小波分析在信号奇异性检测中的应用
- 格式:pdf
- 大小:726.97 KB
- 文档页数:3
Matlab 小波变换对于奇异点的检测 1.信号的突变性突变信号又称奇异信号,突变信号的突变点经常携带比较重要的信息,是信号的重要特征之一。
在数字信号处理和数字图像处理中具有非常重要的作用和地位,信号的突变性检测是先对原信号在不同尺度上进行“磨光”,再对磨光后信号的一阶或二阶倒数检测其极值点或过零点。
对信号进行磨光处理,主要是为了消除噪声而不是边缘。
传统的信号突变检测方法是基于傅立叶变换的,由某一函数的傅立叶变换趋近于零的快慢来推断该函数是否具有突变性,但它只能反映信号的整体突变性,而对信号的局部突变则无法描述。
这样我们就引入小波变换算法。
2.信号的突变点的检测原理设h(t)是函数f(t)和g(t)的卷积,即:)()()(t g t f t h ⊗=则根据傅立叶变换的性质有:)()()]()([)]('[ωωωω∧∧=⊗=g f j t g t f F j t h F=)()]([ωωω∧∧g f j =)]()[(ωωω∧∧g j f=)]('[)]([)]([)]('[t g F t f F t g F t f F ⊗=⊗所以得到:)(')()()(')('t g t f t g t f t h ⊗=⊗=若将函数f(t)看作是信号,g(t)看作是滤波器,那么信号的导数与滤波器的卷积结果可以看作是滤波器的导数与信号的卷积。
例如,如果选g(t)为高斯函数,则利用其导数可以构造Morlet 小波和Maar 小波,因此,小波变换的突变点和极值点与信号f(t)的突变点和极值点具有对应关系,利用小波可以检测突变信号。
具体过程如下:设)(t θ是一个起平滑作用的低通平稳函数,且满足条件⎰∞∞-=,1)(dt t θ0)(lim =∞→t t θ 通常取)(t θ为高斯函数,即2/221)(t e t -=πθ假设)(t θ是二次可导的,并且定义2/)1(221)()(t te dt t d t --==πθψ 2/222)2(2)1(21)()(t e t dt t d t --==πθψ 则函数)()1(t ψ、)()2(t ψ满足小波的容许条件:⎰∞∞-=0)()1(dt t ψ,⎰∞∞-=0)()2(dt t ψ 因此可用做小波母函数。
小波变换在信号处理中的应用一.小波变换应用于噪声抑制:利用Mallet算法对输入信号f(t)进行小波分解,再根据对信号和噪声的先验知识分离信号和噪声。
提过滤波形成新的小波分量,最后重建信号。
f(t)S(t)N(t)W(f)W(S)W(N)小波分解滤波重建信号信号与噪声被小波变换分离:Donoho去噪方法:不同阀值选取算法的去噪结果:研究重点:信号与噪声在小波变换域上的特征。
小波基的选择。
阈值的选取方法。
二.小波变换应用于信号检测:瞬时信号检测问题。
在噪声中检测短时,非平稳,波形和到达时间未知的信号。
H0:H1:某(t)n(t)某(t)S(t)n(t)t[0,T]其中:S(t)只在[t0,t0T0]非零。
n(t)为噪声。
T0T我们可以假设:S(t)Aie某p{ai(tti)}in(i(tti)i)u(tti)i1N其中:Aiaiti信号幅度;衰减系数到达时间频率初始相位ii由cj,kS,j,k|cj,k|在kti两边呈指数衰减,且达到局部极值。
2j由于小波变换得多尺度特性,我们可以选择不同的j,利用不同的时域和频域分辨力,了解信号的的全貌,从而使基于小波变换的信号检测器具有较好的鲁棒性。
可以得到:(1)(2)(3)若在观测时间内,有多个信号到达,我们可以选择适当的j,使时间尺度尽可能的小,从而使不同信号的峰值出现在不同的上,由此分离信号。
k方法:对输入信号进行多尺度的小波变换,检测其变换结果的局部极值点。
性能:优于能量检测器,接近与匹配滤波器。
小波变换应用于信号分析(信号的奇异性分析)若f(t)在某处间断或某阶导数不连续,则称f(t)在此点有奇异性。
Fouier变换可以分析函数的整体的奇异性,但不能推断奇异点的空间(时间)分布情况。
定义:设nn1,若在某点某0,存在常数A与h0,及一个n阶多项式Pn(h),使f(某0h)Pn(h)A|h|a则称f(某)在点某0具有Lipchitz指数0hh0注:()若A和与某0无关,则称为一致1Lipchitz指数。
小波分析在信号奇异性检测中的应用[摘要]: 信号的局部奇异性包含了信号的许多重要的信息。
小波分析是当前数学中一个迅速发展的新领域,它突破了傅立叶分析在时域和频域方面的局部化能力, 因而它是一种检测奇异性的有力工具。
[关键词]:小波分析;特征提取;奇异信号;对比检测中国分类号:TP3 文献标识码:A 文章编号:1002-6908(2007)0120017-021.小波分析应用介绍小波理论是近几十年发展起来的一种新的数学方法。
近年来,小波的发展基本上沿着两个不同的方向,一方面构造同时具有多种优良性质的新型小波,如M-带小波、多小波、第二代小波等;另一方面,随着小波理论的日臻完善,小波在地震勘测、计算机视觉、数值分析、微积分方程数值解等方面都得到了广泛的应用。
总之,小波分析作为一种新理论,已经和正在科学界掀起了一场轩然大波。
小波分析方法是一种窗口大小(即窗口面积)固定但其形状可改变,时间窗和频率窗都可改变的时频局部化分析方法。
由于小波分析克服了传统傅氏分析的不足,在时域和频域同时具有良好的局部化性质,而且它对高频采取逐渐精细的时域步长,从而可以聚焦到被分析信号的任意细节,因此小波分析被誉为“数学显微镜”。
2.信号的奇异性分析几乎一切信号都很难根据原始观察数据来作解释,总要提取一些特征来表示它。
而信号的奇异性常常是分析特征的关键。
信号中的奇异点及不规则的突变部分经常携带有比较重要的信息,它是信号的重要特征之一。
长期以来,傅立叶变换是研究信号奇异性的主要工具,其方法是研究信号在频域的衰减速度以推断此信号是否具有奇异性及奇异性的大小。
但是,由于傅立叶变换缺乏时域局部性,它只能确定信号奇异性的整体性质,而难以确定奇异值点在时域的位置及分布情况。
用小波变换分析信号的奇异性及奇异点的位置和奇异度的大小是有效的。
小波变换的一个重要性质就是具有在时间、频率上突出信号局部特征的能力。
在对信号进行表示和描述中,通常信号的奇异点(如过零点、极值点等)更能够刻画信号的细节,并在对信号进行区分中起着重要作用,因此,可以利用信号在多尺度上的综合表现来描述信号,特别是他的突变点或瞬态特征。
多小波在信号奇异性检测中的应用的开题报告1.研究背景在信号处理领域中,奇异性检测是一个重要的问题,涉及到信号的稳定性、可靠性、有效性等方面。
而小波分析作为一种有效的信号处理方法,在奇异性检测中得到了广泛应用。
据此,本文将重点探讨多小波在信号奇异性检测中的应用。
2.研究目的本文旨在分析多小波在信号奇异性检测中的应用,探究其优势和不足之处,提出优化方案,并对其应用进行实验验证,为信号处理领域中的奇异性检测提供一种新的技术方法。
3.研究内容(1)介绍小波分析的基本原理和多小波的概念。
(2)分析多小波与其他方法在奇异性检测中的优缺点。
(3)提出多小波的优化方案,提高其在奇异性检测中的性能。
(4)设计实验验证方案,对多小波在奇异性检测中的应用进行实验验证。
(5)分析实验结果,总结结论并展望未来发展方向。
4.研究意义本文的研究对于信号处理领域中的奇异性检测方法研究具有重要的意义。
研究结果对于提高奇异性检测的准确性、可靠性、有效性等方面具有一定的促进作用,同时也可以为相关领域的研究提供一些新的思路和方法。
5.研究方法本文主要采用文献研究法、实验法和分析法进行研究。
其中,文献研究法为理论研究提供依据;实验法主要用于对优化方案进行实验验证;分析法则用于对实验结果进行分析和总结。
6.论文结构本文将分为以下几个部分:第一部分为绪论,主要阐述本研究的背景和目的、意义;第二部分为多小波的基本原理和概念,介绍多小波及其在信号处理中的应用情况;第三部分为多小波与其他方法的对比分析,分析多小波在奇异性检测中的优缺点;第四部分为多小波的优化方案,提出优化思路并进行实验验证;第五部分为实验结果分析,对优化方案的实验结果进行统计和分析;第六部分为结论和展望,总结本文研究结果并探讨未来发展方向。