遗传算法1
- 格式:ppt
- 大小:955.50 KB
- 文档页数:44
1 遗传算法1.1 遗传算法的定义遗传算法(GeneticAlgorithm,GA)是近多年来发展起来的一种全新的全局优化算法,它是基于了生物遗传学的观点,是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。
它通过自然选择、遗传、复制、变异等作用机制,实现各个个体的适应性的提高,从而达到全局优化。
遗传算法151解决一个实际问题通常都是从一个种群开始,而这个种群通常都是含有问题的一个集合。
这个种群是由一定数目的个体所构成的,利用生物遗传的知识我们可以知道这些个体正好组成了我们知道的染色体,也就是说染色体是由一个个有特征的个体组成的。
另外我们还知道,遗传算法是由染色体组成,而染色体是由基因组成,可以这么说,基因就决定了个体的特性,所以对于遗传算法的最开始的工作就需要进行编码工作。
然后形成初始的种群,最后进行选择、交叉和变异的操作。
1.2遗传算法的重要应用在现实应用中,遗传算法在很多领域得到很好的应用,特别是在解决多维并且相当困难的优化问题中时表现出了很大的优势。
在遗传算法的优化问题的应用中,其中最为经典的应用就是我们所熟悉的函数优化问题,它也是对遗传算法的性能进行评价的最普遍的一种算法;另外的一个最重要的应用,也就是我们本文所研究的应用—组合优化问题,一般的算法很难解决组合优化问题的搜索空间不断扩大的局面,而组合优化问题正好是解决这种问题的最有效的方法之一,在本文的研究中,比如求解TSP问题、VRP问题等方面都得到了很好的应用;另外遗传算法在航空控制系统中的应用、在图像处理和模式识别的应用、在生产调度方面的应用以及在工人智能、人工生命和机器学习方面都得到了很好的应用。
其实在当今的社会中,有关于优化方面的问题应用于各行各业中,因此有关于优化问题已经变得非常重要,它对于整个社会的发展来说都是一个不可改变的发展方向,也是社会发展的一个非常重要的需要。
1.3 遗传算法的特点遗传算法不同于传统的搜索与优化方法,它是随着问题种类的不同以及问题规模的扩大,能以有限的代价来很好的解决搜索和优化的方法。
遗传算法遗传算法是一种借鉴生物遗传和进化机制寻求最优解的计算方法。
该方法模拟生物进化中的复制、交换、变异等过程,并通过模拟自然选择压力的方式推动问题解集向最优解方向移动。
遗传算法为解决多种难以采用传统数学方法求解的复杂问题提供了新的思路。
1. 遗传算法的发展历史研究者采用计算机模拟生物进化过程并解决优化问题的尝试始于20世纪40至50年代。
20世纪60年代中期,美国密歇根大学的Holland教授提出了位串编码技术,这种编码技术适用于变异操作和交叉操作,他指出在研究和设计人工自适应系统时可借鉴生物遗传的机制,以群体的方式进行自适应搜索。
70年代中期,Holland提出遗传算法的模式定理(Schema Theorem),奠定了遗传算法的理论基础。
11967年,Holland教授的学生De Jong首次将遗传算法应用于函数优化中,2设计了遗传算法执行策略和性能评价指标。
他挑选的5个专门用于遗传算法数值实验的函数至今仍被频繁使用,而他提出的在线(on-line)和离线(off-line)指标则仍是目前衡量遗传算法优化性能的主要手段。
1989年,Goldberg出版专著“Genetic Algorithm in Search, Optimization, and Machine learning”3。
该书全面阐述了遗传算法的基本原理及应用,并系统总结了遗传算法的主要研究成果。
该书对遗传算法科学基础的奠定做出了重要贡献。
1991年,Davis编辑出版了专著“Handbook of Genetic Algorithms”,该书中介绍了遗传算法在工程技术和社会生活中的大量应用实例。
41992年,美国斯坦福大学的Koza出版专著“Genetic Programming, on the Programming of Computers by Means of Natural Selection”,在此书中,他将遗传算法应用于计算机程序的优化设计和自动生成,并在此基础上提出遗传编程(Genetic Programming, GP)的概念5。
遗传算法的基本操作1 遗传算法遗传算法(Genetic Algorithm,简称 GA)是一种染色体基因行为模拟的进化计算算法,它是一种基于自然选择和遗传变异进化机制的计算智能方法,是从生物学进化规律探索求解各种复杂问题的一种工具。
遗传算法是一种元胞自动机入门级的人工智能技术,能够解决各种复杂的最优化问题。
2 遗传算法的基本操作遗传算法的基本操作主要包括以下几个步骤:1.初始化种群:分配种群中每个个体的基因型,对种群中每个染色体随机分布互不相同的基因,成功分配染色体。
2.测试种群:评估种群中各个个体的适应度。
3.挑选进化操作:根据适应度值大小,选择优秀个体留入下一代。
4.变异和交叉:执行变异操作和交叉操作,以旧的种群基因组为基础生成新的基因组,以挑选某几代作为新的种群。
5.使用适应度值:重新计算每个个体的适应度,建立新的种群,获取最优解。
3 遗传算法在工程中的应用遗传算法可以完成多种实现最优解的工程问题,如最易支付路径分析、公路交叉路口路径优化、货物运输路线最优解、拆线问题等等。
随着科学技术的进步,遗传算法也广泛应用于其他领域,如通信网络结构优化、模式识别、系统自控等,使利用遗传算法工程化运用更加广泛,受到计算机应用研究者的追捧。
4 遗传算法的优势遗传算法有着诸多优势:1. 遗传算法可以解决非线性多变量优化问题;2. 遗传算法没有预定义的搜索空间,能够自动根据变量的取值范围搜索最优解;3. 能够处理连续和离散的优化变量;4. 遗传算法可实现并行化搜索,可大大提高计算速率;5. 遗传算法可以从全局最优出发搜索;6. 遗传算法擅长解非凸优化问题,比如有多个局部最优;7. 遗传算法可以应用于大规模复杂的优化问题。
遗传算法的运行效率不高,一般在解决工程优化问题时,常会伴随其他技术或工具,比如模糊技术、神经网络等,共同完成相应的优化工作。
此外,为了确保在种群的进化过程中保持正确的进化方向,必须了解其精准的适应度函数,为此必须提供明确的评价函数,这是关键性任务。
遗传算法的步骤遗传算法是一种基于自然选择和遗传机制的优化算法,它模拟了生物进化的过程,通过不断地迭代和优化,寻找最优解。
下面将介绍遗传算法的步骤。
1. 初始化种群遗传算法的第一步是初始化种群,即随机生成一组初始解。
这些解可以是随机生成的,也可以是根据问题的特点和经验生成的。
种群的大小和组成对算法的效果有很大的影响,一般来说,种群越大,搜索空间越广,但计算时间也会增加。
2. 选择操作选择操作是遗传算法的核心步骤之一,它模拟了自然选择的过程。
在选择操作中,根据适应度函数的值,选择一部分优秀的个体作为下一代的父代。
适应度函数的设计非常重要,它决定了个体的生存能力和繁殖能力。
3. 交叉操作交叉操作是遗传算法的另一个核心步骤,它模拟了生物的交配过程。
在交叉操作中,从父代中选择两个个体,通过交叉操作生成新的个体。
交叉操作的方式有很多种,如单点交叉、多点交叉、均匀交叉等。
4. 变异操作变异操作是遗传算法的最后一步,它模拟了生物的突变过程。
在变异操作中,对新生成的个体进行一定的变异操作,以增加搜索空间和避免陷入局部最优解。
变异操作的方式也有很多种,如位变异、反转变异、插入变异等。
5. 重复迭代遗传算法的迭代过程是不断重复选择、交叉和变异操作的过程,直到达到预设的停止条件。
停止条件可以是达到最大迭代次数、达到最优解或达到一定的误差范围等。
在迭代过程中,每一代的种群都会不断进化和优化,直到找到最优解。
遗传算法是一种非常有效的优化算法,它模拟了生物进化的过程,通过不断的选择、交叉和变异操作,寻找最优解。
在实际应用中,需要根据问题的特点和经验来选择适当的参数和操作方式,以达到最优的效果。
遗传算法的详解及应用遗传算法(Genetic Algorithm,GA)是一种模拟自然选择和遗传过程的算法。
在人工智能和优化问题中得到了广泛的应用。
本文将详细介绍遗传算法的基本原理和优化过程,并探讨它在实际应用中的价值和局限性。
一、遗传算法的基本原理遗传算法的基本原理是通过模拟生物进化的过程来寻找一个问题的最优解。
在遗传算法中,优秀的解决方案(也称为个体,Individual)在进化中拥有更高的生存几率,而劣质的解决方案则很快被淘汰。
在遗传算法的过程中,每个个体由若干个基因组成,每个基因代表某种特定的问题参数或者状态。
通过遗传算法,我们可以找到问题最优的解或者其中一个较优解。
遗传算法的基本流程如下:1. 初始化群体(Population):首先,我们需要随机生成一组初始解作为群体的个体。
这些个体被称为染色体(chromosome),每一个染色体都由一些基因(gene)组成。
所以我们可以认为群体是由很多染色体组成的。
2. 选择操作(Selection):选择运算是指从群体中选出一些个体,用来繁殖后代。
其目的是让优秀的个体留下更多的后代,提高下一代的平均适应度。
在选择操作中,我们通常采用轮盘赌选择(Roulette Wheel Selection)法、锦标赛(Tournament)法、排名选择(Ranking Selection)法等方法。
3. 交叉操作(Crossover):交叉运算是指随机地从两个个体中选出一些基因交换,生成新的染色体。
例如,我们可以将染色体A和B中的第三个基因以后的基因交换,从而产生两个新的染色体。
4. 变异操作(Mutation):变异运算是指随机改变染色体中的个别基因,以增加多样性。
例如,我们随机将染色体A的第三个基因改变,从而产生一个新的染色体A'。
5. 适应度评估(Fitness Evaluation):适应度评估是指给每一个个体一个适应度分数,该分数是问题的目标函数或者优化函数。
用Python实现遗传算法(GA)(一)用Python实现遗传算法(GA)(一)遗传算法(Genetic Algorithm,GA)是一种模拟生物进化过程的优化算法。
它模拟了自然界中的遗传、交叉和变异等操作,通过不断优化种群中的个体来找到问题的最优解。
在本篇文章中,我们将用Python实现一个简单的遗传算法。
首先,我们需要定义问题的适应度函数。
适应度函数用来评估每个个体的优劣程度,它决定了个体在繁殖中的概率。
在这个例子中,我们将解决一个简单的函数最小化问题,即找到函数f(x)=x^2的最小值。
我们可以定义适应度函数如下:```pythondef fitness_function(x):return x**2```接下来,我们需要定义种群的初始化函数。
种群是由一组个体组成的,每个个体都表示问题的一个解。
在这个例子中,我们将随机生成一组初始解作为种群的初始状态。
```pythonimport randomdef initialize_population(population_size, chromosome_size): population = []for _ in range(population_size):chromosome = [random.randint(0, 1) for _ inrange(chromosome_size)]population.append(chromosome)return population```然后,我们需要定义选择操作。
选择操作用来根据个体的适应度值选择出下一代的个体。
常用的选择操作包括轮盘赌选择和排名选择等。
在这个例子中,我们将使用轮盘赌选择。
```pythondef roulette_wheel_selection(population, fitness_values):total_fitness = sum(fitness_values)probabilities = [fitness / total_fitness for fitness in fitness_values]cumulative_probabilities = [sum(probabilities[:i+1]) for i in range(len(probabilities))]selected_population = []for _ in range(len(population)):random_number = random.randomfor i in range(len(cumulative_probabilities)):if random_number <= cumulative_probabilities[i]:selected_population.append(population[i])breakreturn selected_population```接下来,我们需要定义交叉操作。