第三讲多属性决策分析
- 格式:pptx
- 大小:737.23 KB
- 文档页数:57
第十章 多属性决策问题(Multi-attribute Decision-making Problem)即: 有限方案多目标决策问题主要参考文献: 68, 112, 152§10.1概述MA MCMO一、决策矩阵(属性矩阵、属性值表)方案集 X = {x x x m 12,,, }方案 x i 的属性向量 Y i = {y i 1,…,y in } 当目标函数为f j 时, y ij = f j (x i ) 各方的属性值可列成表(或称为决策矩阵):y 1… y j… y nx 1y 11… y j 1… y n 1… …… … … …x i y i 1… y ij … y in… …… …… …x my m 1 …y mj …y mn例: 学校扩建例:表10.1 研究生院试评估的部分原始数据二、数据预处理数据的预处理(又称规范化)主要有如下三种作用。
首先,属性值有多种类型。
有些指标的属性值越大越好,如科研成果数、科研经费等是效益型;有些指标的值越小越好,称作成本型。
另有一些指标的属性值既非效益型又非成本型。
例如研究生院的生师比,一个指导教师指导4至6名研究生既可保证教师满工作量,也能使导师有充分的科研时间和对研究生的指导时间,生师比值过高,学生的培养质量难以保证;比值过低;教师的工作量不饱满。
这几类属性放在同一表中不便于直接从数值大小来判断方案的优劣,因此需要对属性表中的数据进行预处理,使表中任一属性下性能越优的值在变换后的属性表中的值越大。
其次是非量纲化。
多目标评估的困难之一是指标间不可公度,即在属性值表中的每一列数具有不同的单位(量纲)。
即使对同一属性,采用不同的计量单位,表中的数值也就不同。
在用各种多目标评估方法进行评价时,需要排除量纲的选用对评估结果的影响,这就是非量纲化,亦即设法消去(而不是简单删去)量纲,仅用数值的大小来反映属性值的优劣。
第三是归一化。
原属性值表中不同指标的属性值的数值大小差别很大,如总经费即使以万元为单位,其数量级往往在千(103)、万(104)间,而生均在学期间发表的论文、专著的数量、生均获奖成果的数量级在个位(100)或小数(101 )之间,为了直观,更为了便于采用各种多目标评估方法进行比较,需要把属性值表中的数值归一化,即把表中数均变换到[0,1]区间上。
多属性决策分析范文多属性决策分析(Multi-Attribute Decision Analysis,简称MADA)是一种决策支持方法,用于解决决策问题中存在多个评估指标的情况。
该方法通过对不同属性进行权重分配,并对备选方案进行评估和比较,以找到最佳的决策方案。
首先,确定决策目标并明确评估指标。
在决策问题中,需要明确要达到的目标,并确定用于评估备选方案的指标。
例如,如果我们需要选择一种新的投资项目,决策目标可能是最大化投资回报率,评估指标可能包括投资风险、市场潜力、竞争情况等。
然后,构建层次结构。
层次结构是多属性决策分析的基础,它通过将决策目标、评估指标和备选方案按照层次关系组织起来,形成一个树状结构。
例如,在选择投资项目的决策问题中,可以将决策目标放在最顶层,评估指标放在中间层,备选方案放在底层。
接下来,建立判断矩阵。
判断矩阵用于描述层次结构中各个层次之间元素之间的相对重要性。
对于每一对元素,通过专家判断或问卷调查的方式,使用比较刻度(如1-9)对其重要性进行评估,并填写到判断矩阵中。
例如,在评估指标层次,可以比较每个评估指标相对于决策目标的重要性。
然后,计算权重向量。
利用判断矩阵,可以通过特征向量法计算出各级指标的权重。
计算过程中,需要对判断矩阵进行一致性检验,以确保判断矩阵的一致性。
一般来说,判断矩阵的一致性指标CI应满足CI<0.1,若CI>0.1,则需进行修正。
之后,进行一致性检验。
通过计算一致性比例CR来检验判断矩阵的一致性。
一致性比例CR的计算公式为CR=CI/RI,其中RI为随机一致性指标,根据判断矩阵的阶数n可以在AHP准则表格中找到。
最后,进行评估和排序。
将备选方案的各个属性值与权重值相乘得出加权得分,然后将加权得分进行加总,将各个备选方案按照加权得分的高低进行排序,得出最佳决策方案。
综上所述,多属性决策分析是一种常用的决策支持方法,可以有效地帮助决策者在多个评估指标的情况下做出合理的决策。
第三讲多属性决策分析
多属性决策分析也被称为多目标决策分析,它是一种在系统决策分析
中更为广泛使用的方法,它通常用于解决那些不仅有一个目标,而且还有
多个矛盾冲突目标的复杂决策问题。
它主要用于多目标决策分析,以支持
决策者对多个目标进行分析,确定最佳解决方案,以达到最大化或最小化
一系列决策目标。
多属性决策分析包括三个基本步骤:首先,决策者需要识别决策问题,确定决策目标及其相关属性;其次,根据决策者的要求和态度,以及正确
识别的内容,确定所有可行的解决方案;最后,根据决策者估计的各个解
决方案的满意度,根据每个解决方案的优势和劣势,选出最佳解决方案。
除此之外,多属性决策分析还有一个很重要的特性,就是可以在多项
目标的前提下,更好地比较不同决策之间的各种差异。