中航高科南通民用复合材料生产线建成投产将降低高性能碳纤维复合材料成本
- 格式:pdf
- 大小:676.12 KB
- 文档页数:1
第2期上海化工加快中国商用大飞机复合材料国产化进程中国商飞复材中心领导专家莅临华昌开展技术交流2月5日,中国商飞复合材料中心主任肖辉江率相关专家到上海化工区华昌聚合物公司基地进行调研,就华昌公司/华谊树脂航空树脂研发进展情况,与华东理工大学、华谊集团和华昌聚合物公司的领导、专家、教授开展技术交流。
中国商飞目前正在研制的ARJ21,C919,CR929三大国产客机,将大量使用国产化材料,其中,碳纤维复合材料将是国产化重点攻关项目。
2012年,在上海市科委的支持下,由华昌公司牵头,联合上海石化、上飞公司、华东理工大学、上海交通大学、东华大学等六家单位,承担上海市重大科技攻关项目“碳纤维复合材料用高性能环氧树脂及预浸料关键技术攻关”。
据此,华昌公司依托华谊集团和华东理工大学,专注从事先进复合材料用高性能基体树脂的研发与产业化,为航空航天、新能源、汽车、轨道交通等领域“提供聚合物新材料一体化解决方案”。
华昌研发团队开展的航空复合材料技术攻关,已取得重大突破。
技术交流中,与会的技术专家围绕碳纤维、树脂等原材料国产化路径及协同攻关合作机制、民用航空复合材料国家重点实验室及创新中心等研发平台建设、树脂原材料全产业链国产化、商用飞机对树脂原料的具体要求等提出建设性意见和可操作性方案、路径,为华昌树脂国产化指明了方向,双方进行了广泛深入专业的交流沟通。
C919型号副总设计师、复材中心常务副主任周良道指出,最近工信部立项要求开展大型商用飞机验证机工作,其碳纤维复合材料用量在50%以上,目前正面临着进度、材料两方面的风险。
鉴于国际形势复杂多变,中国商飞改变思路,正在试验将3D打印材料用在飞机的次承力结构上,华昌树脂制造的大飞机复合材料升降舵面板样件实物让人眼前一亮。
中国商飞复材工艺总师刘卫平强调:国内基础环氧树脂品种少,可选择余地不多,应开发新型特种环氧树脂,不断提高工艺性、耐温性、耐湿热性,以应用为导向,全产业链打破国外“卡脖子”技术,在配套环氧树脂固化剂、促进剂、增韧剂、助剂方面实现国产化。
我国飞机结构件(零部件)产业链上下游(原材料、装配)行业发展分析——以C919为例,其主要结构件分布如下:1、机头。
长度为6.66米的机头部段,包括座舱盖、前起舱、壁板、机头地板等几大部件,零件数超过3200个。
装配主要由成飞完成。
2、前机身、中后机身。
前机身是C919研制过程中交付的首个大部段,全长6.358米,高4.166米,宽3.96米。
它包括前段客舱、前货舱和再循环风扇舱,包含零件1600多项。
该部段采用世界先进的第三代铝锂合金材料,这在国内民机应用上尚属首次。
中后机身与前机身同为筒状结构。
长9.5米,涉及零件4000余项。
装配主要由洪都完成。
3、中机身(中央翼、副翼、机翼)。
中机身-中央翼部段位于机身中部,全长5.99米,宽3.96米,由中机身筒段、龙骨梁、中央翼、应急门组成,是全机结构载荷传递的中枢。
该部段包含零件8200多个,大量选用第三代铝锂合金、2024HDT高损伤容限铝合金材料及超大型钛合金锻件。
副翼部段位于机翼外侧后缘,是飞机的主要操纵面,复合材料用量达到了80%。
中机身主要部件装配主要由上飞、西飞完成,机翼主要由西飞完成。
4、后机身前段、垂尾。
后机身前段包含近600项零件,广泛采用复合材料和钛合金材料,是大面积复合材料制造主体结构在国产民用飞机上的首次应用。
垂直尾翼包括垂直安定面和方向舵,除重要的连接接头为钛合金零件外,绝大部分零部件均为复合材料结构。
装配主要由沈飞完成。
5、后机身后段。
作为水平尾翼和辅助动力设备的安装区,其60%结构使用了复合材料。
装配主要由上飞完成。
从重量上来看,C919铝合金材料(包括铝锂合金)约占机体结构总重量的70%以上,钛合金用量约占7.3%,复合材料用量约占11.5%左右。
1、铝合金。
在选用铝材上,既选用了大量的传统铝合金,如7075-T62、7075-T73、7050-T7451、7050-T73511、7050-T77511、7050-T7351、7050-T7452、7150-T77511、7075-T6、7055-T7751、7055-T76511、7085-T7651、7085-T7452,2024-T42、2524-T3、2024-T3511、2054HDT-T351、2026-T3511等;还选用了一定数量的第三代铝锂合金:2198-T8、Al-Li-S4-T8、2096-T8511、2099-T83等,但是7系合金用得最多。
高性能纤维及复合材料新材料全球交易网(新材料全球交易网提供)高性能纤维及复合材料属于高分子复合材料,它是由各种高性能纤维作为增强体置于基体材料复合而成。
其中高性能纤维是指有高的拉伸强度和压缩强度、耐磨擦、高的耐破坏力、低比重(g/m3) 等优良物性的纤维材料,它是近年来纤维高分子材料领域中发展迅速的一类特种纤维。
高分子复合材料与传统材料相比,具有更高的比强度、耐化学品和耐热冲击性,以及更大的设计灵活性。
按照合成的原料不同,高性能纤维主要分为碳纤维、芳纶纤维、特殊玻璃纤维、超高分子聚乙烯纤维等,其中碳纤维、芳纶纤维、超高分子量聚乙烯纤维是当今世界三大高性能纤维。
高性能纤维的发展是一个国家综合实力的体现,是建设现代化强国的重要物资基础。
高性能纤维及复合材料是发展国防军工、航空航天、新能源及高科技产业的重要基础原材料,同时在建筑、通信、机械、环保、海洋开发、体育休闲等国民经济领域具有广泛的用途。
中国高性能纤维及复合材料自动铺带机工程化研制取得进展人工、半自动人工铺放与自动铺放对比(资料图)先进复合材料因比模量、比强度高,抗疲劳、耐腐蚀、可设计和工艺性好,成为飞机结构重要发展方向之一。
轻质、高强、性能优异的高性能纤维及复合材料成为理想的结构用材,并逐渐从小型、简单、次承力结构向大型、复杂、主承力结构过渡。
国外军机上复合材料用量普遍占结构重量的25%~50%;在民用领域,波音公司787飞机的复合材料用量达到50%,而A350XWB复合材料用量达到了创纪录的52%。
用于高性能纤维及复合材料结构制造的先进专用工艺装备在国外迅速发展,特别是基于预浸料的复合材料自动铺放设备,包括自动铺带机和铺丝机,已在国外最先进的战机和民机制造中得到广泛应用。
这些先进铺放装备具有人工/半自动人工铺放所不可比拟的优点(对比如表1所示)。
复合材料铺放制造技术包括铺放装备技术、铺放CAD/CAM技术、铺放工艺技术、预浸料制备技术、铺放质量控制、一体化协同数字化设计等一系列技术,主要是自动铺放装备技术、应用软件技术以及材料工艺技术的融合集成。
Application 应用 技术 案例 产品48 │ 今日制造与升级碳纤维复合材料在航空领域中的应用现状及改进王军照(北京天宜上佳高新材料股份有限公司,北京 100194)[摘 要]随着碳纤维复合材料的不断发展,由于其独特的材料属性,碳纤维复合材料广泛应用于汽车、船舶和航空航天等领域,成为这些领域建造使用的主要材料。
复合材料是由高分子、无机非金属等材料复合加工而成,具有金属材料、非金属材料没有的材料性质。
因此,对于碳纤维复合材料代替航空航天领域的金属材料的使用对于航空航天的发展具有重要意义。
本文首先介绍了碳纤维复合材料的特点,然后简单分析碳纤维复合材料在航空领域中的应用现状,提出在航空领域中扩大应用的改进。
[关键词]碳纤维;复合材料;材料属性;航空航天领域[中图分类号]V258.3;TB33 [文献标志码] B随着科学技术的不断发展,在材料的各个方面都在不断地发展着,复合材料凭借着其特有的属性深受航空航天领域、汽车领域以及船舶的建造使用上。
碳纤维复合材料通常是纤维和基体的两种或多种材料的组合,典型的纤维包括玻璃纤维、芳纶纤维和碳纤维,基体可以是聚合物、金属或陶瓷。
复合材料的发展已经成为一个国家工业水平高低的衡量标准。
1碳纤维复合材料的特点碳纤维复合材料与其他航空航天金属合金相比有更高的比强度/模量,重量更轻,更好的耐腐蚀性和抗疲劳寿命性,更大的有效载荷(人员、航空电子设备、弹药等以及更长的航程和燃油节省,同时由于零件和紧固件较少,降低了装配成本。
碳纤维复合材料的耐高温性非常好,机件在使用过程中能够承受高温带来的影响,减少不必要的损失,在高温条件下它的属性和性质不会轻易的发生变化,为航空设备的平稳运行提供保障[1],这就为碳纤维复合材料在航空和航天领域的广泛应用,打下了坚实的基础。
正是碳纤维复合材料的强度大,韧性好 (碳纤维复合材料强度极限是一般钢材料强度极限的5倍多),承载极限大等的突出优点使它能够应用于航空航天领域。
2021年12月27日行业研究国防装备发展,材料是基础——军工新材料行业系列报告二:主要新材料介绍及上市公司梳理国防军工新材料在军工领域得到广泛应用:随着国防建设对于装备作战性能要求的提升,以及国外在高精尖领域对国内封锁的现状,装备作为基础的材料,在性能提升、独立自主等方面的需求日益迫切。
部分新材料因具备良好的力学特性及耐高温、耐蚀性能或某种特定的环境适应性,成为航空航天、动力、能源、化工、机械、冶金、电子信息等国民经济关键领域发展的物质基础和国防现代化的重要支撑。
碳纤维及复合材料:碳纤维增强复合材料的突出优势是其具有目前其他任何材料都无可比拟的高比强度(强度比密度)及高比刚度(模量比密度)性能。
另外,碳纤维增强复合材料还具有耐腐蚀、耐疲劳等特性,因此非常适合应用于对减重要求较高的装备、设备的生产制造中,如航空航天装备尤其是军用航空航天装备。
国内航空航天领域对于碳纤维的需求持续增长,2020年市场需求为1700吨,同比增长21.43%。
石英纤维及复合材料:石英纤维由于具有强度高、介电常数和介电损耗小、耐高温、膨胀系数小、耐腐蚀、可设计性能好等一系列特点,是航空航天领域不可或缺的战略材料。
石英纤维在高频和700℃以下工作区域内,保持最低而稳定的介电常数和介电损耗。
这些优异的性能使之成为多种航空、航天飞行器关键部位的结构增强、透波、隔热材料。
钛合金:钛具有密度小、比强度高、导热系数低、耐高温低温性能好、耐腐蚀能力强、生物相容性好等突出特点,被广泛应用于航空、航天、舰船、兵器、化工冶金、海洋工程等领域。
钛及钛合金对一个国家的国防、经济及科技的发展具有战略意义。
航空领域,钛合金是飞机和发动机的主要结构材料之一。
近年来,国内航空航天钛材销量持续上涨。
随着国内军用新机型的定型批产,2020年钛材销量增速明显加快,达到15546吨,同比增长54.09%。
高温合金:镍基高温合金是现代航空发动机、航天器和火箭发动机以及舰船和工业燃气轮机的关键热端部件材料(如涡轮叶片、燃烧室等),也是核反应堆、化工设备、煤转化技术等方面需要的重要高温结构材料。
2024年碳纤维预浸料市场需求分析引言碳纤维预浸料是一种重要的高性能复合材料,具有轻质、高强度、耐腐蚀等优秀特性,广泛应用于航空航天、汽车工业、体育器材等领域。
本文将对碳纤维预浸料市场需求进行详细分析。
市场规模和增长趋势碳纤维预浸料市场的规模和增长趋势受多个因素的影响,如产业发展、技术进步和市场需求。
根据最新市场研究报告,全球碳纤维预浸料市场规模正在迅速增长。
预计未来几年,市场规模将继续扩大。
市场驱动因素分析碳纤维预浸料市场需求的增长受到多个市场驱动因素的推动。
以下为市场驱动因素的分析:1.航空航天行业需求增加:随着航空航天行业的发展,对高性能的轻质材料的需求不断增加。
碳纤维预浸料作为一种优质材料,能够满足航空航天领域对材料性能的要求,因此受到该行业的广泛应用。
2.汽车工业需求增长:随着环保意识的提高,汽车工业对轻质、高强度材料的需求也在不断增加。
碳纤维预浸料具有良好的机械性能和重量优势,可以有效减轻汽车的重量,并提高燃油效率,因此在汽车工业中有广阔的市场前景。
3.体育器材需求扩大:碳纤维预浸料由于其高强度和轻质特性,在体育器材领域有广泛应用。
近年来,全球健康运动热潮兴起,推动了体育器材市场的增长,进一步推动了碳纤维预浸料市场的需求。
4.其他行业的材料替代需求:碳纤维预浸料具有优越的性能和重量优势,能够替代传统材料,在多个行业中得到广泛应用。
例如,建筑业、电子行业和船舶制造等行业对碳纤维预浸料的需求逐渐增加。
市场竞争态势碳纤维预浸料市场竞争激烈,主要企业之间的竞争主要集中在产品质量、价格、技术创新和供应链管理等方面。
目前,全球碳纤维预浸料市场较为集中,市场份额主要由少数大型企业独占。
随着市场需求的增长,新的参与者不断涌入市场,增加了市场竞争的激烈程度。
同时,技术创新和产品升级也成为市场竞争的关键因素。
企业需要不断投入研发,提高产品性能,以满足市场需求。
市场前景分析碳纤维预浸料市场具有较好的发展前景。
钢筋混凝土结构加固设计的方法与实践案例分析目录1. 内容概括 (2)1.1 钢筋混凝土结构加固的重要性 (2)1.2 加固设计的目的和内容 (3)1.3 文档结构概览 (5)2. 加固设计理论基础 (6)2.1 材料特性与加固方法评价 (7)2.2 结构损伤诊断与评估 (8)2.3 加固设计的数学模型与计算方法 (10)3. 常见加固设计方法 (11)3.1 增加外部支承 (13)3.1.1 加设框架或剪刀墙 (14)3.1.2 底卸荷等方法 (15)3.2 增强构件强度 (16)3.2.1 加固混凝土或增大截面 (17)3.2.2 植筋或粘钢加固技术 (19)3.2.3 碳纤维增强材料的应用 (20)3.3 提升梁板结构和抗震性能 (22)3.3.1 增配抗震钢筋 (24)3.3.2 增设抗震支撑 (25)3.3.3 加固节点和连接部位 (27)4. 加固设计与施工技术 (29)4.1 设计与施工结合的技术要点 (30)4.2 加固材料与工艺设备的选择 (31)4.3 加固现场施工的质量控制 (33)5. 钢筋混凝土结构加固案例分析 (34)5.1 实际加固项目概述 (35)5.2 加固设计过程与关键参数构成 (37)5.3 施工细节与质量检验 (38)5.4 加固前后的性能对比与总结 (40)5.5 加固效果与长期监测研究 (41)6. 加固设计的现代化趋势与技术创新 (43)6.1 智能化无损检测技术 (45)6.2 物联网在结构健康监测中的应用 (46)6.3 预应力与高性能混凝土的研究进展 (47)1. 内容概括本文档旨在探讨钢筋混凝土结构加固设计的方法与实践案例分析。
首先,概述钢筋混凝土结构加固的必要性和重要性,包括常见的加固需求原因以及加固对结构寿命和安全性能的提升作用。
阐述现阶段常用的钢筋混凝土结构加固设计方法,涵盖内加固、外加固、地基加固等多种形式,并对每种方法的特点、适用范围以及设计要点进行详细介绍。
混杂纤维复合材料性能研究乌云其其格;隋成国;马如飞;张宝艳;杜宇【摘要】对碳纤维织物、玻璃纤维织物和芳纶织物的性能进行测试,采用热熔法分别制备了一种增韧中温固化环氧碳纤维织物预浸料、玻璃纤维织物预浸料和芳纶织物预浸料.预浸料以单种预浸料铺层和不同纤维织物预浸料混合铺层方式铺贴组合,通过模压法成型复合材料层合板,进行性能测试并对比.结果表明,增韧中温固化环氧树脂的不同纤维织物预浸料混合铺层成型的层压板力学性能可以根据铺层设计优化,并不损失不同纤维铺层之间的界面性能.【期刊名称】《高科技纤维与应用》【年(卷),期】2018(043)004【总页数】7页(P25-31)【关键词】增韧中温固化环氧树脂;碳纤维织物;玻璃纤维织物;芳纶织物;混合复合材料;性能【作者】乌云其其格;隋成国;马如飞;张宝艳;杜宇【作者单位】中航复合材料有限责任公司,北京 101300;中航工业成都飞机设计研究所,成都610091;中航工业成都飞机设计研究所,成都610091;中航复合材料有限责任公司,北京 101300;中航复合材料有限责任公司,北京 101300【正文语种】中文【中图分类】TQ342+.7前言复合材料是由两种或两种以上不同材料通过某种方式结合而成的新材料,其中各组分材料仍保持其原有特性,但是组成新材料的性能优于各单独组分材料。
与一般材料的简单混合有本质区别。
航空用复合材料分为树脂基复合材料(PMC)、金属基复合材料(MMC)、陶瓷基复合材料(CMC)和碳-碳复合材料(C/C)等。
由于树脂基复合材料具有现代飞机所需的重要特性,如高的比强度、比模量、尺寸稳定性、优异的耐腐蚀性能、耐磨性、介电性能、电绝缘性能和综合力学性能以及性能的可设计和成形工艺多样性等,因而在航空工业上获得了广泛的应用。
树脂基复合材料也称为纤维增强塑料。
按树脂类型的不同,树脂基复合材料分为热固性树脂基复合材料和热塑性树脂基复合材料。
热固性树脂基复合材料是最早应用在航空工业,目前在航空工业应用量最大的复合材料。
高端碳纤维复合材料前景报告一、背景基于全球空中力量全面竞争,中、美、俄横向比较,中国军机总量在各个主力类型上都存在数量差距。
当前我国军机从总体数量和结构上都与军事强国美国、俄罗斯存在一定差距,未来增长空间较大。
从绝对数量上来看,美国目前拥有的军机数量约为我国的4倍,差距较大。
从结构上来看,中国与美、俄军机细分种类的数量差距同样较大,且技术存在代差。
以战斗机为例,目前我国主力机型仍以二代机和三代机为主,而美国主力机型目前为三代机和四代机为主,且四代机的列装量仍在持续加速。
高端产品被美日企业垄断,2020年8月对中国实施全面禁售。
现代军机平台化、系统化的演变趋势较为明确,承载单元的增加使得单机空重有不断提升趋势。
根据杨伟《关于未来战斗机发展的若干讨论》一文,现代战斗机普遍要求远航、久航和高速的性能,作为武器搭载平台需要携带充足的空空、空面武器;在作战体系层面需要作为作战网络的节点跨任务区实时传递目标信息。
这种平台和体系层面的能力需求,使得飞机机身尺寸和内部搭载的功能组件都有扩大的趋势,促使其空重不断提升。
性能要求及减重需求的共同催化下,航空新材料在机身机构中的应用重要性不断凸显,碳纤维逐步成为先进机身材料的首选。
复盘飞机发展史,飞机发展伴随机体结构材料迭代,前三代战机的机体结构材料主要为解决战机的飞行硬伤,到了第四代开始,提升性能减轻重量成为主要目标。
随着钛合金工艺发展带来加工难度和成本的降低,各厂商开始逐步使用钛合金这种高强度低密度材料取代钢材用在机身骨架和飞机蒙皮热力集中部位,同时虽然铝合金抗高温能力有限,但考虑到其超低密度低成本的特性,新一代铝合金被用在飞机蒙皮的非热力集中部位。
随着对新材料的探索,新型复合材料开始登上历史舞台,由于复合材料在性能上的显著优异性,从 21 世纪初开始,各飞机厂商开始尝试使用复合材料(特别是碳纤维复材)逐步替代合金用作蒙皮和机身骨架材料,但受制于成本、可靠性和加工工艺等各方面限制,目前复合材料的应用仍处于起步阶段。
教练机低成本复合材料结构应用探索研究王建华;周恒;付杰斌【摘要】基于已有研究成果,探索并论证了教练机低成本复合材料结构的应用前景.结果表明:已有的研制周期内低成本复合材料结构设计方法、验证步骤可以满足教练机结构研制需求,已有技术条件能够降低教练机复合材料结构研制成本,提高研制效率和质量.【期刊名称】《教练机》【年(卷),期】2013(000)002【总页数】6页(P25-30)【关键词】教练机;无人机;低成本;复合材料;结构【作者】王建华;周恒;付杰斌【作者单位】中航工业洪都,江西南昌330024;中航工业洪都,江西南昌330024;中航工业洪都,江西南昌330024【正文语种】中文0 引言复合材料以其优良性能在飞机结构上得到了越来越广泛的应用,而高使用成本问题已然成为既困扰又促进飞机复合材料结构技术发展的重要因素。
教练机作为飞行训练装备是生成战斗力的物质基础,与主战机型相比,其对效费比、低成本等方面要求更高。
因而针对教练机机体结构开展相应的低成本复合材料应用探索具有重要的学术意义和工程价值。
当前,一些小型无人飞行器凭借其特有的低风险、低成本特性为新设计思想、新材料、新结构的技术应用提供了理想的验证平台[1-5]。
本文结合多型无人机研制工作中已开展的低成本复合材料结构设计、验证及应用技术研究工作,探索了教练机低成本复合材料结构的应用前景。
1 低成本复合材料结构特性1.1 低成本复合材料特点复合材料的应用成本是由原材料、制造、检测、维护和修理等构成的全寿命周期费用,因此低成本复合材料应具备以下主要特点[6-7]:1)低原材料成本:材料常用,全机使用比例较大且种类少;2)低制造成本:对制造设备要求低,制造工艺简单;3)低检测成本:目测、敲击或超声波、X光等简单方法便可准确判断结构内、外部缺陷;4)低维护成本:外场维护、修复工艺简单,不需要或仅需要简单易携带的设备就可现场维护。
1.2 常用低成本复合材料结构当前飞行器使用较多的低成本复合材料结构主要有层合板结构和夹芯结构。
航空器制造中的新材料研发与应用在现代航空领域,航空器制造的每一次重大突破都离不开材料科学的创新。
新材料的研发与应用不仅提升了航空器的性能,还为航空业的可持续发展开辟了新的道路。
从早期的铝合金到如今的先进复合材料,材料的演进始终是推动航空器发展的关键力量。
过去,铝合金因其良好的强度和可加工性,成为航空器结构的主要材料。
然而,随着对航空器性能要求的不断提高,传统材料的局限性逐渐显现。
比如,铝合金的重量相对较大,在追求更高燃油效率和更远航程的需求下,需要更轻质、高强度的材料来替代。
先进复合材料的出现改变了这一局面。
以碳纤维增强复合材料(CFRP)为例,它具有极高的强度和刚度,同时重量比铝合金轻得多。
这使得航空器的结构可以在保持强度的前提下大幅减轻重量,从而降低燃油消耗,提高飞行效率。
在波音 787 和空客 A350 等新型客机中,复合材料的应用比例已经达到了相当高的水平。
除了复合材料,钛合金在航空器制造中也扮演着重要角色。
钛合金具有优异的耐腐蚀性和高温性能,适用于发动机部件和高温环境下的结构件。
其高强度和低密度的特点,使得发动机能够在更高的温度和压力下工作,提高燃油效率和推力。
然而,新材料的研发并非一帆风顺。
在实际应用中,往往会面临诸多挑战。
首先是成本问题。
先进材料的研发和生产需要大量的资金投入,而且初期的生产成本通常较高,这限制了其在大规模生产中的应用。
例如,碳纤维复合材料的制造工艺复杂,原材料价格昂贵,导致航空器的制造成本增加。
其次是性能稳定性和可靠性。
新材料在复杂的航空环境中需要经受高温、高压、高振动等极端条件的考验。
如果性能不稳定或出现可靠性问题,将对飞行安全构成严重威胁。
因此,在新材料的研发过程中,需要进行大量的实验和测试,以确保其性能和可靠性满足航空标准。
再者是制造工艺的复杂性。
一些新材料的加工和成型难度较大,需要开发新的制造工艺和技术。
例如,钛合金的加工需要特殊的刀具和工艺参数,复合材料的成型需要高精度的模具和复杂的固化工艺。
民用飞机VARI碳纤维复合材料性能研究朱苗;高丽红;刘刚;刘强;吴一波【摘要】针对多批次的RTM6-2树脂和G0926 SB 1304 TcJ InJ E012F织物,对采用低成本真空辅助树脂渗透成形工艺(VARI)制备的该碳纤维复合材料开展了性能验证及评价研究,具体包括:对比分析了三批次的物理性能以及不同环境(温度和湿度)条件下5批次的VARI碳纤维复合材料力学性能,获得了VARI碳纤维复合材料的基本性能数据.这为民用飞机用树脂基复合材料的设计、优化选材以及技术指标的确定、材料规范的制定等奠定了基础,也为其在民用飞机上的应用和适航符合性验证提供了一定的依据.【期刊名称】《航空科学技术》【年(卷),期】2017(028)010【总页数】5页(P35-39)【关键词】VARI;批次;物理性能;力学性能;试验环境;碳纤维复合材料【作者】朱苗;高丽红;刘刚;刘强;吴一波【作者单位】西安飞机工业(集团)有限责任公司,陕西西安 710089;航空工业第一飞机设计研究院,陕西西安 710089;航空工业第一飞机设计研究院,陕西西安710089;中航复合材料有限责任公司,北京 101300;卢森堡赫氏控股卢森堡有限责任公司,上海 200235【正文语种】中文【中图分类】TB332先进树脂基复合材料具有比强度、比刚度高和结构可设计等优点,在航空领域内已得到了广泛应用,其应用部件也已由次承力结构件日趋发展到主承力结构件(机翼、机身和尾翼等部位),且应用逐步扩大。
目前,航空用先进树脂基复合材料主要采用预浸料/热压罐工艺制备。
由于该工艺需要多个步骤才能实现复合材料的整体成形,且热压罐价格昂贵、能耗高以及原材料低温储存等,其制造成本占了60%~70%[1~9]。
因此,低成本及整体性复合材料制备工艺是当今复合材料制备发展的一个重要方向,如树脂传递模塑(RTM)、树脂膜渗透(RFI)和真空辅助树脂渗透(VARI)等。
其中,VARI工艺已广泛应用于复合材料制备中,具有易于控制构件整体性能、一体成形、工艺周期短、所需真空压力低、设备及工艺成本低、污染小等优点。
28碳纤维复合材料的实际应用杨玉梅/文【摘要】碳纤维复合材料是由有机纤维经过一系列热处理转化而成,含碳量高于90%的无机高性能纤维,是一种力学性能优异的新材料,具有碳材料的固有本性特征,又兼备纺织纤维的柔软可加工性,是新一代增强纤维。
碳纤维复合材料是国家高科技产业发展当中的重要材料也是关键材料,碳纤维复合材料有轻质、高强度、高刚度、耐得住腐蚀等优势。
其被广泛应用在航天领域、航空领域、汽车、体育休闲等领域。
本文主要介绍碳纤维复合材料在各领域的实际应用情况。
【关键词】碳纤维;碳纤维复合材料;应用碳纤维是一种高性能的纤维材料,结构取决于原丝结构和碳化工艺,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能,同时,碳纤维复合材料具有高比强度、高比模量、高比吸能(有效破坏长度内单位质量吸收的能量)等优异的综合力学性能,其质轻的特点,使其成为一种不可或缺的替代材料。
在碳纤维复合材料应用领域中,对复合材料未来前景进行有效的展望是极其关键的。
将碳纤维复合材料应用于汽车工业中,可以发现碳纤维复合材料的巨大应用价值;将碳纤维复合材料应用于航天航空之中,可以提高航天设备的质量;将碳纤维复合材料应用到高速动车组当中,还可以增强安全系数和质量保证,为我国的机械和材料事业的发展打下坚实的基础[1]。
1.碳纤维复合材料在航天航空领域的应用高性能碳纤维复合材料具有高比模量、高比强度、耐高温、耐腐蚀、耐磨擦以及吸收波的性能优异,隔音、隔热、易成形易加工等特性,因此与航空领域契合程度极高,满足航空领域对材料的较高要求,所以在航空领域中制造的航空发动机、卫星和航空飞行器、导弹导流罩、运载火箭导流罩、精密支撑结构件等领域中,碳纤维复合材料得到了广泛的应用。
除此之外在航空领域中的光学镜体也应用了碳纤维复合材料。
据统计,民航客机例如:空客A380,波音787以及中国的C919应用高性能碳纤维的质量所占比例已经达到了20%~30%。
综述与专论合成纤维工业ꎬ2019ꎬ42(5):58CHINA㊀SYNTHETIC㊀FIBER㊀INDUSTRY㊀㊀收稿日期:2019 ̄02 ̄15ꎻ修改稿收到日期:2019 ̄07 ̄12ꎮ作者简介:高奇(1973 )ꎬ男ꎬ高级经济师ꎬ从事企业党建和政策研究等工作ꎮE ̄mail:gaoq.blsh@sinopec.comꎮ新形势下我国碳纤维产业发展探讨高㊀奇(中国石化集团资产经营管理有限公司巴陵石化分公司ꎬ湖南岳阳414014)摘㊀要:探讨了碳纤维的生产供需㊁下游应用状况ꎬ以及碳纤维及其复合材料技术研究进展㊁我国碳纤维产业发展面临的问题ꎮ2018年我国碳纤维理论生产能力26.1kt/aꎬ产量9.0ktꎬ开工率34%ꎬ进口量(包含预浸料等)22.0ktꎬ表观消费量31.0ktꎮ国内碳纤维复合材料主要应用于休闲体育领域ꎬ占比为52%ꎬ而在航空航天㊁交通运输领域应用占比则较低ꎮ当前ꎬ碳纤维及其复合材料技术研究主要围绕降低碳纤维生产成本ꎬ提高碳纤维本身性能ꎻ改善树脂体系的韧性ꎬ提高树脂体系与碳纤维复合的界面相容性ꎻ开拓复合材料成型新工艺ꎬ提升应用水平ꎮ与世界先进水平相比ꎬ我国在碳纤维产业化工艺与装备ꎻ碳纤维复合材料设计㊁制造㊁评价能力ꎻ基础研究与产业配套方面均严重落后ꎮ建议政府层面加强引导㊁政策扶持力度ꎬ规范碳纤维行业发展ꎻ企业层面加大产㊁学㊁研协同ꎬ加快碳纤维及其复合材料全产业链关键技术攻关ꎬ提升产业化发展水平ꎻ行业组织层面加强组织协调ꎬ搭建公共服务平台ꎬ推动碳纤维及复合材料良好的产业生态建设ꎮ关键词:碳纤维㊀碳纤维复合材料㊀生产㊀供需㊀应用㊀研究进展㊀发展建议中图分类号:TQ342+.74㊀㊀文献标识码:A㊀㊀文章编号:1001 ̄0042(2019)05 ̄0058 ̄06㊀㊀碳纤维是一种含碳量在95%以上的新型材料ꎬ既具有碳材料质轻㊁耐高温㊁耐腐蚀㊁耐疲劳㊁抗蠕变㊁高强度㊁高模量等固有本质特性ꎬ又兼备纺织纤维的柔软可加工性ꎬ广泛应用于航空航天㊁交通运输㊁体育休闲等领域[1]ꎮ碳纤维产业链核心环节很多ꎬ包括上游原丝生产㊁中游碳化环节㊁下游复合材料及其应用等ꎮ经过五十多年的研发和突破ꎬ我国碳纤维产业已取得一系列重大成果ꎬ初步形成了产业化碳纤维的研发和生产平台ꎬ逐步打破了国外技术封锁和市场垄断局面[2]ꎮ但碳纤维产业化过程仍存在一些 卡脖子 问题亟待解决ꎮ在当前逆全球化思潮抬头的新形势下ꎬ加快碳纤维产业的发展ꎬ不仅可以推动石油化工㊁纤维纺织等传统行业的技术进步和转型升级ꎬ而且对于保障国家重大工程以及国防科工的发展有着重要战略意义ꎮ作者探讨了国内外碳纤维的生产供需㊁下游应用状况ꎬ以及碳纤维及其复合材料技术研究进展㊁我国碳纤维产业发展面临的问题ꎬ并提出了发展建议ꎮ1㊀碳纤维生产供需状况从企业角度来看ꎬ全球碳纤维企业大致可分为三个梯队:一梯队为兼具规模和技术优势的企业ꎬ日本东丽株式会社㊁日本东邦会社等为典型代表ꎻ二梯队是在特定领域具备较强竞争力的企业ꎬ如德国西格里集团在汽车领域竞争力较强ꎻ三梯队则是具备成本优势的企业ꎬ如中国台湾台塑工业股份有限公司㊁土耳其阿克萨公司㊁韩国晓星集团等ꎮ2018年全球碳纤维主要生产企业见表1ꎮ表1㊀2018年全球碳纤维主要生产企业Tab.1㊀Globalcarbonfibermajorproducersin2018国家和地区企业名称生产能力/(kt a-1)日本日本东丽株式会社27.1日本三菱丽阳株式会社14.3日本东邦会社12.6欧洲德国西格里集团15.0土耳其阿克萨公司3.5俄罗斯UMATEX集团2.0美国美国赫氏公司10.0美国氰特公司7.0美国卓尔泰克公司(被东丽收购)20.0韩国韩国晓星集团2.5中国台湾台湾台塑工业股份有限公司8.8中国中复神鹰碳纤维有限公司6.0江苏恒神股份有限公司4.65精功集团有限公司3.6光威复合材料股份有限公司3.1中安信科技有限公司1.8兰州蓝星纤维有限公司1.8其他5.15其他3.0合计154.8㊀㊀2018年全球碳纤维理论生产能力154.8kt/aꎮ其中ꎬ日本东丽株式会社㊁德国西格里集团㊁美国卓尔泰克公司(已被东丽收购)㊁日本三菱丽阳株式会社㊁日本东邦会社5家企业合计生产能力89kt/aꎬ占全球总产能的57%ꎮ日本东丽株式会社是全球碳纤维生产第一大公司ꎬ生产能力达到27.1kt/a(不含美国卓尔泰克公司产能)ꎮ㊀㊀我国碳纤维生产企业有近30家ꎬ2018年理论生产能力26.1kt/aꎬ见表2ꎮ其中ꎬ产能千吨以上的企业有7家ꎬ分别是中复神鹰碳纤维有限公司㊁江苏恒神股份有限公司㊁精功集团有限公司㊁光威复合材料股份有限公司㊁中安信科技有限公司㊁兰州蓝星纤维有限公司㊁山西钢科碳材料有限公司ꎬ合计生产能力22.05kt/aꎬ约占国内总产能的84%ꎮ表2㊀2018年我国碳纤维主要生产企业Tab.2㊀Chinacarbonfibermajorproducersin2018企业名称㊀㊀生产能力/(kt a-1)中复神鹰碳纤维有限公司6.00江苏恒神股份有限公司4.65精功集团有限公司3.50光威复合材料股份有限公司3.10中安信科技有限公司1.80兰州蓝星纤维有限公司1.80山西钢科碳材料有限公司1.20中国石油吉林石化公司0.60吉林方大江城碳纤维有限公司0.55中国石化上海石化分公司0.50河南永煤碳纤维有限公司0.50其他1.90合计26.10㊀㊀2018年国内碳纤维产量约9.0ktꎬ开工率约为34%ꎬ低于全球60%的开工率ꎬ主要原因一是优秀企业老生产线因经济效益较低而停产ꎬ二是有些企业的生产线水平较低ꎬ不能长期稳定运行ꎻ纯碳纤维进口3.48ktꎬ同比增长13%ꎬ但进口若包括碳纤维预浸料㊁碳纤维布等ꎬ则进口量为22ktꎬ同比增长36.8%ꎮ这说明我国碳纤维下游消费以进口预浸料加工为主ꎮ表3㊀2014―2018年国内碳纤维供需情况Tab.3㊀Chinacarbonfibersupplyanddemandsituationover2014-2018年份产量/kt进口量/kt进口量(包含预浸料)/kt表观消费量/kt2014年2.01.66512.814.82015年2.51.76614.416.92016年3.62.78116.019.62017年7.43.07516.123.52018年9.03.47722.031.0㊀㊀基于近年来碳纤维需求旺盛ꎬ碳纤维正处于从 贵族材料 向 平民化材料 转变ꎬ价格逐年降低等原因ꎬ预计2019―2025年ꎬ我国碳纤维消费需求年均增速将保持在15%以上ꎮ2㊀碳纤维下游应用状况碳纤维一般不单独使用ꎬ而是和树脂㊁金属㊁陶瓷等制成复合材料满足下游应用ꎬ其中ꎬ树脂基碳纤维复合材料使用量最大ꎬ占碳纤维复合材料市场份额的90%以上[3]ꎮ环氧树脂㊁乙烯基酯树脂㊁酚醛树脂㊁不饱和聚酯树脂等热固性树脂ꎬ以及聚丙烯㊁聚酰胺㊁聚四氟乙烯等热塑料性树脂均可用于制备树脂基碳纤维复合材料ꎮ从全球碳纤维复合材料下游应用来看ꎬ航空航天㊁体育休闲和工业应用是碳纤维复合材料应用的3个主要领域ꎬ但与全球碳纤维复合材料应用不同的是ꎬ国内碳纤维复合材料主要应用于休闲体育领域ꎬ占比为52%ꎬ而在航空航天㊁交通运输领域应用占比则较低ꎮ碳纤维生产技术和装备水平低ꎬ产业化生产工艺不成熟是导致国内碳纤维应用领域集中在低端市场的主要原因ꎮ表4㊀国内碳纤维复合材料下游应用领域Tab.4㊀Down ̄streamapplicationfieldofChinacarbonfibercomposite应用领域应用实例所占比例ꎬ%体育休闲㊀高尔夫球棒㊁羽毛球拍㊁钓鱼竿㊁自行车52工业应用能源㊀风电叶片16土木建筑㊀桥梁增强㊁建筑材料6压力容器㊀医用氧气瓶㊁压缩天然气瓶6交通运输㊀汽车㊁船舶3电子电气㊀笔记本㊁电视机㊁LED显示屏2电力电缆㊀电缆芯2机械㊀管㊁集装箱3其他㊀钻井平台㊁医疗器械3航空航天㊀飞机㊁卫星3其他4㊀㊀未来ꎬ我国航空航天㊁新能源汽车领域对碳纤维复合材料需求巨大ꎬ不管是国产大型客机C919ꎬ还是插电式混合动力汽车等都对碳纤维复合材料有很大需求ꎬ但碳纤维复合材料的高端产能目前在国内仍属空白ꎬ碳纤维发展的瓶颈亟待攻克ꎮ3㊀碳纤维及其复合材料技术研究进展碳纤维及其复合材料性能的提高ꎬ生产成本95第5期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀高㊀奇.新形势下我国碳纤维产业发展探讨的降低ꎬ既与碳纤维本身有关ꎬ也与树脂体系以及其复合材料成型工艺有关ꎬ是一项非常系统的工程ꎮ当前研究主要围绕以下几方面展开:(1)降低碳纤维生产成本ꎬ提高碳纤维本身性能ꎮ碳纤维的制备包括前驱体制备㊁预氧化㊁碳化及表面处理等工艺过程ꎮ其中ꎬ前驱体的制备占碳纤维生产成本的50%以上[4]ꎮ因此ꎬ开发低成本㊁高性能的前驱体被认为是降低碳纤维生产成本的最有效途径之一ꎮ目前已实现工业化的碳纤维前驱体主要为粘胶基㊁沥青基和聚丙烯腈(PAN)基ꎬ粘胶基前驱体最早用于制备碳纤维原丝ꎬ但粘胶纤维的实际碳收率较低ꎬ在30%以下ꎻ各向同性沥青基前驱体原料廉价㊁碳收率在80%以上ꎬ生产工艺简单ꎬ生产成本较低ꎬ但其力学性能较低ꎻ中间相沥青前驱体由于对沥青纯度有极其苛刻的要求ꎬ必须进行纯化处理ꎬ因而成本较高ꎻPAN基前驱体碳收率比粘胶基前驱体高ꎬ生产流程㊁溶剂回收㊁三废处理也较简单ꎬ但原料价格仍然较高ꎮ为开拓廉价质优的前驱体替代材料ꎬ众多研究者展开了大量研究ꎬ如以聚烯烃[5]㊁木质素[6]㊁芳香族聚合物[7]㊁生物质[8-10]等为原料的碳纤维前驱体ꎬ但这些前驱体仍然存在碳收率低或者生产成本高㊁力学性能差等问题ꎮ值得关注的是ꎬYangJ等[11-12]以廉价的无灰煤作为前躯体ꎬ通过低温溶剂分离和薄层蒸发法调控其相对分子质量分布和氧含量ꎬ制备了各向同性沥青ꎬ该沥青碳化所制备的碳纤维拉伸强度达到1100MPaꎬ具有巨大的市场潜能ꎮ碳纤维难以兼顾强度和弹性模量ꎬ这成为开发的焦点之一ꎮ碳纤维石墨化采用超高温度使碳纤维内部由乱层石墨片层结构形成规整的三维石墨晶体结构ꎬ是制备高模量或高强高模碳纤维的关键工艺ꎬ其技术的核心在于石墨化装置对碳纤维进行超高温热处理的高效性及石墨化工艺对纤维结构择优演变的有效控制[13]ꎮ国内外研究者对碳纤维石墨化设备进行了广泛研究ꎬ研制了不同加热方式的石墨化炉ꎬ如塔姆式电阻炉[14]㊁感应炉[15]㊁射频炉[16]㊁等离子炉[17]等ꎮ其中ꎬ塔姆式电阻炉㊁射频炉均已产业化ꎬ国内外普遍应用(日本东丽株式会社采用射频炉制备高强高模碳纤维)ꎮ但这几种石墨化炉均采用间接加热技术ꎬ存在热效率低㊁能耗高㊁石墨化炉寿命短㊁热处理温度受限的缺点ꎬ影响了碳纤维石墨化过程中结构的择优演变ꎮ针对间接加热技术的缺点ꎬ激光隧道炉[18-19]㊁连续石墨化炉[20]等直接加热技术石墨化炉被研制ꎮ这类石墨化炉克服高温限制且高效高质量㊁节能环保是未来的发展趋势ꎮ在石墨化工艺方面ꎬ国内外研学者也进行了大量研究ꎬ发现温度场的分布对碳纤维结构的择优演变十分重要[21]ꎻ控制热处理时间可以在保证石墨纤维质量的前提下有效降低能源消耗[22]ꎻ施加一定的牵伸力可以改善碳纤维的微观结构ꎬ提高拉伸强度和模量[23]ꎻ硼原子催化剂对碳纤维石墨化过程有很强的促进作用ꎬ可降低纤维热膨胀系数ꎬ提高其抗氧化性能[24-25]ꎮ(2)改善树脂体系的韧性ꎬ提高树脂体系与碳纤维复合的界面相容性ꎮ碳纤维复合材料具有各向异性的结构特点ꎬ在垂直纤维方向的性能较差ꎬ而增加树脂体系的韧性可提高复合材料的横向拉伸强度ꎬ从而提高复合材料抗损伤性能及应力水平ꎮ目前研究较多的树脂体系增韧技术有橡胶弹性体增韧㊁热致性液晶高分子增韧㊁热塑性树脂增韧㊁超支化聚合物(HBP)增韧和纳米粒子增韧等[26-29]ꎮ然而ꎬ应用橡胶弹性体或热塑性树脂虽可实现环氧树脂增韧ꎬ但同时牺牲了体系的模量㊁耐热性能㊁拉伸性能等ꎻ用热致液晶高分子改性树脂ꎬ韧性提高的同时ꎬ力学性能和耐热性虽没有大的损失ꎬ但原料价格较贵ꎬ树脂很难与它很好相容ꎬ且加工成型难度较大ꎻ纳米粒子具有较高的表面能和特殊的尺寸效应ꎬ增韧效果显著ꎬ但纳米颗粒分散性不好ꎬ极易团聚ꎮ在增韧的同时降低对材料其他性能的负面影响㊁降低成本㊁协同增韧是未来树脂体系增韧的发展方向ꎮ碳纤维与树脂体系间的界面相容性是充分发挥碳纤维力学性能优势ꎬ制备高性能复合材料的核心问题ꎮ目前ꎬ改善树脂体系与碳纤维复合的界面相容性的研究主要从两方面着手:一是对碳纤维进行表面改性ꎮ由于碳纤维极性低ꎬ不利于树脂的粘附ꎬ所以需对碳纤维进行表面氧化改性ꎬ以增加其表面的羟基㊁醛基㊁羧基的数量ꎬ提高极性以便于和树脂粘附[30-34]ꎮ但改性在提高碳纤维表面性能的同时ꎬ会以损失纤维自身的性能作为代价ꎻ二是通过更改树脂与固化剂的配方ꎬ提高树脂体系固化后的极性ꎬ或者令其更容易与碳纤维表面基团反应ꎮ也有相关研究通过在树脂中加入富勒烯㊁碳纳米管等增加其与碳纤维的相容性㊁致密程度等以提高性能ꎮ(3)开拓复合材料成型新工艺ꎬ提升应用水06㊀合㊀成㊀纤㊀维㊀工㊀业㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2019年第42卷平ꎮ成型工艺是实现原材料由半成品到成品的加工手段ꎮ原材料的特性和成品的预期性能决定了成型工艺的类型ꎮ目前ꎬ碳纤维复合材料的成型工艺主要有缠绕成型㊁高温模压成型㊁真空热压罐成型㊁液态成型㊁挤压成型等ꎮ其中ꎬ除缠绕成型工艺(即将浸有树脂的纤维束按一定规律缠绕在一个旋转的芯模上ꎬ然后固化㊁脱模成为复合材料制品ꎬ主要用于制造筒形或球形碳纤维制品等)可以直接使用碳纤维外ꎬ其余工艺均需先将碳纤维制成中间材料ꎬ再与树脂复合成制品ꎮ几种常见的中间材料有碳纤维布㊁预浸料㊁片状模压料(SMC)和短纤ꎬ其中预浸料是最主流的中间材料ꎬ约占树脂基碳纤维消费总量的55%ꎮ碳纤维布一般采用树脂传递模塑(RTM)成型ꎻ预浸料采用高温模压成型㊁真空热压罐成型等ꎻSMC主要采用与非饱和聚酯树脂等模压成型ꎻ而短纤或长纤适合用与热塑性树脂挤压成型ꎮ除了上述几种工艺外ꎬ近年真空导入㊁3iTech感应加热等成型工艺发展迅速ꎮ真空导入成型工艺是一种大尺寸复合材料制件的液体模塑成型技术ꎬ是目前大型风电叶片制造所普遍采取的一种成型工艺[35]ꎬ即通过真空产生的压力把树脂通过预铺的管路压入铺设好的纤维层中ꎬ让树脂浸润增强材料ꎬ最后充满整个模具ꎬ固化成制品的过程ꎮ3iTech感应加热成型是一种将感应器集成在模具中的新型感应加热工艺ꎬ可以在20~400ħ的温度下加工碳纤维材料ꎬ利用热传导的原理通过温度感应器来加热模具表面ꎬ可用于批量化制备小型零部件ꎮ4㊀我国碳纤维产业发展面临的问题我国碳纤维复合材料起步于20世纪60年代ꎬ但发展较为缓慢ꎬ与世界先进水平相比ꎬ我国在碳纤维产业化工艺与装备ꎻ碳纤维复合材料设计㊁制造㊁评价能力ꎻ基础研究与产业配套方面均严重落后[36]ꎮ(1)碳纤维产业化工艺与装备核心技术仍未本质突破经过10余年的探索ꎬ虽然我国碳纤维产业化已初具规模ꎬ初步实现了国产T300级和T700级碳纤维规模化生产ꎬT800级㊁M40J级碳纤维的工程化生产ꎬ但产业化工艺与装置核心技术仍未本质突破ꎮ主要表现在:原丝水平落后ꎬ绝大多数碳纤维企业采用的是二甲基亚砜原丝技术ꎬ质量尚未过关ꎬ其他原丝技术发展相对滞后ꎻ碳纤维性能不高㊁产品稳定性差ꎬ产能利用率不到30%ꎬ且仅能应用于体育休闲等低端领域ꎬ航空航天等高端领域则应用较少ꎻ碳纤维设备生产技术几乎被国外垄断ꎬ且严格限制对我国出口ꎬ如碳化炉㊁石墨化炉等关键设备研发滞后ꎮ(2)碳纤维复合材料设计㊁制造㊁评价能力薄弱碳纤维复合材料设计㊁制造㊁评价是碳纤维应用的基础ꎬ制约着碳纤维产业的发展ꎮ目前ꎬ国内碳纤维复合材料的设计㊁制造㊁评价水平较为薄弱ꎬ主要表现在:未真正掌握复合材料连接㊁疲劳耐久性㊁损伤容限㊁稳定性等具体设计技术和要领ꎻ设计的规范㊁手册ꎬ以及设计分析软件等缺乏ꎻ成型工艺㊁模具技术㊁无损检测㊁制造设备等制造技术发展落后ꎬ如日本㊁德国㊁美国等少数发达国家已掌握70~75g/m2标准的碳纤维预浸料生产技术ꎬ而我国还不能生产低于80g/m2的碳纤维预浸料ꎬ高端碳纤维预浸料主要依靠进口ꎻ碳纤维复合材料设备完全由美国公司垄断ꎬ如自动铺丝机㊁层合固化装备等ꎮ整体上ꎬ我国碳纤维复合材料设计㊁制造㊁评价尚处于起步阶段ꎮ(3)基础研究与产业配套不到位与国外相比ꎬ国内碳纤维及其复合材料的许多基础理论和工程实际问题未获解决ꎬ基础理论方面如分子㊁原子水平上的碳纤维结构演变ꎬ复合材料的加工损伤形成机制等ꎻ工程实践方面如PAN的工程控制㊁复合材料许应值与结构设计许应值的确定原则㊁复合材料大面积整体成型等基础科学问题尚未探明ꎮ除了碳纤维自身原因外ꎬ国内相关配套产业不到位也严重制约了碳纤维产业发展ꎬ表现在:由于原料PAN原液杂质含量较高ꎬ导致碳纤维在生产过程中易产生毛丝缠结ꎬ甚至发生断丝ꎬ造成碳纤维性能不稳定ꎬ离散系数较大ꎻ环氧树脂等热固性树脂基体韧性较差ꎬ造成碳纤维复合材料较低的抗冲击损伤能力ꎬ特别是在制造或使用中遭受意外冲击时ꎬ其内部易出现不易观测到的分层损伤等ꎮ5㊀发展建议碳纤维及复合材料作为一种国民经济和国防建设不可或缺的战略性新材料ꎬ其核心技术要不来㊁买不来㊁讨不来ꎬ尤其是在当前发达国家对中国日益趋严的出口管制形势下ꎬ依托政府㊁企业㊁16第5期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀高㊀奇.新形势下我国碳纤维产业发展探讨行业组织的力量ꎬ将政府与产业界㊁顶层设计与企业实践紧密结合起来ꎬ大力加强自主创新ꎬ整合各方面资源ꎬ才能把创新主动权㊁发展主动权牢牢掌握在自己手中ꎮ(1)政府层面ꎬ应加强引导㊁政策扶持力度ꎬ规范碳纤维行业发展ꎮ一是制定碳纤维行业准入标准ꎬ如产能㊁能耗㊁物耗㊁环保㊁安全等规范要求ꎬ防止低水平重复建设ꎮ二是积极推动企业间跨行业㊁跨区域联合重组ꎬ促进碳纤维上下游产业集约㊁协调发展ꎬ实现资源优化配置ꎬ提高产业链的竞争优势ꎮ三是组织制定和完善碳纤维及其复合材料的产品标准㊁测试方式标准和工程应用设计规范ꎮ(2)企业层面ꎬ应加大产㊁学㊁研协同ꎬ加快碳纤维上下游全产业链关键技术攻关ꎬ提升产业化发展水平ꎮ一是优化工程实验和工程化条件ꎬ解决碳纤维性能不高ꎬ生产不稳定的问题ꎻ二是提高碳化炉㊁石墨化炉㊁恒张力收丝装置等大型关键设备自主化水平ꎻ三是加快预浸料㊁树脂体系的配套研究ꎬ实现碳纤维复合材料低成本㊁高质量发展ꎮ(3)行业组织层面ꎬ应加强组织协调ꎬ调动行业组织成员积好性ꎬ搭建行业内专家技术服务㊁科技成果转化㊁技术引进合作和人员培训等公共服务平台ꎬ如第三方公共检测评价平台㊁复合材料共享数据库平台等ꎬ促进产业链信息与技术交流共享ꎬ推动碳纤维及复合材料良好的产业生态建设ꎮ6 结语我国碳纤维产业经多年努力ꎬ已初步形成碳纤维生产㊁碳纤维复合材料成型㊁下游应用等完整产业链ꎬ基本满足体育休闲等民用领域的应用需求ꎮ但是高性能碳纤维及复合材料在高品质㊁高效率与低成本技术ꎬ产品设计与应用技术等方面相比国外还有较大差距ꎬ在国防军工㊁航空航天㊁汽车㊁轨道交通等领域ꎬ尚未形成成熟完善的整体应用技术方案和产业配套体系ꎬ碳纤维及复合材料的规模化应用仍任重道远ꎮ参㊀考㊀文㊀献[1]㊀齐颖.碳纤维及其复合材料发展现状[J].新材料产业ꎬ2017(12):2-6.[2]㊀中华人民共和国工业和信息化部.加快推进碳纤维行业发展行动计划[Z].2013-10-22.[3]㊀沈协人ꎬ朱本松ꎬ赵家森.我国碳纤维生产现状及对策探讨[J].产业用纺织品ꎬ1990(4):1-5.[4]㊀BAKERDAꎬRIALSTG.Recentadvancesinlow ̄costcarbonfibermanufacturefromlignin[J].JournalofAppliedPolymerScienceꎬ2013ꎬ130(2):713-728.[5]㊀WARRENCDꎬPAULAUSKAFLꎬEBERLECCꎬetal.LowercostcarbonfiberPrecursors[C].Proceedingsofthe17thAnnu ̄alInternationalConferenceonComposites/NanoEngineering.HawaiiꎬUSAꎬ2009.[6]㊀COMPEREALꎬGRIFFITHWLꎬJRLEITTENCFꎬetal.Lowcostcarbonfiberfromrenewableresources[J].OfficeofScientific&TechnicalInformationTechnicalReportsꎬ2001:576-8424.[7]㊀PRAUCHNERMJꎬPASSVMDꎬOTANICꎬetal.Eucalyptustarpitchpretreatmentforcarbonmaterialsprocessing[J].Jour ̄nalofAppliedPolymerScienceꎬ2004ꎬ91(3):1604-1611. [8]㊀PRAUCHNERMJꎬPASSVMDꎬOTANISꎬetal.Biopitch ̄basedgeneralpurposecarbonfibers:Processingandproperties[J].Carbonꎬ2005ꎬ43(3):591-597.[9]㊀QIAOWMꎬHUDAMꎬSONGYꎬetal.Carbonfibersandfilmsbasedonbiomassresins[J].EnergyandFuelsꎬ2005ꎬ19(6):2576-2582.[10]MAXJꎬZHAOGJ.Preparationofcarbonfibersfromliquefiedwood[J].WoodScienceandTechnologyꎬ2010ꎬ44(1):3-11. [11]YANGJꎬNAKABAYASHIKꎬMIYAWAKIJꎬetal.Preparationofisotropicpitch ̄basedcarbonfiberusingHyper ̄coalthroughco ̄carbonationwithethylenebottomoil[J].JournalofIndustri ̄alandEngineeringChemistryꎬ2016ꎬ34:397-404. [12]YANGJꎬNAKABAYASHIKꎬMIYAWAKIJꎬetal.PreparationofpitchbasedcarbonfibersusingHyper ̄coalasarawmaterial[J].Carbonꎬ2016ꎬ106:28-36.[13]张政和ꎬ杨卫民ꎬ谭晶ꎬ等.碳纤维石墨化技术研究进展[J].化工进展ꎬ2019ꎬ38(3):1434-1442.[14]贺福.碳纤维及石墨纤维[M].北京:化学工业出版社ꎬ2010:7-14.[15]张蓬洲.高频加热装置连续化制备石墨纤维的研究[J].新型炭材料ꎬ2002ꎬ17(3):52-55.[16]MICHAELJR.Graphitizationprocess:US3656904[P].1972-04-18.[17]王浩静ꎬ刘颖ꎬ周立公ꎬ等.一种生产石墨化碳纤维的方法及其专用装置:CN117002020C[P].2003-02-06. [18]谭晶ꎬ杨卫民ꎬ黎三洋ꎬ等.激光隧道炉炭纤维超高温石墨化处理方法[J].炭素技术ꎬ2016ꎬ35(6):47-50. [19]杨卫民ꎬ姚良博ꎬ丁玉梅.光隧道炉光束微积分聚焦方法及装置:CN2014105451017[P].2015-04-01.[20]松回至康.碳纤维连续石墨化炉:CN106458595A[P].2017-02-22.[21]张永刚ꎬ钱鑫ꎬ王雪飞.低温石墨化对碳纤维性能的影响[J].高科技纤维与应用ꎬ2016ꎬ41(2):28-31.[22]王字ꎬ张博文ꎬ徐樑华.PAN基碳纤维高温环境下成分结构的温度场效应[J].化工新型材料ꎬ2015ꎬ43(10):101-103.[23]韩赞.PAN基高强高模碳纤维的制备与表征[D].北京.北26㊀合㊀成㊀纤㊀维㊀工㊀业㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2019年第42卷京化工大学ꎬ2011.[24]GREENEMLꎬSCHWARTZRWꎬTRELEAVENJW.Shortresidencetimegraphitizationofmesophasepitch ̄basedcarbonfibers[J].Carbonꎬ2002ꎬ40(8):1217-1226.[25]XUSHꎬZHANGFYꎬLIUSHꎬetal.CatalyticgraphitizaionofMo ̄B ̄dopedpolyacrylonitrile(PAN) ̄basedcarbonfibers[J].JoumalofCentralSouthUniversityofTechnologyꎬ2010ꎬ17(4):703-707.[26]OZTURKAꎬKAYNAKCꎬTINCERT.Effectsofliquidrubbermodificationonthebehaviourofepoxyresin[J].EuropeanPolymerJournalꎬ2001ꎬ37(12):2353-2363.[27]蒋玉梅ꎬ陆绍荣ꎬ龚永洋.联苯型液晶聚氨酯增韧改性环氧树脂的制备与性能[J].高分子材料科学与工程ꎬ2009ꎬ25(9):150-153.[28]MIMURAKꎬITOHꎬFUJIOKAH.ImprovementofthermalandmechanicalpropertiesbycontrolofmorphologiesinPES ̄modifiedepoxyresins[J].Polymerꎬ2000ꎬ41(12):4451-4459.[29]罗凯ꎬ苏琳ꎬ刘俊华ꎬ等.超支化聚酯增韧改性环氧树脂[J].热固性树脂ꎬ2005ꎬ20(1):5-8.[30]PARKJMꎬWANGZJꎬKWONDJꎬetal.Optimumdisper ̄sionconditionsandinterfacialmodificationofcarbonfiberandCNT ̄phenoliccompositesbyatmosphericpressureplasmatreat ̄ment[J].CompositesPartB:Engineeringꎬ2012ꎬ43(5):2272-2278.[31]NAKAMURAKꎬSATOYꎬTAKASET.Analysisofoxidationbehaviorofvapor ̄growncarbonfiber(VGCF)underdryair[J].MaterialsLettersꎬ2016ꎬ180(10):302-304.[32]PAMULAEꎬROUXHETPG.Bulkandsurfacechemicalfunc ̄tionalitiesoftypeIIIPAN ̄basedcarbonfibres[J].Carbonꎬ2003ꎬ41(10):1905-1915.[33]GAOBꎬZHANGRꎬHEMꎬetal.Effectofamultiscalerein ̄forcementbycarbonfibersurfacetreatmentwithgrapheneox ̄ide/carbonnanotubesonthemechanicalpropertiesofrein ̄forcedcarbon/carboncomposites[J].CompositesPartA:Ap ̄pliedScience&Manufacturingꎬ2016ꎬ90(11):433-440.[34]WANGCꎬLIJꎬSUNSꎬetal.Electrophoreticdepositionofgraphemeoxideoncontinuouscarbonfibersforreinforcementofbothtensileandinterfacialstrength[J].CompositesScience&Technologyꎬ2016ꎬ135(10):46-53.[35]郝志勇.真空导入工艺在风电叶片领域的应用与研究[J].天津科技ꎬ2011ꎬ38(3):28-30.[36]戎光道.我国碳纤维产业发展现状及建议[J].合成纤维工业ꎬ2013ꎬ36(2):41-45.DiscussionondevelopmentofChinacarbonfiberindustryundernewsituationGAOQi(BalingPetrochemicalCompanyꎬSINOPECAssetsManagementCorporationꎬYueyang414014)Abstract:Theproductionꎬsupplyanddemandanddownstreamapplicationofcarbonfiberswerediscussedꎬaswerethere ̄searchprogressofcarbonfibersandtheircompositestechnologyandtheproblemsinthedevelopmentofcarbonfibersindustryinChina.Chinaᶄstheoreticalcarbonfiberproductioncapacitywas26.1kt/aꎬtheoutput9.0ktꎬtheoperatingrate34%ꎬtheim ̄port(includingpreprepreg)22.0ktꎬandtheapparentconsumption31.0ktin2018.CarbonfibercompositesweremainlyusedinleisuresportsinChinaꎬaccountingfor52%ꎬwhiletheywerelessusedinaerospaceandtransportation.Thetechnologicalre ̄searchofcarbonfibersandtheircompositeshasbeenmainlyfocusedonreducingtheproductioncostofcarbonfiberꎬimprovingtheperformanceofcarbonfiberandthetoughnessofresinsystemꎬenhancingtheinterfacialcompatibilitybetweenresinsystemandcarbonfibercompositeꎬandraisingtheapplicationlevelthroughdevelopingnewformingtechnologyofcompositematerials.ComparedwiththeadvancedlevelintheworldꎬChinalagsbehindincarbonfiberindustrializationprocessandequipmentꎬcar ̄bonfibercompositedesignꎬmanufacturingandevaluationꎬbasicresearchandindustrialsupporting.Itwassuggestedthatthegovernmentshouldstrengthentheguidanceandpolicysupporttostandardizethedevelopmentofcarbonfiberindustryꎻtheenter ̄priseshouldenhancethecooperationofproductionꎬlearningandresearchandacceleratethekeytechnologyresearchofcarbonfi ̄beranditscompositematerialindustrychainꎬandraisethelevelofindustrializationdevelopmentꎻandtheindustryorganizationshouldstrengthentheorganizationandcoordinationꎬbuildapublicserviceplatformꎬandpromoteagoodindustrialecologicalconstructionofcarbonfibersandcompositematerials.Keywords:carbonfiberꎻcarbonfibercompositematerialꎻproductionꎻsupplyanddemandꎻapplicationꎻresearchprogressꎻdevelopmentadvice36第5期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀高㊀奇.新形势下我国碳纤维产业发展探讨。
成型工艺对中温固化环氧树脂碳纤维复合材料性能影响乌云其其格【摘要】对3233中温固化环氧树脂黏度-温度曲线、凝胶时间-温度曲线和DSC 进行了分析.采用热熔法制备了其碳布预浸料,通过热压罐法、模压法和真空袋法成型复合材料层合板,进行性能测试并对比.结果表明,3233中温固化树脂固化工艺为(125 ±5)℃固化90~120 min.采用热熔法制备的3233/CF3052中温固化环氧碳布预浸料具有良好工艺性能.模压成型和热压罐成型的层合板力学性能相当,略高于真空袋成型.3233树脂具有良好的韧性,夹层结构的抗滚筒剥离强度高,其预浸料可与蜂窝直接共固化.【期刊名称】《高科技纤维与应用》【年(卷),期】2018(043)006【总页数】6页(P45-50)【关键词】环氧树脂;中温固化;碳布;复合材料;成型工艺;性能【作者】乌云其其格【作者单位】中航复合材料有限责任公司,北京 101300【正文语种】中文【中图分类】TQ342+.740 引言复合材料构件的制造是材料形成与构件成型同时完成的,构件性能与制造工艺紧密相关,即复合材料构件的质量在很大程度上依赖于其制造技术[1-3]。
因为复合材料构件在制造工艺过程中,伴随着物理的、化学的或物理化学的变化,要结合这个特点制定合理的成型工艺和参数,控制复合材料成型工艺过程,使工艺质量得到保证[4-5]。
复合材料的成型工艺是复合材料工业发展的基础和条件。
随着复合材料应用领域的拓宽,成型工艺日益完善,新的方法不断涌现。
除了缠绕、拉挤、树脂传递模塑成型(RTM)系列、手糊成型、喷射成型等成型方式可直接使用纤维增强材料,热压罐、模压、真空袋等成型工艺通常采用预浸料[6-8]。
预浸料可按纤维长短分为长纤维预浸料和短切纤维预浸料。
长纤维预浸料按纤维排列形式分为单向和织物预浸料。
预浸料由增强材料和树脂基体组成。
预浸料用常用增强材料主要有三种:碳纤维及其织物、玻璃纤维及其织物和芳纶及其织物。
2022年航空新材料行业Q3总结航空产业化大势所趋,相关产业链全面受益下游多极增长保障需求航空产业化大势所趋,相关产业链全面受益航空装备是国家综合实力的体现:科索沃战争是第一次仅以空中力量打赢的战争,向世人展示了利用现代航空装备具备的远程投送、精准制导、隐蔽突防等手段摧毁一个国家的政治、经济、军事目标的能力。
航空装备的质量展现了国家科技力量的强弱,而国防实力的强弱则直接与航空装备的体量挂钩。
航空装备由航空器整机、航空发动机、机载设备与系统以及航空零部件四个部分组成。
据前瞻产业研究院2019年数据显示,中国航空器整机在航空装备中占比高达56.1%,产业规模约为524亿元;其次是航空零部件,占比28.7%,产业规模为268亿元;航空装备发展受战略规划支持:自国家将航空装备列入战略新兴产业重点方向以来,中国制造2025明确指出了中国航空装备未来的发展重点:1)在飞机产业,推进干支线飞机、通用飞机、直升机和无人机的产业化;2)在航空发动机产业,突破高推重比、先进涡轮(轴)发动机及大涵道比涡扇发动机技术,且安全性、可靠性和维修性不低于国外同级别飞机的最先进动力装置的水平;3)在机载设备与系统产业,开发先进的机载设备及航电、飞控、机电系统,突破航空新材料关键技术,形成自主完整的航空产业链。
不论在军用还是民用航空领域,相关产业链及参与企业均有望在政策大力支持的背景下保持高成长。
航天产业再造增长曲线航天工业概述:航天工业是研制于生产航天器、航天运载器及其所载设备和地面保障设备的工业,中国的航天产业形成了独立的行业,承担了大部分导弹武器的研制。
我国的航天产业市场主体主要包括国家队和民营企业,其中国家队包括了航天军工央企如航天科工和航天科技,国家科研机构以及其他国企,民营企业主要是市场化的商业航天公司等;航天装备增速快于其他装备:航天产业具体可分为导弹、火箭、卫星、空间飞船以及空间探测器五大类。
其中导弹十四五期间增速较快,根据中航证券军工组的相关研究报告,导弹属于一次性耗材,使用即消失,作战效果好且扩产的难度较低,同时飞机、舰船、坦克等装备是导弹武器的平台,为了战争需求需要维持一定规模的安全库存。
塑㊀料㊀工㊀业
2019年㊀
㊀
我国年产4000万t废塑料目前仅有34家规范企业
1月3日ꎬ按照«废塑料综合利用行
业规范条件»㊁
«轮胎翻新行业准入条
件»㊁«废轮胎综合利用行业准入条件»及相关公告管理办法的要求ꎬ工信部公示了第二批符合废塑料㊁废矿物油㊁建
筑垃圾㊁废旧轮胎综合利用行业规范条件的企业名单ꎮ
«废塑料综合利用行业规范条件»规
定了三大类企业准入门槛ꎬ这些门槛的设置能有效地清除一些不合规范的企业ꎮ每年有3月31日和9月30日两次申请机会ꎮ
«规范条件»具有白名单性质ꎬ而不是强制ꎬ通过评审的企业可以称得上是行业模范ꎮ规范化企业在税收㊁科研㊁产业发展方面容易得到政策倾斜ꎮ例如ꎬ现在大气治理越来越严格ꎬ雾霾严重的情况下会采取错峰生产㊁乃至停产等措施ꎬ但对规范化企业有可能不受此类措施的约束ꎮ
企业准入门槛高
1.PET再生瓶片类新建企业:年废塑料处理能力不低于30000tꎬ已建企业则不低于20000tꎮ
2.废塑料破碎㊁清洗㊁分选类新建企业:年废塑料处理能力不低于30000tꎬ已建企业不低于20000tꎮ
3.塑料再生造粒类新建企业:年废
塑料处理能力不低于5000tꎬ已建企业不低于3000tꎮ
资源综合利用及能耗1.塑料再生加工相关生产环节的综合电耗低于500kW h/t废塑料ꎮ
2.PET再生瓶片类企业与废塑料破
碎㊁清洗㊁分选类企业的综合新水消耗低于1 5t/t废塑料ꎮ塑料再生造粒类企业的综合新水消耗低于0 2t/t废塑料ꎮ
工艺与装备
1.PET再生瓶片类企业ꎮ应实现自
动进料㊁自动包装与加工过程的自动控制ꎮ
2.废塑料破碎㊁清洗㊁分选类企业ꎮ应采用自动化处理设备和设施ꎮ
3.塑料再生造粒类企业ꎮ应具有与
加工利用能力相适应的预处理设备和造粒设备ꎮ
目前的规范化企业并不多ꎬ按照这个标准ꎬ提高废塑料行业的整体水平ꎬ树立标杆ꎬ获得后续政策支持ꎮ但实际上ꎬ该政策只利于龙头企业投资这一领域ꎬ小作坊模式将会在环保整治浪潮中被淘汰ꎮ
我国每年产生的塑料废弃物接近
4000万tꎬ再生利用量超过2000万tꎬ从
事废塑料回收和加工利用企业数以万计ꎬ遍布全国各地ꎮ然而仅有34家废塑料综合利用规范企业ꎬ难道其余的企业都是不规范的?难道其余的废塑料企业就是传说中的小㊁散㊁乱㊁污的废塑料作坊吗?
答案:当然不是!这个行业一定有几百家甚至更多的规范企业!
这些企业不同于四处污染的废塑料小作坊ꎬ不是环保督查的重点对象ꎬ多数企业进行环保技术㊁设备升级改造ꎻ部分企业根据原料情况阶段性生产ꎬ产量约为20%~50%产能ꎻ探索自建国内回收体系ꎬ加大原料来源ꎻ探索新型集成型园区建设ꎻ全球投资力度加大ꎬ寻找新的海外加工基地ꎬ如东南亚㊁东欧㊁东非㊁部分发达国家和地区等ꎮ
中航高科南通民用复合材料生产线建成投产㊀将降低高性能碳纤维
复合材料成本
1月11日ꎬ中航高科与航空工业复
材共同建设的南通民用复合材料生产线建成投产ꎮ继南通大尺寸蜂窝生产线之后ꎬ该生产线的建成投产促进了航空工业复材民用复合材料产业发展㊁推动公司在成为国内领先的民用复合材料供应商的道路上又迈出了坚实一步ꎮ
中航高科民用复合材料生产线建成投产ꎬ将显著降低高性能碳纤维复合材料成本ꎬ大幅提升复合材料构件的制造效率ꎬ为实现高效成型碳纤维复合材料大规模应用创造了条件ꎬ为把中航高科打造成具有国际竞争力的航空新材料和高端智能装备制造企业做出了新贡献ꎮ
深材科技推出纳米改性聚氨酯
环氧树脂系新产品
深材科技公司推出甲基四氢苯酐㊁
甲基六氢苯酐专用(高玻璃化转变温度Tg㊁高机械性能㊁高导热系数)纳米改性聚氨酯环氧树脂系ꎮ
甲基四氢苯酐㊁甲基六氢苯酐是常用的酸酐固化剂ꎬ主要与双酚A型环氧树脂配合使用ꎮ二者生成的固化物具有高Tg㊁高机械性能㊁高导热系数等优点ꎬ但最大的缺点是太脆ꎬ限制了其在很多领域的应用ꎬ导致一些企业只能以牺牲产品品质为代价ꎬ来应对市场的需求ꎮ为进一步改善部分性能ꎬ一些企业会在环氧树脂里添加不同增韧剂ꎬ虽然韧性得到了提高ꎬ但Tg值却有不同程度下降㊁机械性能相应减弱㊁导热系数也不太理想ꎮ
深材团队从2016年开始深入研究甲基四氢苯酐㊁甲基六氢苯酐与环氧树脂完全固化后太脆这一最大缺点ꎬ经过两年多时间数千次研发测试ꎬ于2018年10月成功推出行业领先产品:纳米改性聚氨酯环氧树脂系(SC ̄1288N㊁SC ̄1288P㊁SC ̄1288CF)ꎮ该产品与甲基四氢苯酐㊁甲基六氢苯酐配合使用生成的固化物具备高Tg㊁高机械性能㊁高导热系数的特点ꎬ问世以来已有多家企业批量购买ꎬ
测试综合力学性能均有不同程度提高ꎮ
茂名石化:全密度装置提前完成
全年产量任务
截至2018年12月25日ꎬ茂名石化化工分部全密度装置累计生产聚乙烯产品14 5万tꎬ提前6天完成全年目标产量ꎮ为做好装置的安全稳定生产ꎬ车间强化生产管理ꎬ加强专业检查与考核力度ꎬ各专业组每天下现场ꎬ查DCS操作记录ꎬ发现问题及时处理ꎻ强化 三大纪律 管理和操作培训ꎬ提高员工责任意识及操作技能ꎬ杜绝 一伸手 操作带来的生产波动ꎻ强化设备巡检维护ꎬ做好 计划性 维修ꎬ确保设备运行达到最佳状态ꎮ
面对日益激烈的市场竞争环境ꎬ全密度车间在做好通用料生产的同时ꎬ坚持以客户需求为导向ꎬ贴近市场ꎬ积极开发生产适销对路的新产品ꎬ先后开发了柔性CPE薄膜料PE ̄LF234PB㊁人造草线型聚乙烯树脂PE ̄LT272等5个牌号的新产品ꎬ其中人造草线型聚乙烯树脂更是填补了国内空白ꎮ
841。