第四节流体在管内的流动阻力
- 格式:pdf
- 大小:511.15 KB
- 文档页数:15
第四节流体在管内的流动阻力实际上理想流体是不存在的。
流体在流动过程中需要消耗能量来克服流动阻力,本节讨论流体流动阻力的产生、影响因素及其计算。
§1.4.1牛顿粘性定律与流体的粘度1、牛顿粘性定律设有间距很小的两平行板,两平板间充满液体(如图)。
下板固定,上板施加一平行于平板的切向力F,使上板作平行于下板的等速直线运动。
紧贴上板的液体层以与上板相同的速度流动,而紧贴固定板的液体层则静止不动。
两层平板之间液体的流速分布则是从上到下为由大到小的渐变。
此两板间的液体可看成为许多平行于平板的流体层,这种流动称为层流,而层与层之间存在着速度差,即各液层之间存在着相对运动。
运动较快的液层对与之相邻的运动较慢的液层作用着一个拖动其向运动方向前进的力;而与此同时,运动较慢的液层对其上运动较快的液层也作用着一个大小相等方向相反的力,从而阻碍较快的液层的运动。
这种运动着的流体内部相邻两流体层间的相互作用力称为流体的内摩擦力(粘滞力)。
流体流动时产生内摩擦力的这种特性称为粘性。
在上图中,若某层流体的速度为u,在其垂直距离为dy处的邻近流体层的速度为u+du,则du/dy表示速度沿法线方向上的变化率,称为速度梯度。
实验证明,内摩擦力F与两流体层间的接触面积S成正比,与速度梯度du/dy成正比。
即:F∝S·du/dy亦即:F=μS·du/dy剪应力τ:单位面积上的内摩擦力,即F/S, 单位N/㎡于是:τ=F/S=μ·du/dy——牛顿粘性定律μ为比例系数,称为粘性系数或动力粘度,简称粘度说明:①牛顿粘性定律可表达为剪应力与法向速度梯度成正比,与法向压力无关,流体的这一规律与固体表面的摩擦力的变化规律截然不同。
②牛顿粘性定律的使用条件:层流时的牛顿型流体。
③根据此定律,粘性流体在管内的速度分布可以预示为:如图紧贴壁面的流体受壁面固体分子力的作用而处于静止状态,随着离壁距离的增加,流体的速度连续地增大,至管中心处速度达到最大。
流体在管内流动阻⼒的计算第四节流体在管内流动阻⼒的计算⼀、压⼒降—流动阻⼒的表现流动阻⼒产⽣的根本原因——流体具有粘性,所以流动时产⽣内摩擦⼒。
如图1—11所⽰,在贮槽下部连接的⽔平管上开两个⼩孔(A、B),分别插⼊两个竖直敞⼝玻璃管,调节出⼝阀开度,观察现象:1) 当调节阀关闭时,即流体静⽌时,A、B管中液⾯⾼度与贮槽液⾯平齐(可⽤静⼒学⽅程解释)。
2) 当打开阀门,流体开始流动后,发现A管液⾯低于贮槽液⾯,⽽B管液⾯⼜低于A管液⾯。
3) 随着流速继续增⼤,A、B管液⾯⼜继续降低,但A仍⾼于B,分析如下:上述现象可⽤柏努利⽅程解释,分别取A、B点为截⾯,列柏努利⽅程: ++=Z2+++说明:(1)流体在⽆外功加⼊,直径不变的⽔平管内流动时,两截⾯间的压差与流动阻⼒⽽引起的压强降数值相等。
(2)若流体流动的管⼦是垂直或倾斜放置的,则两截⾯间的压差与流动阻⼒⽽引起的压强降数值不相等。
⼆、流体在圆型直管中阻⼒损失的计算通式流体在圆管内流动总阻⼒分为直管阻⼒(⼜称沿程阻⼒)和局部阻⼒两部分。
其中直管阻⼒是流体流经⼀定管径的直管时,由于流体的内摩擦⽽产⽣的阻⼒,这⾥讨论它的计算。
范宁(Fanning)公式是描述各种流型下直管阻⼒的计算通式。
(1—30)或(1—30a)式中λ——摩擦系数,⽆因次。
说明:(1)层流时,;(2)湍流时,。
利⽤范宁公式计算阻⼒时,主要问题是λ的确定。
(⼀)层流时λ的求取利⽤⽜顿粘性定律可推导出(1—31)则(1—32)(1—32a)式(1—32)及(1—32a)称为哈根—泊谡叶⽅程,是流体层流时直管阻⼒的计算式,它是有严格理论依据的理论公式。
(⼆)湍流时的确定由于湍流过程中质点运动情况复杂,所以尚⽆严格理论为依据,的求取⼀般采⽤经验式或⼯程图,这⾥介绍查取⽅便的图(摩擦因⼦图),如图1-12所⽰。
图 1—12 图该图中曲线分成四个区:层流区、过渡区、湍流区和完全湍流区。
1. 层流区即,在双数坐标中为⼀条直线,此时⽆关。
知识点1-4 流体在直管内的流动阻力目的是解决流体在管截面上的速度分布及柏努利方程式中流动阻力Σh f的计算问题。
2.本知识点的重点(1)流体在管路中的流动阻力的计算问题。
管路阻力又包括包括直管阻力h f和局部阻力h f’本质不同的两大类。
前者主要是表面摩擦,后者以形体阻力为主。
同时,解决了管截面上的速度分布问题。
(2)流体在直管中的流动阻力因流型不同而采用不同的工程处理方法。
对于层流,通过过程本征方程(牛顿粘性定律)可用解析方法求解管截面上的速度分布及流动阻力;而对于湍流,需借助因次分析方法来规划试验,采用实验研究方法。
因次分析的基础是因次一致的原则和∏定理。
局部阻力也只能依靠实验方法测定有关参数(z或l e)。
(3)建立“当量”的概念(包括当量直径和当量长度)。
“当量”要具有和原物量在某方面的等效性,并依赖于经验。
3.本知识点的难点本知识点无难点,但对于因次分析方法的理解和应用尚需通过实践来加深。
4.应完成的习题1-12.在本题附图所示的实验装置中,于异径水平管段两截面间连一倒置U管压差计,以测量两截面之间的压强差。
当水的流量为10800kg/h时,U管压差计读数R为100mm。
粗、细管的直径分别为60×3.5mm与φ42×3mm。
计算:(1)1kg水流经两截面间的能量损失;(2)与该能量损失相当的压强降为若干Pa?[答:(1)4.41J/kg;(2)4.41×103Pa]1-13.密度为850kg/m3、粘度为8×10-3Pa·s的液体在内径为14mm的钢管内流动,溶液的流速为1m/s。
试计算:(1)雷诺准数,并指出属于何种流型;(2)局部速度等于平均速度处与管轴的距离;(3)该管路为水平管,若上游压强为147×103Pa,液体流经多长的管子其压强才下降到127.5×103Pa?[答:(1)1.49×103;(2)4.95mm;(3)14.93m]1-14.每小时将2×104kg的溶液用泵从反应器输送到高位槽(见本题附图)。
第四节 管内流动阻力与能量损失一、流体的两种流动形态1. 雷诺实验流体具有两种不同的流动形态,一种称为滞流或层流,一种称为湍流或紊流。
为了了解流体在管内流动状况及其影响因素,雷诺设计了一个实验可直接观察到两种不同的流动形态。
演示动画v ↑层流(滞流) v ↑↑过渡流 v ↑↑↑湍流(紊流)采用不同的管径d 、流速v 、粘度μ、密度ρ,分别作实验,最后归纳为雷诺数:μρdv =Re 0003.Re s m kg s m kg s m kg sm kg m kgs m m ⋅⋅=⋅⋅⋅⋅==不论采用什么单位制,Re 均无因次,凡是由几个有内在联系的物理量按无因次这个条件组合起来的数群,称为准数。
在化工生产中,不但有圆管,还有非圆形的,对于非圆形管内的流体流动,找一个与直径相当的量,Re 才能算出,为此引入当量直径这个概念。
2、流动类型雷诺准数这个数群,既反映了所包含的各个物理量的内在联系,又说明了流动流型的本质。
所以,流体的流动类型就可以由Re 来判断。
实验证明:Re <2000 为层流 Re >4000湍流 2000<Re<4000 过渡流 3、滞流和湍流的流动特征演示动画润湿周边流通截面积⨯=4e d ()()dD d D d D d e -=+-⨯=ππ4422滞流(或层流)流动特点:●流体质点仅沿着与管轴平行的方向作直线运动,质点无径向脉动,质点之间互不混合;●定态流动时,管内各点的速度沿直径存在一定分布,管壁处流速为零,管中心处流速最大,平均流速为最大流速的1/2。
演示动画湍流流动特点:●流体质点除了沿管轴方向向前流动外,还有径向脉动,各质点的速度在大小和方向上都随时变化,质点互相碰撞和混合。
●定态流动时,流体在管中心相当大范围内的流速接近最大流速,管壁处流速为零,平均流速为最大流速的0.8倍。
4、流体流动的边界层流动边界层:存在着较大速度梯度的流体层区域,即流速降为主体流速的99%以内的区域边界层流型:层流边界层和湍流边界层边界层厚度:边界层外缘与壁面间的垂直距离。