CRH3型动车组受电弓故障分析及改进措施
- 格式:docx
- 大小:76.27 KB
- 文档页数:10
CRH3型电动车组受电弓系统常见故障处置与日常维护摘要:受电弓系统是动车组做到安全运行的关键系统之一,是连接接触网和动车组之间的纽带,也是从接触网上为动车组传递并获取能源的唯一系统。
因此,为了避免受电弓系统在动车组运行途中产生故障,我们必须增强日常维护以及能够及时有效的处理常见故障,以保证动车组的运行安全,本文就CRH3型动车组受电弓系统日常维护以及故障检修处理为例进行探讨。
关键词:动车组、受电弓、日常维护、常见故障处置一、受电弓的发展和构造从1958年修建电气化铁路开始,到2010年高速化的实现,中国铁路受电弓经历50余年的发展,走过了一段不平凡的路。
动车因具有清洁环保、高效节能等优点,逐步成为今后铁路交通发展的一个主导方向。
伴随着动车的发展与推广,受电弓系统作为其核心系统之一,其战略地位日益凸显。
影响动车组正常运行的关键因素就是受电弓系统能否正常运行。
受电弓系统安装在动车的顶部,动车运行时会上升并与接触网接触,从接触网上接通电流,然后将接通的电流通过该系统向动车的底部传送,使动车获得能源。
动车停止运行时,通过驾驶员的操作使受电弓系统下降,回到原安装位置,切断能源供应。
受电弓系统是动车组与接触网之间衔接桥梁,电能正式通过这个桥梁源源不断的输送至动车组的动力机组,进而在转换为动能。
如果将接触网系统比作传统火车的煤炭,那么受电弓系统就是内燃缸与活塞。
受电弓可分单臂弓和双臂弓两种,均由滑板、上框架、下臂杆(双臂弓用下框架)、底架、升弓弹簧、传动气缸、支持绝缘子等部件组成。
菱形受电弓,也称钻石受电弓,以前非常普遍,后由于维护成本较高以及容易在故障时拉断接触网而逐渐被淘汰,近年来多采用单臂弓。
负荷电流通过接触线和受电弓滑板接触面的流畅程度,它与滑板与接触线间的接触压力、过渡电阻、接触面积有关,取决于受电弓和接触网之间的相互作用。
二、CRH3型动车组简介CRH3,全称:China Railway Highspeed 3,动车组为4动4拖8辆编组,采用电力牵引交流传动方式,由2个牵引单元组成,每个牵引单元按两动一拖构成。
CRH3型动车组牵引系统维护分析摘要:重点介绍了牵引系统原理分析与主功能组的电路图分析,主要涉及内容为受电弓、牵引变压器、牵引变流器、牵引电机、主断路器、牵引电机、冷却风机等各部件的组成及检修维护分析。
在车组运营维护过程中,根据系统原理组成、检修维护经验、客户维护资料进行相关故障排除,以达到故障的及时处理又达到预防性检修维护目的。
关键词:CRH3型动车组,牵引系统,控制原理,维护。
一、受电弓维护分析1、CRH3动车组受电弓故障类型受电弓上臂风管断裂,弓头悬挂失效等惯性故障,分析认为风管故障的原因如下:(1)风管绑扎间距过大,受气动载荷或异物冲击作用容易造成反复的折弯变形,加上该管伟铝塑管,材质较硬、脆,从而更易产生疲劳断裂,造成自动降弓。
(2)风管连接处采用的快速接头容易漏气,造成自动降弓。
根据故障类型不同,前期根据故障现象制定了应急方案:采取了将绑扎间距从40cm降低到20cm的,有效降低了气动载荷和异物冲击对风管的损伤,目前已完成全部更换工作,该类故障基本得到了有效控制。
为彻底解决该问题,将由株机公司按照ADD风管国产化方案将西门子提供的受电弓全部改为螺纹接头和软管的方案。
2、受电弓日常维护2.1受电弓碳滑条检查 I1 5000公里/2天目测碳条:⑴将碳条表面清理干净,目视检查碳条外观状态。
观察碳条有无明显磨损、裂纹,碳条有无明显烧蚀以及剥离。
⑵当目测检查发现明显的疑点时需要对碳条做全面的检查。
⑶检查炭条厚度符合要求,当炭滑板厚度不足24mm 时,更换碳滑条。
⑷如果发现距离炭条横向端头不足200mm范围内存在1处横向裂纹,必须更换碳滑条。
注意:双滑板受电弓更换碳滑条时,必须2条一起更换。
2.2受电弓检查 I2 20000公里/10天检查项目如下:①正常磨耗到限;②超过1处横向裂纹并连续到了碳条基板(当横向裂纹接近碳滑板端部200mm时,有1处裂纹的碳滑板必须更换);③纵向贯穿性裂纹;④滑板受冲撞后扭曲变形导;⑤边缘处磕碰导致滑板大面积掉块(接近宽度的1/2);⑥铝托架严重烧损(面积接近高度的1/2);二、主断路器维护分析2.1 AC主断路器检查M1 100000公里/45天目视检查断路器,尤其是绝缘体陶瓷部分(A) 的状况(瓷漆应无裂开或损坏)和 BTE 接地开关的接头 (B)。
动车组受电弓故障与处理技术分析摘要:动车组在实际的运行过程中,一般情况下受电弓的故障频率较高,比如,其关键的装备结构为碳滑板装置,动车在部分环境的行驶中碳滑板装置需要不断进行功能上的调节,容易造成装置的损耗加快,进而出现受电弓运行上的故障。
所以,在此情况下需要进行相关检测技术的完善,一方面保证动车装置的正常运行,一方面降低动车行驶中的故障频率,进而提高动车行驶的安全性以及动车安全检测的有效性。
通过检测技术的改进还能够减少动车运行的相关经济支出,从而保证动车运行的经济效益。
关键词:动车行驶;受电弓;碳滑板;故障分析受电弓作为动车组中仅有的受流部件,也是动车组电能引入的关键高压设备。
其产生故障的原因主要包括:应力点的持续作用导致设备损耗速度的加快以及焊接工作后产生的不规则受力,导致设备出现运转故障。
对此,需要加强相关方面的检查措施以及维护措施,以降低设备运转出现故障的几率,进而提高动车的整体运行质量与安全水平。
现阶段的动车检修工作以及检查工作还存在相关的不足,如何根据实际情况开展相对应的故障排查工作以及检查工作,是现阶段动车运行工作中急需解决的工作项目。
1动车组受电弓风管故障的原因探究动车组在高速的行驶过程中相关设备容易在里的持续作用下,产生不同程度的变化,当达到设备耗用的临界点容易出现故障的情况,另外,外界的因素也是引起设备故障的重要原因之一,例如以下几个方面:1.1产生受力点且持续受力动车在地势复杂且里程较长的道路运输中,若隧道在其运输道路中数量较多,则可能在动车频繁进出隧道的过程中,使弓头在大导流板的运行下形成垂直方向的作用力,但由于上拉杆运行存在一定错位性,使上框架顶管产生应力点。
动车在常规的行驶中,此部位因为持续受力,导致其耐久持续下降,进而造成该位置上设备运行出现失常的情况。
此外,动车在高速的行驶过程中还会与轮轨等设施产生震动,该震动撞击也会导致受电弓在完整性上出现变动,进而导致故障的出现。
受电弓故障及处理方法我在铁路系统工作了好些年,受电弓这玩意儿可太重要了。
就像鸟儿的翅膀对鸟儿飞翔那么重要,受电弓对于火车获取电能那是关键中的关键。
受电弓这东西啊,它也会时不时闹点小毛病。
有一次,我和老张在检修列车的时候,就碰到了受电弓的故障。
那可真是让人头疼,就像你正满心欢喜地准备吃大餐,结果发现餐具都坏了一样。
常见的受电弓故障,那就是碳滑板磨损。
碳滑板就像受电弓的鞋子,天天在接触网上摩擦摩擦。
要是磨得太厉害了,那可就麻烦了。
就好比你的鞋子破了个大洞,走路都不得劲儿。
我记得有一回,小李在检查列车的时候,大喊:“哎呀,这碳滑板都快磨没了!”这时候就得赶紧换碳滑板。
换的时候可不能马虎,得按照严格的步骤来,就像做手术一样精细。
还有一种故障是受电弓的升弓装置出问题。
这升弓装置就像一个小助手,负责把受电弓给升起来。
要是它坏了,受电弓就没法好好工作。
有一次,我们在现场,小王说:“这受电弓怎么升不起来呢?”我们就赶紧去检查升弓装置。
发现是里面的一个小零件松了。
这时候就得把松的零件拧紧,就像把一颗快要掉的螺丝钉给扭紧,让机器重新运转起来。
受电弓的弓头变形也是个大麻烦。
弓头变形就像是人的胳膊弯不直了一样。
有一回,我们遇到一个列车的受电弓弓头变形的情况。
这时候,赵师傅就说:“这可不好办,得一点点地把它矫正过来。
”矫正弓头可不是个轻松的活儿,得小心翼翼地,不能用力过猛,不然可能会让弓头彻底报废。
就像你给一根弯曲的树枝掰直,得掌握好力度。
当发现受电弓故障的时候,首先得做的就是让列车停下来。
这就好比你发现车子有点不对劲,肯定不能再继续开了,得先找个安全的地方停下来。
然后,检修人员就得像侦探一样,去查找故障的原因。
在处理受电弓故障的时候,沟通也是非常重要的。
就像一场交响乐,每个乐手都得知道自己该做什么。
检修人员之间要互相交流,告诉对方自己发现的问题。
比如说,我发现受电弓的一个部件有磨损,我就得赶紧告诉老张,老张就会根据我提供的信息,去判断下一步该怎么做。
动车组受电弓升弓无法保持问题的分析摘要:随着高速铁路的发展,动车组在客运方面发挥着不可估量的作用。
而受电弓作为接触网导线和动车组牵引系统连接的纽带,它的运行状态直接影响着动车组安全运行。
因此,分析受电弓的原理和检修,具有一定的现实指导意义关键词:动车组运行;受电弓升弓;故障诊断及处理1动车组受电弓结构组成动车组受电弓主要由上臂杆、平衡杆、下臂杆、连接杆、阻尼器、碳滑板和升、降弓装置等部件组成。
其中,平衡杆的作用是防止受电弓在控制升弓和降弓时弓头失稳而产生翻转;连接杆用以微调实现对受电弓几何形状的调节;阻尼器用于对上臂杆和下臂杆之间产生的振荡进行阻尼衰减,保证碳滑板与接触网之间的良好接触;碳滑板则通过升弓装置的作用与架空接触网导通,实现电能的传输。
2动车组受电弓控制原理2.1受电弓气路控制原理动车组受电弓气路控制部分主要由升弓电磁阀、ADD电磁阀、调压阀和气囊等组成,为受电弓的机械结构提供控制压力,从而控制受电弓的升降,并根据控制需求对气路系统的空气压力进行调节,以调整弓网之间的动态接触力。
受电弓气路控制原理图如图1所示。
司机通过操纵升降弓开关,控制升弓电磁阀完成一定动作来实现受电弓的升弓和降弓。
当动车组需要进行升弓操作时,司机操纵升降弓开关发送升弓指令,升弓电磁阀得电而使得气路导通,列车管内压力空气首先进入过滤器进行过滤,然后通过升弓电磁阀和调压阀到达气囊,实现升弓动作;当动车组需要进行降弓操作时,司机操纵升降弓开关发送降弓指令,使得升弓电磁阀失电而隔断列车管与气囊之间的气路,气囊中的压力空气经升弓电磁阀排风口排至大气,受电弓在自身的重力作用下实现降弓动作。
2.2受电弓电路控制原理动车组受电弓电路控制部分主要由中央控制单元(CCU)、司机室显示屏(HMI)、多功能车辆总线(MVB)和网络接口模块等组成,为受电弓的控制系统提供通信、逻辑和监控诊断等功能。
受电弓电路控制原理图如图2所示。
受电弓的工作状态通过MVB传输给CCU,CCU再经MVB发送给HMI;HMI接收到CCU传输过来的信号后,根据预先设置好的模式曲线,反馈控制气动调节器,对受电弓与接触网间的接触力进行调整。
动车组受电弓自动降弓故障分析及对策措施摘要:随着不断增加的动车组,及不断加快行驶速度,在不断开通而高速铁路、客运专线则。
如故障受电弓自动降弓呈上升趋势,成为高速铁路车辆安全运行的一个重大缺陷。
受电弓自动降弓如果发生,则说明可能发生故障,故障诊断可能会对正常运行造成严重后果。
本文介绍了运用现状,分析了故障受电弓自动降弓原因,并提出了对策措施。
关键词:动车组;受电弓泪动降弓;对策措施自动车组开始工作以来,出现了不同级别和类型受电弓故障,对动车组正常运行产生了不利影响。
通过分析受电弓故障,分析故障原因,总结受电弓故障过程的解决方法,为进一步维护和使用受电弓故障奠定了基础。
一、动车组自动降弓的主要功能及特点1.主要功能当滑板断裂、沟槽拉大、最大磨损损坏或绝缘线束断裂时,快速降弓动作同时发生,能自动切断机车主断路器,负载降弓拉弧火花以防止产生,滑板和接触网导线并损坏。
自动降弓时发出报警音。
连接语音箱,可以同时实施监控语言的报警,使驾驶员更容易理解并及时采取行动。
在转换时“自动、降弓”故障发生,机车的运行和功能而不影响。
2.特点。
自动降弓装置运动时提供快速响应时间(小于0.7秒)。
主断路器自动切断,响应时间小于0.2秒。
机车顶配有高低压聚四氟乙烯管材,具有安全可靠的安全性。
4)作业温度在40~3之间,有各种各样的提醒功能。
二、动车组高压系统与受电弓动车组高压系统是最重要技能之一,例如受电弓、高压和电缆和附件。
安装高压机械时应注意安全和可靠性,高压系统可以为供电,电气保护,监控电源电压和运行电流,检查线路绝缘。
车顶接触网和传输电流受通过电弓的机械设备。
其主要功能是将接触网连接到高压系统,并将电源传输到动车组。
两个相同的受电弓每个编组都有,主变压器顶部在3车和6车安装。
通过接触网高电压馈电实现了25 kV。
在单弓受流模式下,任何单弓受流可以为整个列车供电。
两个单弓受备用,当动车组两组联挂在一起运行时,动车组前后取决于电弓受流。
动车组受电弓风管故障分析及改进措施陈佳摘要:随着我国城市化脚步逐渐加速带来的动车全面贯通的现代化交通局面成为目前我国最具影响力的技术产物,但对于动车而言受电弓在实际使用时经常出现非预期故障而影响动车的安全行驶。
本文首先分析动车组使用时受电弓出现故障的原因并提出相应的解决方案。
关键词:动车组故障;受电弓风管问题;改进方法引言:动车组为追求最大的速度进行全功率的交通运输,在设计供电通路时将高压线平行安置在车身顶部并借助受电弓进行连接受电,但这种方式往往在动车高速行驶构成中和暴露在外界环境里等因素下会发生一些非预期的受电弓机械和电气损伤。
一、动车组使用过程中车身受电弓风管出现非预期故障的原因(一)车身使用时出现应力点频繁受力而产生的局部故障我国动车为了满足相当巨大的运载需求就要面临设计的通车线路较多来达到最大的覆盖面积,线路多将直接增加动车组在运行时因不同的环境而对受电弓风管造成损坏的几率,特别是一旦通过的地形地貌起伏不定而引起的隧道通道过多将致使动车组在实际行驶过程中反复进出隧道,在进出环节中不断在车身顶部进行受电弓风管的交接工作,弓头通常在高速运行时与车顶平行高压线断开或者连接的瞬间会形成一个短暂的垂直作用力,而此时上拉杆由于机械本身将无法及时作出调整而致使动车车顶受电弓接点会生成非预期的反向应力点,这种不断的拉扯受力将极大损耗受电弓风管的使用寿命[1]。
(二)动车组使用过程中外界环境对车身具有一定的机械和电气损伤就机械损伤而言动车组在行驶于山区或者人群居住地时由于受电弓暴露经常会出现受电弓遭受异物撞击或者车身前方的固定障碍阻隔,这种事故一旦发生往往会致使受电弓出现结构上的机械故障而迫使受电弓进行执行降弓程序来避免二次伤害,就电气损伤而言,则发生得更为普遍且集中,在高速行驶过程中受电弓处于不稳定状态,一旦因车顶高压线位置发生细微变化或者车身因轨道原因出现轻微的车身晃动都将在受电弓与高压导线的连接处进行微观放大而产生急剧恶化的抖动及摩擦,摩擦产生的热量将对达到7000摄氏度而对电气设备的检测灵敏度形成不可逆破坏,且因受电弓连接处的不断抖动将会导致受电系统的不断分离而形成连续断电接点的不断循环,这种情况极易破坏车身内部的供电系统而形成类似于过电压或者电弧的电气现象。
摘要我国高铁建设虽进步较晚,但近年来,高铁迅猛发展,不仅形成了国内“四横四纵”的高速铁路网格局,还远销国外,在世界高铁建设的大家庭中充当重要的角色。
我国的高铁建设团队以其高效的建设速度、出众的建设质量、低廉的建设成本、稳定可靠的线路运输世界闻名。
高铁是高速运输铁路的统称,他有着高效的运输能力,快速便捷的特点,方便国民的交通出行,也为国家的经济建设起到促进的作用。
随着高铁需求的日益增加,高速铁路的建设也在快速的进行,伴随而来的安全问题也接踵而来。
弓网系统作为高铁动力的唯一来源,为了避免故障的发生,防患于未然,对于弓网实时监测系统的建立和改进措施的研究也十分重要。
本文通过阅读相关的文献资料,对我国的高铁受电弓和接触网建立动力学模型,通过采用ANSYS软件进行仿真计算,对受电弓的结构、受力、噪声、材料等多方面进行研究分析。
并以仿真结果为原型,对受电弓进行改进措施的论证,实现一套比较完整的检测系统框架及解决办法对比分析,最终达到提高高铁受电弓的安全性和可靠性,为高铁出行安全提供理论保证和改进措施分析。
关键词:受电弓;故障检测;改进措施目录第1章绪论 (3)1.1 课题研究的目的和意义 (3)1.2 本课题国内外研究现状和发展趋势 (4)1.2.1国内外研究现状 (4)1.2.2未来的发展趋势 (6)1.3 课题研究的主要工作 (7)1.4 本章小结 (7)第2章受电弓接触网的主要结构及主要技术参数分析 (8)2.1 接触网的结构分类简介 (8)2.1.1 直接提供 (8)2.1.2 直供、回流提供 (9)2.1.3 BT供电 (9)2.1.4 AT供电 (10)2.2 受电弓结构和使用简介 (10)2.2.1 双臂式 (11)2.2.2 字母式 (11)2.2.3 T形 (11)2.2.4 单臂式 (12)2.2.5 运行示意图 (12)2.2.6 升降弓原理 (13)2.2.7 单臂受电弓部件描述 (13)2.3 弓网的动力学参数 (16)2.3.1 接触网动力学参数 (16)2.3.2 单臂式受电弓的结构参数介绍 (19)2.4本章小结 (20)第3章受电弓的故障检测分析 (20)3.1受电弓故障案例分析 (20)3.1.1 降弓故障分析 (20)3.1.2 受电弓框架裂纹故障分析 (21)3.1.3 受电弓电磁阀烧损分析 (21)3.1.4受电弓系统常见故障分析 (21)3.2受电弓故障检测系统分析 (22)3.2.1 特征需求 (22)3.2.2 用途分析 (23)3.2.3 功能分析 (23)3.3本章小结 (23)第4章改进措施仿真分析 (24)4.1 ANSYS软件的简介 (24)4.2软件的使用步骤 (24)4.3 仿真结果展示 (25)4.3.1 受电弓弓头框架杆件建模仿真分析 (25)4.3.2 接触网的静态力仿真分析 (30)4.3.3 弓网系统的仿真静态力分析 (32)4.4 仿真结果的分析 (34)4.4.1 当受到相同力的作用下(350N) (34)4.4.2 不同压力接触网静态力分析(200N或30N) (34)4.4.3 不同材料的弓网模型静态力分析 (34)4.5 本章总结 (34)第5章对受电弓故障的分析及改进措施的研究总结 (35)5.1 故障分析及改进措施分析总结 (35)5.1.1 升弓故障或者异常降弓 (35)5.1.2 升弓放电或降弓拉弧 (36)5.1.3 弓头滑块磨损严重 (36)5.1.4 行驶途中受电弓破损或有异物进入 (37)5.1.5 受电弓正常工作但是显示异常 (37)5.1.6 弓头滑块偏磨 (38)5.1.7 受电弓组件损坏 (38)5.1.8 受电弓无法完成升弓操作 (39)5.1.9 气动装置故障 (40)5.2 本章小结 (41)参考文献 (41)第1章绪论1.1 课题研究的目的和意义铁路,是一个国家的运输大动脉,他因载荷大、时速快、可靠、便宜、方便、可全天候运行而出名。
动车组受电弓故障分析及改进探讨摘要:受电弓是动车组的重要零部件,从牵引供电接触网获得高压电能,为动车组提供牵引动力,受电弓工作性能和技术状态直接影响动车组的安全可靠运行。
为保证动车组运行安全可靠,我们在接触网运行维修的过程中,必须坚持“预防为主,修养并重”的方针,按照“周期检测,状态维修、寿命管理”的原则,遵循精益细化、机械化、集约化的检修方式,依靠科技进步,积极采用接触网自动化检测手段和机械化维修手段,提升电机车受电弓维修技术参数的精准度,不断提高电机车受电弓的运行品质和安全可靠性。
关键词:动车组;受电弓;故障;分析及改进引言:受电弓是动车组的重要取流部件。
动车组受电弓从 25 kV/50 Hz电能,为动车组提供牵引动力,受电弓T作性能和技术状态直接影响动车组的安全可靠运行。
通过对CRH2和CRH380A/AL型动车组运用典型故障的统计分析表明:因动车组受电弓故障造成的行车运用故障占到了相当大的比例,影响了动车组正常运行秩序。
1.受电弓结构受电弓是列车上的重要零部件,其主要有滑板、支架、平衡杆、上框架、铰链座、下臂赶、扇形板、缓冲阀、传动气缸、活塞、降弓弹簧、连杆绝缘子、滑环、连杆、支持绝缘子、升弓弹簧、底架、推杆(1-18)等,如图1所示。
图1受电弓结构1.动车组受电弓发生故障的原因由于受电弓故障产生的原因往往涉及弓网两方面,组织电力机车和牵引供电2个专业的专家和工程技术人员针对动车组受电弓典型故障案例及现象进行专题研讨,对动车组受电弓故障案例进行剖析。
1.滑板条磨耗滑板条磨耗过快是电气化区段运营初期的正常现象。
造成滑板条磨耗过速的根本原因有:①机械磨耗。
新建线接触网剖面底部为圆弧形,而且接触线表面有不少比较坚硬的毛刺,这是新开通线路滑板条急剧磨耗的主要原因。
经过多次运行后,接触导线渐趋平整光滑,摩擦系数减小,达到一定的摩擦次数后,机械磨耗量将大大减小并将保持在一定的范围内;②电气磨耗。
新开通线接触导线毛刺多,加上开通前一段时间内由于暴露于空气中,表面污染,当与受电弓滑板初期接触时接触不佳,电火花往往都比较大,电气磨耗自然突出[1]。