统计学原理第六章抽样调查
- 格式:ppt
- 大小:1.71 MB
- 文档页数:112
第6章抽样与参数估计第6章抽样与参数估计6.1抽样与抽样分布6.2参数估计的基本方法6.3总体均值的区间估计6.4总体比例的区间估计6.5样本容量的确定学习目标理解抽样方法与抽样分布估计量与估计值的概念点估计与区间估计的区别评价估计量优良性的标准总体均值的区间估计方法总体比例的区间估计方法样本容量的确定方法参数估计在统计方法中的地位统计推断的过程6.1抽样与抽样分布什么是抽样推断概率捕样方法抽样分布抽样方法抽样方法概率抽样(probabilitysampling)也称随机抽样特点按一定的概率以随机原则抽取样本抽取样本时使每个单位都有一定的机会被抽中每个单位被抽中的概率是已知的,或是可以计算出来的当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率简单随机抽样(simplerandomsampling)从总体N个单位中随机地抽取n个单位作为样本,每个单位入抽样本的概率是相等的最基本的抽样方法,是其它抽样方法的基础特点简单、直观,在抽样框完整时,可直接从中抽取样本用样本统计量对目标量进行估计比较方便局限性当N很大时,不易构造抽样框抽出的单位很分散,给实施调查增加了困难没有利用其它辅助信息以提高估计的效率分层抽样(stratifiedsampling)将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本优点保证样本的结构与总体的结构比较相近,从而提高估计的精度组织实施调查方便既可以对总体参数进行估计,也可以对各层的目标量进行估计系统抽样(systematicsainplmg)将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范闱内随机地抽取一个单位作为初始单位,然后按爭先规定好的规则确定其它样本单位先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k,r+2k…等单位优点:操作简便,可提高估计的精度缺点:对估计量方差的估计比较困难整群抽样(clustersampling)将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查特点抽样时只需群的抽样框,可简化工作量调查的地点相对集中,节省调查费用,方便调查的实施缺点是估计的精度较差抽样分布总体中各元素的观察值所形成的分布分布通常是未知的可以假定它服从某种分布总体分布(populationdistribution)一个样本中各观察值的分布也称经验分布当样本容屋n逐渐增大时,样本分布逐渐接近总体的分布样本分布(sampledistribution)抽样分布的概念(samplingdistribution)抽样分布是指样本统计屋的分布,即把某种样本统计量看作一个随机变量,这个随机变屋的全部可能值构成的新的总体所形成的分布即为某种统计量的抽样分布.统计量:样本均值,样本比例,样本方差等样本统计量的概率分布是一种理论概率分布随机变量是样本统计量样本均值,样本比例,样本方差等结果来自容量相同的所有可能样本提供了样本统计量长远稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据对抽样分布的理解抽样分布:即不是总体分布,也不是样本分布,是根据所有可能样本计算的统计量的全部可能取值形成的分布样本均值的抽样分布容量相同的所有町能样本的样本均值的概率分布一种理论概率分布进行推断总体均值的理论基础样本均值的抽样分布样本均值的抽样分布(例题分析)【例】设一个总体,含有4个元素(个体),即总体单位数N=4。
统计学原理抽样调查统计学原理是一门研究数据收集、整理、分析和解释的学科。
在统计学中,抽样调查是一种常用的数据收集方法。
抽样调查通过抽取一部分个体,称为样本,来推断整个总体的特征。
本文将介绍抽样调查的基本原理、常见的抽样方法以及优缺点。
抽样调查的基本原理是从目标总体中抽取一部分个体进行观察,然后将观察结果推广到整个总体。
抽样调查的目的是基于样本的统计数据,得出对总体特征的推断。
在进行抽样调查时,需要考虑以下几个因素:总体的定义、总体的大小、样本的大小、样本的抽取方法以及调查内容。
总体的定义是指研究的对象。
在抽样调查中,总体可以是人群、组织、产品、地域等。
总体的大小是指总体中所包含的个体数量。
样本的大小是指从总体中选取的个体数量。
合理选择样本大小可以在保证统计推断准确性的基础上节约成本和时间。
样本的抽取方法有多种,常见的抽样方法包括随机抽样、分层抽样、系统抽样和整群抽样等。
随机抽样是指以随机的方式从总体中选取个体。
随机抽样可以保证样本的代表性,即样本能够很好地反映总体的特征。
分层抽样是将总体按照一定的特征分成若干层,然后从每一层中选取样本。
通过分层抽样,可以保证各层样本在总体中的比例与总体的比例基本一致。
系统抽样是指从总体中的其中一位置开始,按照一定的间隔选取样本。
整群抽样是将总体分成若干群,然后从每一群中全面抽取样本。
抽样调查的优点在于相对于全面调查,它能够节约时间和成本。
通过从总体中选取一部分个体进行观察,可以得到与全面调查相似的结果。
此外,抽样调查还可以减少调查工作的复杂性和难度。
抽样调查的缺点是存在一定的抽样误差。
抽样误差是指由于样本的随机性导致的样本结果与总体真实结果之间的差异。
为了降低抽样误差,需要采用合理的抽样方法和样本大小,并进行合适的数据分析。
在抽样调查中,可以通过计算抽样误差的置信区间来评估统计结果的可靠性。
置信区间是指对总体特征的一个区间估计,该区间以样本统计量为中心,上下限由样本误差限定。
《统计学》第六章抽样调查第六章抽样调查§1抽样调查的意义§2抽样调查的基本概念和理论依据§3抽样平均误差§4抽样推断§5必要抽样单位数的确定§1、抽样调查的意义一、抽样调查的概念、特点(一)、概念:抽样调查是按照随机原则从全部研究对象中抽取一部分单位进行观察,并依据所获得的数据对全部研究对象的数量特征做出具有一定可靠性的估计判断,从而达到对全部研究对象的认识的一种统计方法。
抽样推断的抽样误差可以事先计算并且加以控制。
二、抽样调查的作用:对某些不可能进行全面调查而又要了解其全面情况的社会经济现象,必须应用抽样调查。
对某些社会经济现象虽然可以进行全面调查,但抽样调查可以节约时间、费用,提高调查的时效性。
抽样调查和全面调查同时进行,可以发挥相互补充和检查质量的作用。
抽样调查可以用于工业生产过程的质量控制。
利用抽样调查原理,还可以对某种总体的假设进行检验,来判断这种假设的真伪,以决定行动的取舍。
§2、抽样调查的基本概念及理论依据一、总体与样本(一)、总体与总体指标总体:是根据研究目的确定的所要研究的同类事物的全体。
总体单位数称为总体容量,一般用N表示。
总体指标:用来反映总体数量特征的指标,也称为参数。
一般来说总体指标有:总体平均数、总体成数、总体平均数标准差、总体平均数方差、总体成数标准差、总体成数方差。
参数参数:指反映总体数量特征的综合指标,它是确定的、唯一的。
某F某总体平均数F研究总体中(某某)2F的数量标志某总体标准差F 总体成数研究总体中的品质标志成数平均数成数标准差N1PN某PPPP(1P)未分组情况下的全及指标总体平均数总体成数具备某种特征的单位数PN总体方差2某i1Ni某2N总体标准差某i1Ni某2N总体指标:某FF某或某FF某i某F2FN1某PPNPP1P,也称统计量。
一般来说样本指标有:样本平均数、样本成数、样本平均数标准差、样本平均数方差、样本成数标准差、样本成数方差。