故选D.6.答案:D解析:(22i)(12i)24i2i462i+-=-++=-,故选D.。
数据结构复数的四则运算复数是由实数和虚数构成的数,实数部分可以为任意实数,虚数部分可以表示为实数乘以一个虚数单位i(i^2=-1)。
复数的四则运算包括加法、减法、乘法和除法。
下面将分别介绍这四种运算的定义和算法。
1.加法:复数的加法定义为:(a+bi) + (c+di) = (a+c) + (b+d)i其中,a、b、c、d为实数部分和虚数部分。
算法流程:-将两个复数的实部相加,得到新复数的实部。
-将两个复数的虚部相加,得到新复数的虚部。
-构建新的复数对象,实部为上一步得到的实部,虚部为上一步得到的虚部。
2.减法:复数的减法定义为:(a+bi) - (c+di) = (a-c) + (b-d)i其中,a、b、c、d为实数部分和虚数部分。
算法流程:-将两个复数的实部相减,得到新复数的实部。
-将两个复数的虚部相减,得到新复数的虚部。
-构建新的复数对象,实部为上一步得到的实部,虚部为上一步得到的虚部。
3.乘法:复数的乘法定义为:(a+bi) * (c+di) = (ac-bd) + (ad+bc)i其中,a、b、c、d为实数部分和虚数部分。
算法流程:-将两个复数的实部相乘,得到新复数的实部1-将两个复数的虚部相乘,得到新复数的虚部1-将一个复数的实部乘以另一个复数的虚部,得到新复数的实部2-将一个复数的虚部乘以另一个复数的实部,得到新复数的虚部2-将新复数的实部1减去虚部1,得到新复数的实部。
-将新复数的实部2与虚部2相加,得到新复数的虚部。
-构建新的复数对象,实部为上一步得到的实部,虚部为上一步得到的虚部。
4.除法:复数的除法定义为:(a+bi) / (c+di) = [(ac+bd)/(c^2+d^2)] + [(bc-ad)/(c^2+d^2)]i其中,a、b、c、d为实数部分和虚数部分。
算法流程:-将两个复数的实部分别相乘,得到实部分子式1-将两个复数的虚部分别相乘,得到虚部分子式1-将一个复数的实部乘以另一个复数的虚部,得到实部分子式2-将一个复数的虚部乘以另一个复数的实部,得到虚部分子式2-将实部分子式1与虚部分子式1相加,得到分子的实部。
复数基础知识及其运算规律一、复数的概念1.复数的定义:复数是由实数和虚数构成的数,一般形式为a+bi,其中a和b分别为实数,i为虚数单位,满足i^2=-1。
2.复数的分类:a)纯虚数:实部为0的复数,如i、-i等;b)实数:虚部为0的复数,如2、-3等;c)混合数:实部和虚部都不为0的复数,如1+2i、-3-4i等。
二、复数的表示方法1.代数表示法:用a+bi的形式表示复数;2.极坐标表示法:用r(cosθ+isinθ)的形式表示复数,其中r为模长,θ为辐角。
三、复数的运算规律1.加减法:a)(a+bi) + (c+di) = (a+c) + (b+d)i;b)(a+bi) - (c+di) = (a-c) + (b-d)i。
c)(a+bi)(c+di) = (ac-bd) + (ad+bc)i;d)特殊情形:两个纯虚数相乘,结果为实数;e)单位根的乘法:i^k,其中k为整数。
f)(a+bi)/(c+di) = [(ac+bd)/(c2+d2)] + [(bc-ad)/(c2+d2)]i。
g)(a+bi)^2 = (a2-b2) + 2abi;h)(a+bi)3、(a+bi)4等,可以利用乘方公式进行展开。
2.共轭复数:a)若复数为a+bi,则它的共轭复数为a-bi;b)共轭复数具有以下性质:两数相加为实数,两数相乘为实数。
四、复数的性质1.模长:表示复数在复平面上的长度,公式为|a+bi| = √(a2+b2);2.辐角:表示复数在复平面上与实轴的夹角,公式为θ = arctan(b/a),其中a≠0;3.复数的平方等于1的解:i、-1、1+i、1-i等;4.复数的平方等于-1的解:i、-i等;5.复数的平方等于k(k为非零实数)的解:±√k、±i√k等。
五、复数在实际应用中的例子1.信号处理:在通信系统中,信号往往可以表示为复数形式,如调制解调器中的正弦波信号;2.物理学:在电磁学、量子力学等领域,复数用于描述物理量,如电流、电压、波函数等;3.工程学:在电子工程、控制理论等领域,复数用于分析电路、系统稳定性等。
第一节复数一、复数
例1:求 X2 + 1 = 0的根
例2:求 X 2 + 9 = 0的根
例3:求 X 2 - 2X + 5 = 0的根
结论结论:j =1-称为虚数的单位,j b 称为虚数。
由实数和虚数的代数和组成的数称为复数A = a + j b
二、复数的表示形式
1.代数形式
A = a + j b
2.极坐标形式
A = r ∠ α
式中,r -复数A 的模;α-复数A 的辐角。
3.指数形式
A = r e j α
4.三角形式
A = r cos α + j r sin α
三、各种表示形式之间的相互转换
1.代数形式→其它形式
r =22b a +;α = arctan
a
b 2.其它形式→代数形式
a = r cos α ;
b = r sin α
例:例3、例4
四、共轭复数和复数的相等
1.若A = a + j b = r ∠ α,则它的共轭复数A * = a - j b = r ∠ -α。
2.若两复数实部与实部相等,虚部与虚部相等(在代数表示式中)或两复数的模和辐角分别都相等(在极坐标或指数表示式中)则两个复数就相等。
第二节 复数的四则运算
一、加减法
1. 原则:一定要用代数形式进行加减,其它形式不能进行加减运算。
2. 方法:先将复数化成代数表示式,然后实部和实部相加或相减,虚部和虚部相加或
相减。
例:例1
二、乘除法
1.原则:一定要在同一表示形式中才能进行运算,用极坐标形式进
行运算比较简单。
2.方法:
乘法:将两复数的模相乘作为乘积的模,两辐角相加作为乘积的辐角;
除法:将两复数的模相除作为商的模,两辐角相减作为商的辐角。
三、举例
例:例2、例3、例4、例5、例6
练习:(1)将下列复数分别化成另一种形式
3 + j 3;3 - j 3;-3 + j 3;- 3 - j 3;6∠30︒;6∠120︒;
6∠- 120︒
小结:1、虚数、复数的概念。
2、复数的几种表示方法。
3、复数的代数表示式和极坐标表示式之间的相互转换关系。
4、复数的四则运算遵循的原则。