2电阻焊—点焊原理
- 格式:ppt
- 大小:8.05 MB
- 文档页数:27
电阻点焊机原理
电阻点焊机是一种利用 Joule 热效应实现金属材料焊接的加热方法。
它的工作原理是利用电流通过工件的接触面产生瞬时高温,将工件瞬间加热至熔点,然后施加一定的压力使两个工件进行焊接。
电阻点焊机的主要组成部分包括电源、焊接头和控制系统。
电源产生高电流和低电压,提供能量给焊接头。
焊接头是由两个电极组成,通常是铜制的,它们通过工件接触面传递电流。
控制系统用于控制焊接过程中的电流和时间。
在焊接过程中,通过控制系统设置焊接电流和时间,并将工件夹持在焊接头之间。
当电流通过工件的接触面时,由于金属的电阻,电流会产生热量。
这些热量会使接触面升温,并迅速达到熔点。
同时,焊接头施加的压力会确保两个工件之间的接触面保持紧密,并促进金属的熔化和融合。
在焊接完成后,焊接头会迅速冷却,使焊接处凝固和固化。
这种焊接方法通常用于连接金属片或线材,如焊接汽车车身零部件、制造金属容器和制造电子元件等。
总之,电阻点焊机利用 Joule 热效应通过控制电流和时间,将金属材料加热至熔点并施加压力实现焊接。
这种焊接方法具有效率高、速度快、热输入少和焊接质量好等优点,因此在工业生产中得到广泛应用。
电阻焊的原理
电阻焊是一种常见的焊接方法,它利用电阻加热原理将金属材料焊接在一起。
电阻焊的原理主要包括电阻加热、热传导和压力焊接等过程。
下面我们将详细介绍电阻焊的原理及其相关知识。
首先,电阻焊的原理是利用电流通过金属材料时产生的电阻加热效应。
当电流通过金属材料时,由于金属材料的电阻会产生热量,使金属材料局部升温。
这种电阻加热效应可以使金属材料迅速达到焊接温度,从而实现焊接的目的。
其次,电阻焊还涉及热传导过程。
在电阻焊中,通过电阻加热使金属材料局部升温后,热量会沿着金属材料传导,使相邻的金属材料也受热。
这样,整个焊接区域都可以达到适当的焊接温度,从而实现金属材料的熔接和焊接。
另外,电阻焊还包括压力焊接过程。
在电阻焊中,除了电阻加热和热传导外,还需要施加一定的压力。
通过施加压力,可以使金属材料在达到焊接温度时更加紧密地接触在一起,从而实现更好的焊接效果。
压力还可以帮助排除焊接区域的氧化物和杂质,保证焊接质量。
总的来说,电阻焊的原理是通过电阻加热、热传导和压力焊接等过程实现金属材料的焊接。
电阻焊具有焊接速度快、焊接强度高、焊接成本低等优点,因此在工业生产中得到广泛应用。
同时,电阻焊也有其局限性,例如只能焊接导电性材料、对金属材料的表面质量要求较高等。
因此,在实际应用中需要根据具体情况选择合适的焊接方法。
总之,电阻焊的原理是基于电阻加热、热传导和压力焊接等过程,通过这些过程实现金属材料的焊接。
了解电阻焊的原理有助于我们更好地掌握电阻焊的工艺和技术,提高焊接质量和效率,推动工业生产的发展。
电阻焊原理和焊接工艺电阻焊是一种常见的金属连接技术,它通过电阻加热金属部件,使其达到熔化温度并通过力使其连接在一起。
电阻焊可以分为两种类型:电阻点焊和电阻缝焊。
电阻点焊是一种将两个或多个金属部件连接在一起的焊接方法。
焊接过程中,需要将两个或多个金属部件放置在电极之间,并施加一定的持续压力。
然后通过电流通过电极,形成电路。
电流通过电阻热开始在接触表面产生热量,直到金属达到熔化温度并融合在一起。
随着材料冷却,金属部件会被牢固地连接在一起。
电阻点焊适用于连接薄板材料,如汽车制造业中的车身件。
电阻缝焊是一种焊接两个金属件的方法,这两个金属件通常是长条形的。
焊接过程中,金属件被放置在一对电极之间,并施加一定的持续压力。
随后通过电流通过电极,形成电路。
电流通过电阻加热产生热量,使接触表面达到熔化温度并融化在一起形成一条缝。
随着材料冷却,焊接部分被连接在一起。
电阻缝焊通常用于连接钢筋、管道和其他长条形金属件。
电阻焊有一些优点,例如焊接速度快,工艺简单,可以自动化,焊接质量稳定等。
然而,它也有一些局限性,例如焊接材料受限,只能焊接导电材料,金属件厚度限制较大,焊接位置受限等。
此外,焊接过程中可能产生一些污染物,如焊接烟和气体。
在进行电阻焊时,需要注意以下几点。
首先,应选择适当的电极形状和材料,以确保良好的接触,并且能够传递所需的电流。
其次,在进行焊接前应清洁金属表面,以确保良好的接触。
还应控制电极压力和焊接时间,以确保获得所需的焊接质量。
此外,还应注意焊接电流和持续时间,以避免过热金属件,并防止产生过多的烟。
最后,应根据具体要求对焊接接头进行检测和评估。
总而言之,电阻焊是一种常见的金属连接技术,它有着简单的原理和工艺。
它被广泛应用于许多领域,如汽车制造、家电制造和金属结构等。
随着技术的进步,电阻焊将继续发展,并为更多的应用领域提供高效和可靠的连接方法。
电阻焊的基本原理一、概述电阻焊是将被焊工件压紧于两电极之间,并通以电流,利用电流流经工件接触面及邻近区域产生的电阻热将其加热到熔化或塑性状态,使之形成金属结合的一种方法。
电阻焊方法主要有四种,即点焊、缝焊、凸焊、对焊,见图6—1。
图6—1 主要电阻焊方法点焊时,工件只在有限的接触面上。
即所谓“点”上被焊接起来,并形成扁球形的熔核。
点焊又可分为单点焊和多点焊。
多点焊时;使用两对以上的电极,在同一工序内形成多个熔核。
缝焊类似点焊。
缝焊时,工件在两个旋转的盘状电极(滚盘)间通过后,形成一条焊点前后搭接的连续焊缝。
凸焊是点焊的一种变型。
在一个工件上有预制的凸点,凸焊时,一次可在接头处形成一个或多个熔核。
对焊时,两工件端面相接触,经过电阻加热和加压后沿整个接触面被焊接起来。
电阻焊有下列优点:(1)熔核形成时,始终被塑性环包围,熔化金属与空气隔绝,冶金过程简单。
(2)加热时间短,热量集中,故热影响区小,变形与应力也小,通常在焊后不必安排校正和热处理工序。
(3)不需要焊丝、焊条等填充金属,以及氧、乙炔、氩等焊接材料,焊接成本低。
(4)操作简单,易于实现机械化和自动化,改善了劳动条件。
(5)生产率高,且无噪声及有害气体,在大批量生产中,可以和其他制造工序一起编到组装线上。
但闪光对焊因有火花喷溅,需要隔离。
电阻焊缺点:(1)目前还缺乏可靠的无损检测方法,焊接质量只能靠工艺试样和工件的破坏性试验来检查,以及靠各种监控技术来保证。
(2)点、缝焊的搭接接头不仅增加了构件的重量,且因在两板间熔核周围形成夹角,致使接头的抗拉强度和疲劳强度均较低。
(3)设备功率大,机械化、自动化程度较高,使设备成本较高、维修较困难,并且常用的大功率单相交流焊机不利于电网的正常运行。
随着航空航天、电子、汽车、家用电器等工业的发展,电阻焊越来受到社会的重视,同时,对电阻焊的质量也提出了更高的要求。
可喜的是,我国微电子技术的发展和大功率可控硅、整流器的开发,给电阻焊技术的提高提供了条件。
电阻焊的原理电阻焊是一种常见的金属焊接方法,它利用电流通过工件产生的热量来熔化焊接材料,从而实现金属的连接。
电阻焊具有焊接速度快、焊接质量高、焊接成本低等优点,因此在工业生产中得到广泛应用。
下面我们将深入探讨电阻焊的原理及其工作过程。
首先,电阻焊的原理是利用电阻加热的原理进行的。
在电阻焊过程中,通过电流在工件之间产生电阻加热,使得工件表面温度升高,最终达到熔化焊接材料的目的。
这种加热方式具有高效、均匀的特点,能够确保焊接接头的质量和稳定性。
其次,电阻焊的原理还涉及到焊接材料的选择和工件表面的处理。
在电阻焊过程中,选择合适的焊接材料对于焊接质量至关重要。
焊接材料的选择应考虑到工件的材质、焊接接头的强度要求等因素,以确保焊接接头的质量。
此外,工件表面的处理也是影响电阻焊质量的重要因素,良好的表面处理能够提高焊接接头的质量和稳定性。
另外,电阻焊的原理还包括焊接参数的控制。
在电阻焊过程中,电流、电压、焊接时间等参数的控制对于焊接接头的质量至关重要。
合理的焊接参数能够确保焊接接头的熔化均匀、焊接质量稳定,从而提高焊接效率和质量。
最后,电阻焊的原理还涉及到焊接设备的选择和维护。
选择合适的电阻焊设备对于确保焊接质量和效率至关重要。
此外,定期对焊接设备进行维护和保养,能够延长设备的使用寿命,确保焊接质量的稳定性。
综上所述,电阻焊的原理涉及到电阻加热、焊接材料选择和工件表面处理、焊接参数控制以及焊接设备的选择和维护等多个方面。
只有全面理解和掌握电阻焊的原理,才能够确保焊接质量和效率,满足工业生产的需求。
希望本文能够帮助大家更深入地了解电阻焊的原理及其工作过程。
电阻焊接原理与电阻点焊过程四个阶段描述电阻焊虽然具有劳动条件好,不需另加焊接材料,操作简便,易实现机械化等优点;但也受到耗电量大、电极棒更换、被焊材料导电性能、适用的接头形式、以及可焊工件厚度(或断面尺寸)等因素的限制。
在动力电池的成组工艺中,电阻焊作为一种比较成熟的工艺,被在一些场合应用,比如单体与母排的焊接,电池极耳与并联导电条的连接等等。
由于设备简单,成本较低,在电池行业发展早期,应用比较多。
虽然近年有逐步被更先进的激光焊接和超声焊接替代的趋势……不管怎样,整理一份资料,了解一下这位成型工艺界的前辈。
电阻焊虽然具有劳动条件好,不需另加焊接材料,操作简便,易实现机械化等优点;但也受到耗电量大、电极棒更换、被焊材料导电性能、适用的接头形式、以及可焊工件厚度(或断面尺寸)等因素的限制。
电阻焊接原理电阻焊(resistance welding)是把工件置于一定的电极力夹紧间,然后利用接电流通过件所析出的电阻热使被材料熔化,待冷却后形成可靠点的接方法。
电阻焊基本形式如下图所示,将即将接的材料3 夹紧于两电极2 之间,在施加一定的接压力后,接变压器1 在接区释放较大的电流,并持续一定的时间,直到件的接触面间出现了真实的接触点后,再继续加大接电流让熔核持续地生长,此时接材料接触位置的原子不断被激活后形成熔化核心 4。
最后接变压器停止通电,被融化件材料遇冷凝固为点。
利用电流流经工件接触面及邻近区域产生的电阻热效应将其加热到熔化或塑性状态,使之形成金属结合的一种方法。
电阻焊方法主要有四种,即点、缝、凸、对。
电阻焊点的热源是电流通过接区产生的电阻热。
电阻焊点时,电流通过件产生的热量可由下式确定:Q=I^2RtQ——产生的热量(J);I——接电流(A);R——两电极之间的电阻(Ω);T——通电时间(s)。
上述公式表明决定电阻焊接的热量是焊接电流、两电极之间的电阻及通电时间三大因素。
但其中热量的大部分是用来形成点焊的焊点,而少部分却分散流失于焊点周围的金属中。
电阻焊焊接原理电阻焊是一种常见的金属焊接方法,利用电阻加热原理实现金属材料的连接。
它是通过在焊接区域施加一定的电流和电压,使焊接区域产生高温,使金属材料融化并形成焊接接头的过程。
电阻焊的原理是利用电流通过金属材料时会产生电阻热,将电能转化为热能。
在电阻焊接过程中,焊接区域的金属材料处于电流通过的路径上,因此会受到电能的加热作用。
当电流通过金属材料时,由于金属材料的电阻较大,电能会被转化为热能,使焊接区域温度升高。
在电阻焊接中,通常需要使用两个电极将电流引入焊接区域。
这两个电极会与金属材料接触,并施加一定的压力。
当电流通过电极和金属材料时,由于金属材料的电阻较大,电能会被转化为热能,使焊接区域的温度升高。
同时,由于电极施加了一定的压力,焊接区域的金属材料会被挤压,使其表面接触更紧密,有利于电阻热的传导和焊接接头的形成。
电阻焊的原理基于材料的电阻和电热效应。
金属材料的电阻决定了电阻焊的效果,电阻越大,焊接区域的温度升高越快。
而电热效应是指电能转化为热能的过程,它使焊接区域的金属材料发生熔化,形成焊接接头。
因此,在电阻焊接中,选择合适的金属材料和电流参数非常重要,以保证焊接接头的质量。
电阻焊具有焊接速度快、焊接接头强度高等优点,广泛应用于汽车、航空航天、电子电器等领域。
在汽车制造中,电阻焊常用于焊接车身零部件和车身骨架,以确保车身的稳固和安全性。
在航空航天领域,电阻焊被用于焊接飞机结构件和航天器零部件,以保证飞行器的结构完整和安全性。
在电子电器制造中,电阻焊常用于焊接电路板和元器件,以确保电子产品的可靠性和性能。
电阻焊是一种利用电阻加热原理实现金属焊接的方法。
它通过施加一定的电流和电压,使焊接区域产生高温,使金属材料融化并形成焊接接头。
电阻焊具有焊接速度快、焊接接头强度高等优点,广泛应用于各个领域。
在实际应用中,需要根据具体的焊接要求选择合适的金属材料和电流参数,以确保焊接接头的质量和可靠性。
电阻点焊焊接原理及焊接技术电阻点焊是通过低压电流流过夹紧在一起的两块金属产生电阻热,局部熔化并施加压力使之焊接在一起的焊接方法。
电阻点焊有许多优点:(1)焊接成本低,不消耗焊丝、焊条和气体。
(2)焊接时不产生烟雾或蒸汽。
(3)焊接部位灵活,且适合焊接镀锌铁板。
(4)焊接速度快,质量高,受热范围小,工件不易变形。
(5)在承载式车身制造及修理中最常用,尤其适合薄板多层焊接。
一、电阻点焊焊接原理利用大电流流过接触点使其发热,在外力作用下使接触点金属熔化,冷凝后形成焊点。
二、电阻点焊机构成主要有变压器、控制器、电极臂及电极三部分构成。
1.变压器变压器的功能是将380V的电压变为7.2-13V的低电压供电阻点焊使用,变压器与电极臂之间用电缆相连,是供电电源。
2.控制器控制器可以调节变压器输出的焊接电流的大小,焊接时间的长短。
一般汽修钣金作业时,焊接时间在1/6-1s之间为宜。
焊接电流的大小由焊接金属板的厚度和电极臂长度来决定。
焊接开关分脚踏开关和手动开关,中间的铜板用来接电缆线,时间调节为0.00数字调节,由加减开关调节。
水管用来传输冷却水。
电压表指示输入电压,焊接指示在焊接时间内点亮,焊接完成后熄灭。
档位用来调节输出电流的大小,焊接时严禁调节。
进水口、出水口用来输入、输出冷却水。
3.电极及电极臂电极利用电极臂向被焊金属施加压力,并通过焊接电流。
我们用的挤压型电阻点焊机一般无增力机构,完全由操作者来控制压力的大小。
电极臂可以根据焊接部位的不同来选择。
三、电阻点焊焊接技术1.焊件的表面处理点焊板件的清洁部位,不仅在于两焊件之间,与点焊电极的接触点同样也需要认真打磨干净(包括板材表面上的油漆)。
对于不便清除的油污,还可以采取火焰法轻烧轻燎,然后再将板材表面用钢丝刷或钢丝磨轮打磨干净(能否用火焰法应视具体情形而定)。
焊件表面的杂质会妨碍电流通入焊件,造成焊接电流减小,影响焊接质量,所以焊接前必须将这些杂物从需要焊接的表面上清除干净。