第三节矩阵基本函数运算与矩阵元素的提取(第二章)
- 格式:doc
- 大小:170.91 KB
- 文档页数:23
矩阵基本运算及应用201700060牛晨晖在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。
在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。
矩阵的运算是数值分析领域的重要问题。
将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。
在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。
1矩阵的运算及其运算规则1.1矩阵的加法与减法1.1.1运算规则设矩阵,,则简言之,两个矩阵相加减,即它们相同位置的元素相加减!注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的.1.1.2运算性质满足交换律和结合律交换律;结合律.1.2矩阵与数的乘法1.2.1运算规则数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或.特别地,称称为的负矩阵.1.2.2运算性质满足结合律和分配律结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA.分配律:λ(A+B)=λA+λB.1.2.3典型举例已知两个矩阵满足矩阵方程,求未知矩阵.解由已知条件知1.3矩阵与矩阵的乘法1.3.1运算规则设,,则A与B的乘积是这样一个矩阵:(1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即.(2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.1.3.2典型例题设矩阵计算解是的矩阵.设它为可得结论1:只有在下列情况下,两个矩阵的乘法才有意义,或说乘法运算是可行的:左矩阵的列数=右矩阵的行数;结论2在矩阵的乘法中,必须注意相乘的顺序.即使在与均有意义时,也未必有=成立.可见矩阵乘法不满足交换律;结论3方阵A和它同阶的单位阵作乘积,结果仍为A,即.1.3.3运算性质(假设运算都是可行的)(1) 结合律.(2) 分配律(左分配律);(右分配律).(3) .1.3.4方阵的幂定义:设A是方阵,是一个正整数,规定,显然,记号表示个A的连乘积.1.4矩阵的转置1.4.1定义定义:将矩阵A的行换成同序号的列所得到的新矩阵称为矩阵A的转置矩阵,记作或.例如,矩阵的转置矩阵为.1.4.2运算性质(假设运算都是可行的)(1)(2)(3)(4) ,是常数.1.4.3典型例题利用矩阵验证运算性质:解;而所以.定义:如果方阵满足,即,则称A为对称矩阵.对称矩阵的特点是:它的元素以主对角线为对称轴对应相等.1.5方阵的行列式1.5.1定义定义:由方阵A的元素所构成的行列式(各元素的位置不变),称为方阵A的行列式,记作或.1.5.2运算性质(1) (行列式的性质)(2) ,特别地:(3) (是常数,A的阶数为n)思考:设A为阶方阵,那么的行列式与A的行列式之间的关系为什么不是,而是?不妨自行设计一个二阶方阵,计算一下和.例如,则.于是,而2光伏逆变器的建模光伏并网逆变器是将光伏组件输出的直流电转化为符合电网要求的交流点再输入电网的关键设备,是光伏系统并网环节中能量转换与控制的核心。
实验三第三节矩阵基本函数运算与矩阵元素的提取(第二章)一、矩阵基本函数运算此运算是矩阵运算中最实用的部分,其基本命令如下:命令集9 矩阵的大小、行列式、逆、特征值、秩、迹、范数size(A) 给出包含A的维数的一个行向量.在这个返回向量中的第一个元素是行数,随后是列数.[ m,n ]=size(A) 给出A的维数、m行数和n列数,即两个标量.length(x) 给出一个向量的长度,即x分量个数.sum(A) 若A是矩阵,给出一个行向量,其每个分量表示A相应的列和;若A是向量,给出此向量的分量和.det(A) 求矩阵A的行列式.eig(A) 求包含矩阵A的特征值的向量.[X,D]=eig(A) 求包含矩阵A的特征值对应的对角阵D和以相应特征向量为列的矩阵.inv(A)或A ^ (-1) 求矩阵A的逆矩阵.rank(A) 求矩阵A的秩.trace(A) 求矩阵A的迹(对角线元素之和).norm(A,1) 矩阵A的1—范数或列和范数,定义如下.norm(A,2) 矩阵A的2—范数.norm(A,inf) 矩阵A的∞—范数.norm(x,1) 向量x的1—范数或列和范数,定义如下.norm(x,2) 向量x的2—范数.norm(x,inf) 向量x的∞—范数.范数定义如下:设'12(,,,)n x x x x =,()ij n m A a ⨯=,则相应范数定义如下11n i i x x ==∑;2x =;max i ix x ∞= 11max n ij j i A a ==∑,1max nij i j A a ∞==∑,2A'A i A λ=,其中为的最大特征值 二、矩阵元素的提取在MATLAB 中还有利用已存在的矩阵建立新矩阵的命令.以下假设矩阵 A 是m ×n 的矩阵,x 是个有n 个元素的向量.1. 对角阵与三角阵的生成命令集10diag(A) 生成一个由矩阵A 主对角线元素组成的列向量.主对角线总是从矩阵左上角开始.对于方阵来说它结束于矩阵的右下角.diag(x) 生成一个n 维的方阵,它的主对角线元素值取自向量 x ,其余元素的值都为0.diag(A , k) 生成一个由矩阵A 第k 条对角线的元素组成的列向量. k= 0为主对角线;k< 0为下第k 对角线;k> 0为上第k 对角线.diag(x , k) 生成一个(n+ a b s (k) )×(n+ a b s (k) )维的矩阵,该矩阵的第k条对角线元素取自向量x ,其余元素都为零.关于参数k 可参考上个命令.triu(A) 生成一个和A 大小相同的上三角矩阵.该矩阵的主对角线及以上元素取自A 中相应元素,其余元素都为零.triu(A , k) 生成一个和A 大小相同的上三角矩阵.该矩阵的第k 条对角线及以上元素取自A 中相应元素,其余元素都为零.命令t r i u ( A , 0 )等同于命令t r i u ( A ).tril(A)生成一个和A大小相同的下三角矩阵.该矩阵的主对角线及以下元素取自A中相应元素,其余元素都为零.tril(A , k) 生成一个和A大小相同的下三角矩阵.该矩阵的第k条对角线及以下元素取自A中相应元素,负数k表示主对角线下的对角线.其余元素都为零.命令t r i l ( A , 0 )等同于命令t r i l ( A ). 2. 向量和子矩阵的生成在MATLAB中可以使用冒号‘:’来代表一系列数值.有时也使用它来定义一个子矩阵.命令集11i : k创建从i开始、步长为1、到k结束的数字序列,即i ,i+1, i+2, . . . , k .如果i>k,MATLAB则返回一个空矩阵,也就是[ ].数字i和k不必是整数,该序列的最后一个数是小于或等于k.i : j : k创建从i开始、步长为j、到k结束的数字序列,即i, i+j, i+ 2j, . . .,k .对于j= 0,则返回一个空矩阵.数字i、j和k不必是整数,该序列的最后一个数是小于或等于k.linspace(a , b)在区间[a, b]上创建一个有1 0 0个元素的向量,这1 0 0个数把整个区间线性分隔.其中a是第一个元素,b是最后一个.linspace(a, b, n)在区间[a, b]上创建一个有n个元素的向量.这个命令和冒号表示形式相近,但是它直接定义了数据的个数,其步长为(b-a)/(n-1) .命令集12 定义子阵A ( i , j )返回矩阵A中第ij元素的值.A ( : , j )返回矩阵A中第j列列向量.A ( i , : )返回矩阵A中第i行行向量.A ( : , j : k )返回由矩阵A中的第j列,第j+ 1列,直到第k列列向量组成的子阵.A ( i : k , : )返回由矩阵A中的第i行,第i+ 1行,直到第k行行向量组成的子阵.A ( i : k , j : l ) 返回由二维矩阵A 中的第i 行到第k 行行向量和第j 列到第l 列列向量组成的子阵.A ( : ) 将矩阵A 中的每列合并成一个长的列向量.A(j:k) 返回一个行向量,其中的元素为A ( : )中的从第j 个元素到第k 个元素.A([j1 j2 . . . ] ) 返回一个行向量,其中的元素为A ( : )中的第j1、j2 元素. A(:,[j1 j2 . . .] ) 返回矩阵A 的第j1列、第j2列等的列向量.A([i1 i2. . . ] : , ) 返回矩阵A 的第i1行、第i2行等的行向量. A([i1 i2. . . ] , [j1 j2. . . ] ) 返回矩阵第i1行、第i2行等和第j1列、第j2列等的元素.二、矩阵元素的增减在MATLAB 中可以通过增加元素、行和列将一个矩阵或者向量进行扩展.由于MATLAB 可以自动地改变矩阵的大小,所以使用已存在的矩阵的一部分来创建一个新矩阵是很容易的这在许多应用中都很有用.从已存在的矩阵中建立一个矩阵就和定义一个新矩阵一样.元素用空格或逗号分隔,行用分号或回车分隔. ■ 例1 假设下列矩阵已经定义为:()()125611,,,,13143412A B x y z ⎛⎫⎛⎫⎛⎫= = =9 10 = = ⎪ ⎪ ⎪ 7 8⎝⎭⎝⎭⎝⎭(a) 有几种方式可以将向量x 扩展成1×4.假设想要的新向量是:xnew=(9 10 0 5)下列的三种方法都可以给出想要的结果:① xnew=x; xnew(3)=0;xnew(4)=5; ② xnew=[x 0 5]; ③ t=[0 5]; xnew=[x t];(b) 以下两种方法可以对矩阵A扩展一个新行,如向量z:①Anew1=[A ; z] , ②Anew1=[A ; [13 14]] .它们在屏幕上显示的结果如下:Anew1=1 22 413 14有时还可以对矩阵添加多个新行:>> Anew2=[A;x;z;[0 0]](c) 对矩阵A扩展一个新列,如y,可以这样做:>> Anew3=[A y ] 或者>> Anew3=[A [11;12] ] (d) 对矩阵A扩展一个矩阵的操作是相似的,输入命令:>> Anew4=[A; B ] , >> Anew5=[A B ]对于Anew4来说,它的列数一定等于矩阵A和B的列数;而对于Anew5来说,它的行数一定等于矩阵A和B的行数.(e) 改变矩阵的元素①>>A(3,3)=15 矩阵A的(3,3)元素变为15②>>A(2,:)=[1 0] 矩阵A的第2行变为[1 0]③>>A(2,:)=[ ] 矩阵A变为一个行向量(f) 为了生成规则的矩阵块可以下列的方式使用命令repmat.■例2①>>repmat([1 0; 0 1],3,3) 返回一个由[1 0; 0 1]组成的6阶矩阵②>>repmat([1 0],1,5)得到:返回一个由[1 0]组成的10维行向量③如果要创建一个所有元素都是同一个值的矩阵,可以使用命>>repmat(42,[2 2]) 返回一个由42组成的2阶矩阵第四节字符串(第二章)在M AT L A B中可能会遇到对字符和字符串的操作.字符串能够显示在屏幕上,也可以用来构成一些命令,这些命令在其他的命令中用于求值或者被执行.一个字符串是存储在一个行向量中的文本,这个行向量中的每一个元素代表一个字符.实际上,元素中存放的是字符的内部代码,也就是ASCII码.当在屏幕上显示字符变量的值时,显示出来的是文本,而不是ASCII数字.由于字符串是以向量的形式来存储的,所以可以通过它的下标对字符串中的任何一个元素进行访问.字符矩阵也可以这样,但是它的每行字符数必须相同.一、输入格式MATLAB中的字符串用单引号来定义:Name Of Variable ='text'这里的text 可以是字母、数字和特殊字符(a)简单的分配方法,如name ='John Smith',在屏幕上就会有如下显示:name =John Smith(b)分配一个字符.如果(a)中变量name已存在,令name (3)='a',则会给出:name =Jo a n Smith(c)将上例中的字符串name的元素前后互换位置,可以输入:for i=length(name):-1:1enam(i)=name(length(name)+1-i);endenam下面显示出字符串eman的值:eman =htimS naoJ(d)在字符串中用两个单引号来表示一个单引号:whoscat='Joan"s cat'显示结果为:whoscat =Joan's cat(e) 字符串的组成可以象数字矩阵一样:>>name1='Joan'; name2='John' ;heart='is in love with';>>sentence=[name1,' ',heart, ' ', name2]显示的结果为:sentence=Joan is in love with John(f) 冒号表达式的使用和在数字矩阵中的使用情况一样:>>name='Charles Johnson';firstname= name(1:7)firstname =Charles二、字符串求值MATLAB命令可以以字符串的形式进行输入和存储.这些命令字符串通过eval命令来求值.命令集13字符串求值eval (str)执行st 中包含的MATLAB命令并返回结果.eval(str1, str2)执行str1中的MATLAB命令,如果没有错误就和执行eval(str1)一样;如果在对str1求值中第一个字符串是一个错误,则对字符串str2进行求值,给出一个错误信息或者其他内容.g = inline (str ,arg1, arg2) 从字符串str中建立一个叫内联的函数g,如存储在工作内存中的函数,可以用g (val1 ,val2 )来调用.函数中参数的名字可以在字符串arg1,arg2,中给出,如果没有给出,MATLAB将从str中找出小写字母作为参数的名字.■例3>>b=[1 2 3];k=[2 2 2 ];x=[1.2 1.5 1.2];str1='b.* sin(k.*x)';>>y=eval(str1)y=0.6755 0.2822 2.0264>>g=inline('3*sin(x)+5*cos(y)','x','y');g(pi,2*pi)ans=5练习题1. 建立新矩阵 已知 (5)A magic =,求① (),(()),((),2),(,2),(,2)diag A diag diag A diag diag A diag A diag A - ② (),(),(,1),(,2),(,2)triu A tril A triu A triu A tril A - -③ (3,2),(:,2),(4,:)A A A④ (2:3,3:4),(:),(:,:)A A A2. 计算下列各题,已知(4)A magic =,(1234)x =① A 的行和、列和,A 的迹、秩,A 的大小② A 的特征值、特征向量及1A A - ,③ 12,,A A A ∞④ 12,,x x x ∞3. 已知(4)A magic =,(4)B ones =,'(1234),(5678)x y = = ,建立下列矩阵:① 在A 的左边增加一列y ,A 的右边增加一列y ;② 在A 的上面增加一行x ,A 的下面增加一行x ;③ 在A 的左边增加矩阵B 变为矩阵C ,A 的下面增加矩阵B 变为矩阵D ;④ 由矩阵D 的第1、2、5、8行组成矩阵F ;由矩阵C 的第1、3、5、7列组成矩阵G ;⑤ 由矩阵D 的第1、2、5、8行及C 第1、3、5、7列组成矩阵H ; ⑥ 删除C 的第二行,删除D 的第三列 ;第3章 MATLAB 程序设计Matlab 作为一种广泛应用于科学计算的工具软件,不仅具有强大的数值计算能力和丰富的绘图功能;可以人机交互式的命令行的方式工作;作为一种高级语言,同时也可以与 C 、FORTRAN 等高级语言一样进行程序设计.利用 Matlab 的程序控制功能,将相关 Matlab 命令编成程序存储在一个文件中(M 文件),然后在命令窗口中运行该文件,Matlab 就会自动依次执行文件中的命令,直到全部命令执行完毕. ■ 例1 用 mesh 绘制半径为 3 的球命令行方式: 编程方式:新建一个M 文件 qiu.m 如下:保存后,在命令窗口输入 qiu ,即可执行该 M 文件.>> u=[0:pi/60:2*pi];>> v=[0:pi/60:pi];>> [U,V]=meshgrid(u,v);>> R=3;>> X=R*sin(V).*cos(U);>> Y=R*sin(V).*sin(U);>> Z=R*cos(V);>> mesh(X,Y,Z);>> axis equal; u=[0:pi/60:2*pi]; v=[0:pi/60:pi]; [U,V]=meshgrid(u,v); R=3; X=R*sin(V).*cos(U); Y=R*sin(V).*sin(U); Z=R*cos(V); mesh(X,Y,Z); axis equal;第一节M 文件一、M文件介绍●用Matlab 语言编写的程序称为M 文件●M 文件以.m 为扩展名●M 文件是由若干Matlab 命令组合在一起构成的,它可以完成某些操作,也可以实现某种算法●文件的命名规则与变量相同!文件名应尽量与程序要表达的意义相符合,以方便今后调用.(如例1)二、M文件的建立、打开与保存M文件是文本文件,可以用任何文本编辑器来建立和编辑,通常使用Matlab自带的M文件编辑器.①新建一个M文件●菜单操作( Fil e→New→M-File )●命令操作( edit M 文件名)●命令按钮( 快捷键)②打开已有的M 文件●菜单操作( File →Open )●命令操作( edit M 文件名)●命令按钮( 快捷键)●双击M文件(在当前目录窗口)③保存M 文件●菜单操作( File →Save )●命令按钮( 快捷键)三、M 文件分类(根据调用方式的不同)●Script:脚本文件/命令文件(可以直接运行的M文件)命令文件就是命令行的简单叠加,matlab会自动按顺序执行文件中的命令.这样就解决了用户在命令窗口中运行许多命令的麻烦,还可以避免用户做许多重复性的工作.(如例1)●Function:函数文件函数文件主要用以解决参数传递和函数调用的问题.(1) 第一行必须指定函数名、输入变量(参数)和输出变量(参数).输入参数是从MATLAB的工作空间复制到函数工作空间的变量.第一行举例如下:function [输出形参表] = name(输入形参表)(2) 一个函数可以有0个、一个或几个输入参数和返回值.当输出形参表的参数个数大于2时,[ ]不可缺省!(3) 建议函数名和文件名一样.调用时所用的变量并不需要与函数文件中定义的变量有相同的名字.■例2 比较下列两个程序,注意命令文件(以dd1命名)与函数文件(以dd2命名)的区别与联系.x=input(‘输入初值x=’);n=input(‘输入迭代次数=’); y(1)=x ;for k=1:n function y=dd2(x,n) y(1)=x ;for k=1:n四、两类文件的区别●函数文件的第一行必须包含字function,命令文件没有这种要求.因此,没有这样第一行的M文件是命令文件.●命令文件没有输入参数,也不返回输出参数,而函数文件可以带输入参数,也可以返回输出参数;●命令文件对matlab工作空间中的变量进行操作,文件中所有命令的执行结果也完全返回到工作空间中,而函数文件中定义的变量为局部变量,当函数文件执行完毕时,这些变量被清除.●命令文件可以直接运行.在MATLAB命令窗口输入命令文件的名字,就会顺序执行命令文件中的命令,而函数文件不能直接运行,而要以函数调用的方式运行.五、M文件的调用对已存在的M文件●命令文件在命令窗口直接输入该文件名即可;如例1>>qiu●函数文件调用的一般格式[输出实参数表]=函数名(输入实参数表)①函数调用时各实参数出现的顺序、个数应与函数定义时形式参数的顺序、个数一致,否则出错;②函数调用时,先将实参数传递给形式参数,从而实现参数的传递,然后再执行函数的功能.如例2>>y=dd2(1,10)③当输出实参数表的参数个数大于2时,[ ]不可缺省!第二节程序控制结构程序控制结构有三种:顺序结构、选择结构、循环结构.任何复杂的程序都可以由这三种基本结构构成.Matlab提供了实现控制结构的语句,利用这些语句可以编写解决实际问题的程序. 一、顺序结构顺序结构是指按照程序中语句的排列顺序从上到下依次执行,直到程序的最后一个语句如例1的qiu文件和例2的dd1文件.这是最简单的一种程序结构.一般涉及数据的输入、计算或处理、数据的输出等内容.1. 数据的输入通过input命令来接收从终端输入的内容,它也可以显示文本和提示.命令集14 输入命令input(out ,in)在屏幕上显示出字符串out的文本并等待终端的输入.如果变量in是's',则输入的内容以字符串的形式进行保存,通常MATL AB在保存前要尽可能地求出表达式的值.如果使用格式控制符号如'\n',字符串out可以是若干行.■例3>> xm=input('What''s your name?','s')What's your name?syxxm =syx>> xm=input('What''s your name?')What's your name?syx??? Error using ==> inputUndefined function or variable 'syx'.What's your name?'syx'xm =syx2. 数据的输出可以通过简单地输入变量的名字来显示数字矩阵或者字符串向量的内容,结果将显示出变量的名字和内容.另一种显示变量的值就是使用命令disp.使用它只显示出变量的内容,这是有用的,特别是在字符串的应用中.命令集15显示命令disp(A)显示矩阵A的内容,如果A是字符串,则显示出它的文本.练习题:将例1、例2的程序在matlab中建立、保存、运行.练习题:>> A=magic(5);>> diag(A),diag(diag(A)),diag(diag(A),2),diag(A,2),diag(A,-2) ans =17513219ans =17 0 0 0 00 5 0 0 00 0 13 0 00 0 0 21 00 0 0 0 9ans =0 0 17 0 0 0 00 0 0 5 0 0 00 0 0 0 13 0 00 0 0 0 0 21 00 0 0 0 0 0 90 0 0 0 0 0 00 0 0 0 0 0 0ans =11422ans =41225>> triu(A),tril(A),triu(A,1),triu(A,-2),tril(A,-2) ans =17 24 1 8 150 5 7 14 160 0 13 20 220 0 0 21 30 0 0 0 9ans =17 0 0 0 023 5 0 0 04 6 13 0 010 12 19 21 011 18 25 2 9ans =0 24 1 8 150 0 7 14 160 0 0 20 220 0 0 0 30 0 0 0 0ans =17 24 1 8 1523 5 7 14 164 6 13 20 220 12 19 21 30 0 25 2 9ans =0 0 0 0 00 0 0 0 04 0 0 0 010 12 0 0 011 18 25 0 0 >> A(3,2),A(:,2),A(4,:)ans =6ans =24561218ans =10 12 19 21 3 >> A(2:3,3:4),A(:),A(:,:)ans =7 1413 20ans =17234101124561218171319258142021215162239ans =17 24 1 8 1523 5 7 14 164 6 13 20 2210 12 19 21 311 18 25 2 9>> A=magic(4);>> x=[1 2 3 4];>> sum(A),sum(A'),trace(A),rank(A),det(A) ans =34 34 34 34ans =34 34 34 34ans =34ans =3ans =4 4>> [x,y]=eig(A),inv(A),det(A)x =0.5000 0.8236 0.3764 -0.22360.5000 -0.4236 0.0236 -0.67080.5000 -0.0236 0.4236 0.67080.5000 -0.3764 -0.8236 0.2236y =34.0000 0 0 00 8.9443 0 00 0 -8.9443 00 0 0 -0.0000Warning: Matrix is close to singular or badly scaled.Results may be inaccurate. RCOND = 4.625398e-018. ans =1.0e+015 *-0.2649 -0.7948 0.7948 0.2649-0.7948 -2.3845 2.3845 0.79480.7948 2.3845 -2.3845 -0.79480.2649 0.7948 -0.7948 -0.2649ans =>> norm(A,1),norm(A,2),norm(A,inf)ans =34ans =34ans =34>> norm(x,1),norm(x,2),norm(x,inf)ans =2.0000ans =1.2649ans =1.9236>> A=magic(4);>> B=ones(4);>> x=[1 2 3 4];>> y=[5 6 7 8];>> [y' A y']ans =5 16 2 3 13 56 5 11 10 8 67 9 7 6 12 78 4 14 15 1 8 >> [x;A;x]ans =1 2 3 416 2 3 135 11 10 89 7 6 124 14 15 11 2 3 4>> C=[B A],D=[A;B]C =1 1 1 1 1623 131 1 1 1 5 11 10 81 1 1 1 9 7 6 121 1 1 1 4 14 15 1D =16 2 3 135 11 10 89 7 6 124 14 15 11 1 1 11 1 1 11 1 1 11 1 1 1>> F=D([1 2 5 8],:)ans =16 2 3 135 11 10 81 1 1 11 1 1 1>>G=C(:,[1 3 5 7])ans =1 1 16 31 1 5 101 1 9 61 1 4 15>> H=D([1 2 5 8],[1 3])ans =16 35 101 11 1>> C([1 3 4],:)ans =1 1 1 1 1623 131 1 1 1 9 7 6 121 1 1 1 4 14 15 1 >> D(:,[12 4])ans =16 2 135 11 89 7 124 14 11 1 11 1 11 1 11 1 1。