大数据技术实验一平台搭建
- 格式:docx
- 大小:1.10 MB
- 文档页数:8
一、实验背景随着信息技术的飞速发展,大数据已成为当前研究的热点。
为了更好地理解和掌握大数据技术,提高自己的实践能力,我们小组在指导老师的带领下,进行了为期一个月的大数据实验实训。
本次实训旨在通过实际操作,深入了解大数据技术的基本原理和应用,掌握大数据处理和分析的方法。
二、实验内容本次实验实训主要围绕以下几个方面展开:1. 大数据平台搭建(1)Hadoop分布式文件系统(HDFS)搭建:通过Hadoop命令行工具,完成HDFS的搭建,实现大文件的分布式存储。
(2)Hadoop分布式计算框架(MapReduce)搭建:利用Hadoop的MapReduce框架,完成数据的分布式计算。
2. 数据采集与预处理(1)数据采集:通过爬虫技术,从互联网上获取相关数据。
(2)数据预处理:对采集到的数据进行清洗、去重、去噪等操作,提高数据质量。
3. 数据存储与分析(1)数据存储:使用HBase、Hive等数据存储技术,将处理后的数据存储在分布式数据库中。
(2)数据分析:利用Spark、Flink等大数据计算框架,对存储在数据库中的数据进行实时分析。
4. 数据可视化使用ECharts、Tableau等数据可视化工具,将分析结果以图表形式展示,直观地呈现数据特征。
三、实验步骤1. 环境搭建(1)安装Java、Hadoop、HBase、Hive、Spark等软件。
(2)配置环境变量,确保各组件之间能够正常通信。
2. 数据采集与预处理(1)编写爬虫代码,从指定网站获取数据。
(2)对采集到的数据进行清洗、去重、去噪等操作。
3. 数据存储与分析(1)将预处理后的数据导入HBase、Hive等分布式数据库。
(2)利用Spark、Flink等大数据计算框架,对数据进行实时分析。
4. 数据可视化(1)使用ECharts、Tableau等数据可视化工具,将分析结果以图表形式展示。
(2)对图表进行美化,提高可视化效果。
四、实验结果与分析1. 数据采集与预处理本次实验采集了100万条电商交易数据,经过清洗、去重、去噪等操作后,得到约90万条有效数据。
《大数据技术》Hadoop安装和HDFS常见的操作实验报告
三、实验过程与结论:(经调试正确的源程序(核心部分)和程序的运行结果)
1.熟悉常用的Hadoop操作
(1)使用hadoop用户登录Linux系统,启动Hadoop(Hadoop的安装目录为“/usr/local/hadoop”),为hadoop用户在HDFS中创建用户目录“/user/hadoop”
(2)接着在HDFS的目录“/user/hadoop”下,创建test文件夹,并查看文件列表
(3)将Linux系统本地的“~/.bashrc”文件上传到HDFS的test文件夹中,并查看test
(4)将HDFS文件夹test复制到Linux系统本地文件系统的“/usr/local/hadoop”目录下
2. 编程实现以下功能,并利用Hadoop提供的Shell命令完成相同任务:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
3.编程实现一个类“MyFSDataInputStream”
四、实验总结:(实验中遇到的问题及解决方法,心得体会等)
通过本次实验的学习,我对什么是大数据,大数据在做什么有了初步的了解,同时也激发起了我对大数据学习的兴趣。
在今后的学习中我会更加努力,本章知识也为我后面章节的学习奠定了基础。
让我有明确的目标去学习这门课程。
大数据一体化教学实训平台建设方案一、背景随着信息技术的快速发展,大数据技术在各行各业的应用愈发广泛。
作为高等教育的核心,教学教育需要及时跟进信息技术领域的发展,将其应用到教学中,提高教学品质和实效性。
因此,建设一套大数据一体化教学实训平台显得尤为必要和迫切。
二、目标本项目的目标是建设一套完整的大数据一体化教学实训平台,以满足教学要求和学生实训需要。
平台要求的功能如下:1.提供课程资源和学习资料,基于大数据分析优化教学内容;2.提供在线实验环境,模拟大数据处理场景,并对用户进行实时评估;3.提供实时交流平台,学生和教师可以通过平台进行互动交流;4.提供一键生成报告和数据可视化工具,方便教师评估学生实验成果。
三、需求分析1. 功能需求根据上述目标,我们需要实现以下具体功能:1.提供课件资料和学习资源,支持学生在线学习和下载;2.搭建大数据处理环境,并提供实验用数据以及相关工具;3.设计在线测验,考核学生在数据分析和处理方面的能力;4.提供实时交流平台,学生可以在此平台上互动交流,老师可以在此发布通知、答疑等;5.提供数据可视化工具,方便学生在实验后可视化分析实验结果。
2. 性能需求1.平台的响应速度要快,保证平台体验流畅,过程无卡顿;2.能够同时为大量用户提供服务,保证用户数大幅度增加时,系统性能不会出现明显降低;3.平台需要安全可靠,对用户的数据进行保护和加密,保证系统运行稳定性;4.系统的稳定性要高,保证平台能够7*24小时不间断运行。
四、技术方案1. 平台架构本平台采用B/S架构,采用前后端分离,前端采用React技术,后端采用Spring Boot。
2. 数据库系统本项目采用MySQL数据库进行存储和管理。
3. 大数据环境在平台上搭建Hadoop或Spark集群,实现大数据处理与分析。
4. 安全平台的用户数据入库前需要进行加密,采用高强度加密算法,保证用户数据的安全性。
5. 系统管理对系统进行管理,必须运用权限控制,保证不同角色只能访问自己的权限,并对系统进行监控保证其稳定性。
《Hadoop大数据技术》实验教学大纲一、课程基本情况课程代码:1041139课程名称:Hadoop大数据技术/Hadoop Big Data Technology课程类别:专业必修课总学分:3.5总学时:56实验/实践学时:24适用专业:数据科学与大数据技术适用对象:本科先修课程:JA V A程序设计、Linux基础二、课程简介《Hadoop大数据技术》课程是数据科学与大数据技术专业的专业必修课程,是数据科学与大数据技术的交叉学科,具有极强的实践性和应用性。
《Hadoop大数据技术》实验课程是理论课的延伸,它的主要任务是使学生对Hadoop平台组件的作用及其工作原理有更深入的了解,提高实践动手能力,并为Hadoop大数据平台搭建、基本操作和大数据项目开发提供技能训练,是提高学生独立操作能力、分析问题和解决问题能力的一个重要环节。
三、实验项目及学时安排四、实验内容实验一Hadoop环境搭建实验实验目的:1.掌握Hadoop伪分布式模式环境搭建的方法;2.熟练掌握Linux命令(vi、tar、环境变量修改等)的使用。
实验设备:1.操作系统:Ubuntu16.042.Hadoop版本:2.7.3或以上版本实验主要内容及步骤:1.实验内容在Ubuntu系统下进行Hadoop伪分布式模式环境搭建。
2.实验步骤(1)根据内容要求完成Hadoop伪分布式模式环境搭建的逻辑设计。
(2)根据设计要求,完成实验准备工作:关闭防火墙、安装JDK、配置SSH免密登录、Hadoop 安装包获取与解压。
(3)根据实验要求,修改Hadoop配置文件,格式化NAMENODE。
(4)启动/停止Hadoop,完成实验测试,验证设计的合理性。
(5)撰写实验报告,整理实验数据,记录完备的实验过程和实验结果。
实验二(1)Shell命令访问HDFS实验实验目的:1.理解HDFS在Hadoop体系结构中的角色;2.熟练使用常用的Shell命令访问HDFS。
大数据实验室建设方案一、引言随着互联网和信息技术的发展,大数据已经成为推动社会发展和创新的重要力量。
为了更好地应对大数据时代的挑战和机遇,建设一个高效、创新的大数据实验室变得至关重要。
本文旨在提出一个大数据实验室建设方案,包括实验室基础设施建设、人才培养和项目合作等方面,以实现大数据实验室的长期发展和研究成果的创新输出。
二、实验室基础设施建设1.硬件设施建设大数据实验室的硬件设施是支撑其正常运行和研究工作的基础。
首先,应配置高性能计算机集群和存储设备,以满足大规模数据处理和分析的需求。
其次,应建设数据中心,保证数据的安全存储和快速访问。
此外,实验室还应配备各类服务器、网络设备等基础设施,确保数据的安全传输和稳定性。
2.软件平台建设为了支持实验室的研究工作,应建设强大的软件平台。
首先,需要选择一套成熟的大数据处理框架,如Hadoop、Spark等,以便实现对大规模数据的存储、处理和分析。
其次,还需要建设数据可视化和探索工具,方便研究人员对数据进行可视化展示和深入挖掘。
另外,实验室还应建设开放源码的平台,以便研究人员能够共享和交流研究成果。
三、人才培养1.招聘和培养科研人员大数据实验室的人才队伍是实验室成功运行和研究成果的关键。
首先,应设立专门的人才招聘和选拔机制,吸引具有大数据相关背景和研究经验的优秀人才加盟实验室。
其次,应针对实验室研究方向和需求提供培训和进修机会,提高人才的专业素质和创新能力。
此外,应营造一个良好的研究氛围,鼓励人才间的交流合作,提高团队整体的创新能力和学术水平。
2.学生培养大数据实验室不仅是科研机构,还是高等教育培养人才的场所。
在实验室中应设立研究生培养计划,为有志于从事大数据研究的学生提供优秀的学习和研究环境。
为了培养学生的科研能力,应建立导师制度,指定专门的导师负责指导学生的研究工作。
同时,应提供丰富的实践机会,如参与大数据项目研究、实习和交流等,培养学生动手能力和创新能力。
第1篇随着信息技术的飞速发展,大数据已成为当今社会的重要战略资源。
大数据技术不仅为各行各业提供了强大的数据支持,也推动了教育领域的教学改革。
为了更好地培养适应大数据时代需求的人才,我国各大高校纷纷开展大数据实践教学。
本文将介绍大数据实践教学系统的构建及其应用。
一、大数据实践教学系统的构建1. 系统架构大数据实践教学系统采用分层架构,包括数据采集层、数据处理层、应用层和展示层。
(1)数据采集层:负责收集各类数据,包括结构化数据、半结构化数据和非结构化数据。
数据来源包括校内实验室、企业合作项目、公共数据平台等。
(2)数据处理层:对采集到的数据进行清洗、整合、转换等处理,形成可用的数据集。
数据处理层包括数据清洗、数据集成、数据转换等功能。
(3)应用层:根据实际需求,开发各类大数据应用,如数据挖掘、机器学习、预测分析等。
应用层包括数据分析、数据可视化、模型构建等功能。
(4)展示层:将处理后的数据和应用结果以图表、报表等形式展示给用户,便于用户理解和使用。
2. 系统功能(1)数据采集与管理:实现各类数据的采集、存储、管理和维护。
(2)数据处理与分析:对采集到的数据进行清洗、转换、集成等处理,并利用数据挖掘、机器学习等技术进行数据分析。
(3)应用开发与测试:提供丰富的数据接口和工具,方便用户开发大数据应用。
同时,提供测试环境,确保应用质量。
(4)数据可视化与展示:将分析结果以图表、报表等形式展示,便于用户理解和使用。
(5)教学资源库:提供丰富的教学资源,如课程课件、实验指导、案例库等,方便教师和学生进行教学和学习。
3. 系统特点(1)开放性:系统采用开放的设计理念,支持多种数据格式和接口,方便用户扩展和集成。
(2)可扩展性:系统架构设计灵活,可根据需求进行扩展,满足不同规模和类型的数据处理需求。
(3)易用性:系统界面友好,操作简便,降低用户学习成本。
(4)安全性:系统采用多种安全措施,保障数据安全和用户隐私。
大数据技术实验报告大数据技术实验一Hadoop大数据平台安装实验1实验目的在大数据时代,存在很多开源的分布式数据采集、计算、存储技术,本实验将在熟练掌握几种常见Linux命令的基础上搭建Hadoop(HDFS、MapReduce、HBase、Hive)、Spark、Scala、Storm、Kafka、JDK、MySQL、ZooKeeper等的大数据采集、处理分析技术环境。
2实验环境个人笔记本电脑Win10、Oracle VM VirtualBox 5.2.44、CentOS-7-x86_64-Minimal-1511.iso3实验步骤首先安装虚拟机管理程序,然后创建三台虚拟服务器,最后在虚拟服务器上搭建以Hadoop 集群为核心的大数据平台。
3.1快速热身,熟悉并操作下列Linux命令·创建一个初始文件夹,以自己的姓名(英文)命名;进入该文件夹,在这个文件夹下创建一个文件,命名为Hadoop.txt。
·查看这个文件夹下的文件列表。
·在Hadoop.txt中写入“Hello Hadoop!”,并保存·在该文件夹中创建子文件夹”Sub”,随后将Hadoop.txt文件移动到子文件夹中。
·递归的删除整个初始文件夹。
3.2安装虚拟机并做一些准备工作3.2.1安装虚拟机下载系统镜像,CentOS-7-x86_64-Minimal-1511.iso。
虚拟机软件使用Oracle VM VirtualBox 5.2.44。
3.2.2准备工作关闭防火墙和Selinux,其次要安装perl 、libaio、ntpdate 和screen。
然后检查网卡是否开机自启,之后修改hosts,检查网络是否正常如图:然后要创建hadoop用户,之后多次用,并且生成ssh 密钥并分发。
最后安装NTP 服务。
3.3安装MYSQL 3.3.1安装3.3.2测试3.4安装ZooKeeper。
《大数据技术原理与应用》实验报告一
题目:安装Hadoop
姓名:高聪江班级:大数据1533 学号:2015005677 日期:2017.11.01 实验环境:
笔记本电脑一台
Archlinux虚拟机3台
Hadoop 2-7-10
Java 1-8-0
实验内容与完成情况:
下载相关软件已完成
安装虚拟机已完成
配置环境变量已完成
安装Hadoop 已完成
出现的问题:
01 虚拟机运行软件选择
02 虚拟机选择
03 虚拟机的分盘出现问题
04 虚拟机命令不被识别
05 Hadoop版本选择
06 Hadoop无法正常启动
07 结束安装后活节点数是0
解决方案(列出遇到的问题和解决办法,列出没有解决的问题):
01 虚拟机运行软件选择使用了VirtualBox
02 虚拟机选择使用了Archlinux
03 虚拟机的分盘出现问题再分了一次,成功解决
04 虚拟机命令不被识别系统的环境变量出现问题,修改配置文件解决
05 Hadoop版本选择选择了2-7-10这一比较广泛的版本Hadoop
06 Hadoop无法正常启动由于格式化节点的时候没有先把生成文件都删除
07 结束安装后活节点数是0 这个问题原因一直没有找到,重装解决的
报告正文
1.实验内容与步骤
本实验主要内容和步骤如下:
1.1.实验内容
Hadoop集群搭建(由于伪分布比较简单,所以实验报告描述集群搭建),WorldCount实例测试。
1.2.实验步骤
1>下载相关软件。
主要是Java,VirtualBox,Hadoop安装包,虚拟机的镜像
文件。
2>安装ArchLinux虚拟机(由于此发行版本比较洁净,系统体积小,运
行比较流畅)
安装结果如图:
3>进行Hadoop集群安装
>>启用网络并安装SSH和JDK
>>配置SSH免密登录
>>配置JAVA环境变量
显示上图说明JAVA环境变量已经配置完成。
>>安装Hadoop
安装结束如上图
>>配置Hadoop 环境变量
在~/.bashrc文件中添加如下内容:
保存并执行$ source ~/.bashrc使其生效。
>>修改Hadoop 配置文件
进入cd /usr/local/hadoop/etc/hadoop/
修改core-site.xml为:
修改hdfs-site.xml为:
>>启动Hadoop
输入./bin/hdfs namenode -format来格式化
输入./sbin/start-dfs.sh 来启动守护进程
>>查看进程
输入JPS
>>进入网页查看状态
>4 WorldCount实例测试
<1创建用户目录。
<2将本地input 文件夹中的数据上传到HDFS的input文件夹中。
<3运行命令来执行字数统计测试样例
查看最终结果
说明:第一页做封面,简要概述报告,正文部分详述实验内容,标题上的X 代表实验编号(实验几)。