第五章 5.4 平面向量的应用-教师版
- 格式:docx
- 大小:422.66 KB
- 文档页数:33
专题5.4 平面向量的综合应用一、考情分析1.会用向量方法解决某些简单的平面几何问题.2.会用向量方法解决简单的力学问题及其他一些实际问题.二、经验分享考点一 向量在平面几何中的应用 (1)用向量解决常见平面几何问题的技巧:(2)用向量方法解决平面几何问题的步骤平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题。
考点二 向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体。
考点三 向量与相关知识的交汇平面向量作为一种工具,常与函数(三角函数)、解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题。
三、题型分析重难点题型突破1 平行与垂直例1、.已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________. 【答案】22【解析】由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:2202k a a b k →→→⨯-⋅=-=,解得:22k =. 故答案为:22. 【变式训练1-1】、(山东省德州一中2018-2019学年期中)若,且,则实数的值是( )A .-1B .0C .1D .-2【答案】D 【解析】由得,,∴,故.【变式训练1-2】、(河北省示范性高中2019届联考)已知向量a ,b 满足2(1,2)a b m +=,(1,)b m =,且a 在b 25,则实数m =( ) A 5B .5±C .2 D .2±【答案】D【解析】向量a ,b 满足()21,2a b m +=,()1,b m =,所以0,2m a ⎛⎫= ⎪⎝⎭,22m a b ⋅=,()2225cos 152m b a m θ=+=,所以42516160m m --=,即()()225440m m +-=, 解得2m =±.重难点题型突破2 平面向量与三角形例2、已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP ―→=OA ―→+λ(AB ―→+AC ―→),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( )A .内心B .外心C .重心D .垂心【答案】C【解析】由原等式,得OP ―→-OA ―→=λ(AB ―→+AC ―→),即AP ―→=λ(AB ―→+AC ―→),根据平行四边形法则,知AB ―→+AC ―→=2AD ―→(D 为BC 的中点),所以点P 的轨迹必过△ABC 的重心.故选C.【变式训练2-1】、在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是________三角形.( ) A . 等边 B . 等腰 C . 直角 D . 等腰直角 【答案】C .【解析】 由(BC →+BA →)·AC →=|AC|2,得AC →·(BC →+BA →-AC →)=0,即AC →·(BC →+BA →+CA →)=0,2AC →·BA →=0,∴AC →⊥BA →,∴A =90°.又根据已知条件不能得到|AB →|=|AC →|,故△ABC 一定是直角三角形. 【变式训练2-2】、已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( )A . 内心B . 外心C . 重心D . 垂心 【答案】C .【解析】 由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD(D 为BC 的中点)所对应向量AD →的2倍,∴点P 的轨迹必过△ABC 的重心.【变式训练2-3】、如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O . 若6AB AC AO EC ⋅=⋅,则ABAC的值是___________.【答案】3.【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-,()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭, 得2213,22AB AC =即3,AB AC =故3ABAC= 重难点题型突破3 平面向量与三角函数结合例3.(河北省保定市2018-2019学年期末调研)过ABC ∆内一点M 任作一条直线,再分别过顶点,,A B C 作l 的垂线,垂足分别为,,D E F ,若0AD BE CF ++=恒成立,则点M 是ABC ∆的( )A .垂心B .重心C .外心D .内心【答案】B【解析】因为过ABC ∆内一点M 任作一条直线,可将此直线特殊为过点A ,则0AD =,有0BE CF +=. 如图:则有直线AM 经过BC 的中点,同理可得直线BM 经过AC 的中点,直线CM 经过AB 的中点, 所以点M 是ABC ∆的重心,故选B 。
平面向量的应用1 平面几何中的向量方法① 由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此平面几何中的许多问题都可用向量运算的方法加以解决.② 用向量方法解决平面几何问题的“三部曲”(1) 建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2) 通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3) 把运算结果“翻译”成几何关系.Eg 点A 、B 、C 、D 不在同一直线上(1)证明直线平行或共线:AB//CD ⇔AB⃗⃗⃗⃗⃗ //CD ⃗⃗⃗⃗⃗ (2)证明直线垂直:AB ⊥CD ⟺AB⃗⃗⃗⃗⃗ ⋅CD ⃗⃗⃗⃗⃗ =0 (3)求线段比值:AB CD =|λ|且AB//CD ⇔ AB⃗⃗⃗⃗⃗ =λCD ⃗⃗⃗⃗⃗ (4)证明线段相等: AB⃗⃗⃗⃗⃗ 2=CD ⃗⃗⃗⃗⃗ 2⇔AB =CD 2 向量在物理中的应用① 速度、力是向量,都可以转化为向量问题;② 力的合成与分解符合平行四边形法则.【题型一】平面向量在几何中的应用【典题1】证明:对角线互相平分的四边形是平行四边形.【证明】 设四边形ABCD 的对角线AC 、BD 交于点O ,且AO =OC ,BO =OD∵AB ⃗⃗⃗⃗⃗ =12AC ⃗⃗⃗⃗⃗ +12DB ⃗⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ =12DB ⃗⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ ∴AB ⃗⃗⃗⃗⃗ =DC⃗⃗⃗⃗⃗ ,即AB =DC 且AB//DC 所以四边形ABCD 是平行四边形即对角线互相平分的四边形是平行四边形.【点拨】① 证明四边形是平行四边形⇔AB =DC 且AB//DC ⇔AB⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ . ② 证明几何中的平行和长度关系可以转化为向量的倍数关系.【典题2】 已知平行四边形ABCD 的对角线为AC 、BD ,求证AC 2+BD 2=2(AB 2+AD 2) (即对角线的平方和等于邻边平方和的2倍).【证明】由 |AC ⃗⃗⃗⃗⃗ |2=AC ⃗⃗⃗⃗⃗ 2=(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )2=|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2+2AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗|DB⃗⃗⃗⃗⃗⃗ |2=DB ⃗⃗⃗⃗⃗⃗ 2=(AB ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗ )2=|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2−2AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗ 两式相加得|AC⃗⃗⃗⃗⃗ |2+|DB ⃗⃗⃗⃗⃗⃗ |2=2(|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2) 即AC 2+BD 2=2(AB 2+AD 2)【点拨】利用|AB⃗⃗⃗⃗⃗ |2=|AB |2可证明线段长度关系.【典题3】 用向量方法证明:三角形三条高线交于一点.【证明】(分析 设H 是高线BE 、CF 的交点,再证明AH ⊥BC ,则三条高线就交于一点.)设H 是高线BE 、CF 的交点,则有BH ⃗⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ,CH ⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ,BC⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ∵BH ⃗⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,CH ⃗⃗⃗⃗⃗ ⊥AB⃗⃗⃗⃗⃗ ∴(AH⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )⋅AC ⃗⃗⃗⃗⃗ =(AH ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )⋅AB ⃗⃗⃗⃗⃗ =0 化简得AH⃗⃗⃗⃗⃗⃗ ⋅(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=0C∴AH⃗⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =0 则AH ⊥BC (向量中证明AB ⊥CD ,只需要证明AB ⃗⃗⃗⃗⃗⃗ ⋅CD⃗⃗⃗⃗⃗⃗ =0) 所以三角形三条高线交于一点.【典题4】证明三角形三条中线交于一点.【证明】(分析 设BE 、AF 交于O ,证明C 、O 、D 三点共线便可)AF 、CD 、BE 是三角形ABC 的三条中线设BE 、AF 交于点O ,∵点D 是中点,∴CD ⃗⃗⃗⃗⃗ =12(CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ) 连接EF ,易证明∆AOB~∆FOE,且相似比是2:1,∴BO =23BE,∴CO ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +BO ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +23BE ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +23(BA ⃗⃗⃗⃗⃗ +AE ⃗⃗⃗⃗⃗ ) =CB ⃗⃗⃗⃗⃗ +23(BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ )=13(CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ) ∴CO ⃗⃗⃗⃗⃗ =23CD ⃗⃗⃗⃗⃗ 即C 、O 、D 三点共线, (向量中证明三点A 、B 、C 共线,只需证明AB⃗⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ ) ∴AF 、CD 、BE 交于一点,即三角形三条中线交于一点.巩固练习1(★★) 如图,E ,F 分别是四边形ABCD 的边AD ,BC 的中点,AB =1,CD =2,∠ABC =75°,∠BCD =45°,则线段EF 的长是 .【答案】√72【解析】 由图象,得EF →=EA →+AB →+BF →,EF →=ED →+DC →+CF →.∵E ,F 分别是四边形ABCD 的边AD ,BC 的中点,∴2EF →=(EA →+ED →)+(AB →+DC →)+(BF →+CF →)=AB →+DC →.∵∠ABC =75°,∠BCD =45°,∴<AB →,DC →>=60°,∴|EF|→=12√(AB →+DC →)2=12√AB →2+DC →2+2|AB|→⋅|DC|→cos <AB →,DC →>=12√12+22+2×1×2×12=√72. ∴EF 的长为√72. 故答案为 √72. 2(★★) 证明勾股定理,在Rt∆ABC 中,AC ⊥BC ,AC =b ,BC =a ,AB =c ,则c 2=a 2+b 2.【证明】 由AB⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ,得AB ⃗⃗⃗⃗⃗ 2=(AC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ )2=AC ⃗⃗⃗⃗⃗ 2+2AC ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ 2 即|AB⃗⃗⃗⃗⃗ |2=|AC ⃗⃗⃗⃗⃗ |2+|CB ⃗⃗⃗⃗⃗ |2 故c 2=a 2+b 2.3(★★) 用向量方法证明 对角线互相垂直的平行四边形是菱形.【证明】如图平行四边形ABCD 对角线AC 、BD 交于点O ,∵AB⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =BO ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ ∴|AB ⃗⃗⃗⃗⃗ |2=(AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )2=|AO ⃗⃗⃗⃗⃗ |2+2AO ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ +|OB⃗⃗⃗⃗⃗ |2=|AO ⃗⃗⃗⃗⃗ |2+|OB ⃗⃗⃗⃗⃗ |2|BC⃗⃗⃗⃗⃗ |2=(BO ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )2=|BO ⃗⃗⃗⃗⃗ |2+2BO ⃗⃗⃗⃗⃗ ⋅OC ⃗⃗⃗⃗⃗ +|OC ⃗⃗⃗⃗⃗ |2=|BO ⃗⃗⃗⃗⃗ |2+|OC ⃗⃗⃗⃗⃗ |2 ∴|AB ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ | A BC∴四边形ABCD 是菱形.4(★★)用向量方法证明 设平面上A ,B ,C ,D 四点满足条件AD ⊥BC ,BD ⊥AC ,则AB ⊥CD .【证明】 因AD ⊥BC ,所以AD →⋅BC →=AD →⋅(AC →−AB →)=0,因BD ⊥AC ,所以AC →⋅BD →=AC →⋅(AD →−AB →)=0,于是AD →⋅AC →=AD →⋅AB →,AC →⋅AD →=AC →⋅AB →,所以AD →⋅AB →=AC →⋅AB →,(AD →−AC →)⋅AB →=0,即CD →⋅AB →=0,所以CD →⊥AB →,即AB ⊥CD .5(★★)用向量方法证明 对角线相等的平行四边形是矩形.【证明】如图,平行四边形ABCD 对角线AC 、BD 交于点O,设OA =a ,∵对角线相等 ∴OB =OD =a∵AB⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ ∴AB ⃗⃗⃗⃗⃗ ∙AD ⃗⃗⃗⃗⃗ =(AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )(AO ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ )=AO ⃗⃗⃗⃗⃗ 2+AO ⃗⃗⃗⃗⃗ ∙OD ⃗⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ⋅AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ⋅OD⃗⃗⃗⃗⃗⃗ =a 2+AO ⃗⃗⃗⃗⃗ (OD⃗⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )−a 2=0 ∴AB ⃗⃗⃗⃗⃗ ⊥AD ⃗⃗⃗⃗⃗ 即AB ⊥AD∴四边形ABCD 是矩形.6(★★★) 已知向量OP 1→、OP 2→、OP 3→满足OP 1→+OP 2→+OP 3→=0,|OP 1→|=|OP 2→|=|OP 3→|=1.求证 △P 1P 2P 3是正三角形.【证明】法一 ∵OP 1→+OP 2→+OP 3→=0,∴OP 1→+OP 2→=−OP 3→.∴|OP 1→+OP 2→|=|−OP 3→|.∴|OP 1→|2+|OP 2→|2+2OP1→•OP 2→=|OP 3→|2. 又∵|OP 1→|=|OP 2→|=|OP 3→|=1,∴OP 1→•OP 2→=−12.∴|OP 1→||OP 2→|cos∠P 1OP 2=−12,即∠P 1OP 2=120°.B C同理∠P 1OP 3=∠P 2OP 3=120°.∴△P 1P 2P 3为等边三角形.法二 以O 点为坐标原点建立直角坐标系,设P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3),则OP 1→=(x 1,y 1),OP 2→=(x 2,y 2),OP 3→=(x 3,y 3).由OP 1→+OP 2→+OP 3→=0,得{x 1+x 2+x 3=0y 1+y 2+y 3=0.∴{x 1+x 2=−x 3y 1+y 2=−y 3., 由|OP 1→|=|OP 2→|=|OP 3→|=1,得x 12+y 12=x 22+y 22=x 32+y 32=1∴2+2(x 1x 2+y 1y 2)=1∴|P 1P 2→|=√(x 1−x 2)2+(y 1−y 2)2=√x 12+x 22+y 12+y 22−2x 1x 2−2y 1y 2=√2(1−x 1x 2−y 1y 2)=√3同理|P 1P 3→|=√3,|P 2P 3→|=√3∴△P 1P 2P 3为正三角形【题型二】平面向量在物理中的应用【典题1】 如图,已知河水自西向东流速为|v 0|=1m/s ,设某人在静水中游泳的速度为v 1,在流水中实际速度为v 2.(1)若此人朝正南方向游去,且|v 1|=√3m/s ,求他实际前进方向与水流方向的夹角α和v 2的大小;(2)若此人实际前进方向与水流垂直,且|v 2|=√3m/s ,求他游泳的方向与水流方向的夹角β和v 1的大小.【解析】如图,设OA ⃗⃗⃗⃗⃗ =v 0⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ =v 1⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ =v 2⃗⃗⃗⃗ ,则由题意知v 2⃗⃗⃗⃗ =v 0⃗⃗⃗⃗ +v 1⃗⃗⃗⃗ ,|OA ⃗⃗⃗⃗⃗ |=1,根据向量加法的平行四边形法则得四边形OACB 为平行四边形.(1)由此人朝正南方向游去得四边形OACB 为矩形,且|OB⃗⃗⃗⃗⃗ |=AC =√3,如下图所示,则在直角△OAC中,|v2⃗⃗⃗⃗ |=OC=√OA2+AC2=2,tan∠AOC=√31=√3,又α=∠AOC∈(0 ,π2),所以α=π3;(2)由题意知α=∠OCB=π2,且|v2⃗⃗⃗⃗ |=|OC|=√3,BC=1,如下图所示,则在直角△OBC中,|v1⃗⃗⃗⃗ |=OB=√OC2+BC2=2,tan∠BOC=√3=√33,又∠AOC∈(0 ,π2),所以∠BOC=π6,则β=π2+π6=2π3,答(1)他实际前进方向与水流方向的夹角α为π3,v2的大小为2m/s;(2)他游泳的方向与水流方向的夹角β为2π3,v1的大小为2m/s.【点拨】注意平行四边形法则的使用!【典题2】在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G,作用在行李包上的两个拉力分别为F1⃗⃗⃗ ,F2⃗⃗⃗⃗ ,且|F1⃗⃗⃗ |=|F2⃗⃗⃗⃗ |,F1⃗⃗⃗ 与F2⃗⃗⃗⃗ 的夹角为θ.给出以下结论①θ越大越费力,θ越小越省力;②θ的范围为[0 ,π];③当θ=π2时,|F1⃗⃗⃗ |=|G|;④当θ=2π3时,|F1⃗⃗⃗ |=|G|.其中正确结论的序号是.【解析】对于①,由|G|=|F1⃗⃗⃗ +F2⃗⃗⃗⃗ |为定值,所以G2=|F1⃗⃗⃗ |2+|F2⃗⃗⃗⃗ |2+2|F1⃗⃗⃗ |×|F2⃗⃗⃗⃗ |×cosθ=2|F1⃗⃗⃗ |2(1+cosθ),解得|F1⃗⃗⃗ |2=|G|22(1+cosθ);由题意知θ∈(0 ,π)时,y=cosθ单调递减,所以|F1⃗⃗⃗ |2单调递增,即θ越大越费力,θ越小越省力;①正确.对于②,由题意知,θ的取值范围是(0 ,π),所以②错误.对于③,当θ=π2时,|F1⃗⃗⃗ |2=G22,所以|F1⃗⃗⃗ |=√22|G|,③错误.对于④,当θ=2π3时,|F1⃗⃗⃗ |2=|G|2,所以|F1⃗⃗⃗ |=|G|,④正确.综上知,正确结论的序号是①④.故答案为①④.【典题3】如图,重为10N的匀质球,半径R为6cm,放在墙与均匀的AB木板之间,A端锁定并能转动,B端用水平绳索BC拉住,板长AB=20cm,与墙夹角为α,如果不计木板的重量,则α为何值时,绳子拉力最小?最小值是多少?【解析】如图,设木板对球的支持力为N⃗,则N⃗=10sinα,设绳子的拉力为f.又AC=20cosα,AD=6tanα2,由动力矩等于阻力矩得|f|×20cosα=|N⃗|×6tanα2=60sinα⋅tanα2,∴|f|=6020cosα⋅sinα⋅tanα2=3cosα(1−cosα)≥3(cosα+1−cosα2)2=314=12,∴当且仅当 cosα=1−cosα 即cosα=12,亦即α=60°时,|f|有最小值12N.巩固练习1(★★) 一条渔船以6km/ℎ的速度向垂直于对岸的方向行驶,同时河水的流速为2km/ℎ,则这条渔船实际航行的速度大小为 .【答案】2√10km/ℎ【解析】如图所示,渔船实际航行的速度为v AC →=v 船→+v 水→;大小为|v AC →|=|v 船→+v 水→|=√62+22 =2√10km/ℎ.2(★★) 如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态,已知两条绳上的拉力分别是F 1 ,F 2,且F 1 ,F 2与水平夹角均为45°,|F 1⃗⃗⃗ |=|F 2⃗⃗⃗⃗ |=10√2N ,则物体的重力大小为 .【答案】20【解析】如图,∵|F 1→|=|F 2→|=10√2N ,∴|F 1→+F 2→|=10√2×√2N =20N ,∴物体的重力大小为20.故答案为 20.3(★★) 已知一艘船以5km/ℎ的速度向垂直于对岸方向行驶,航船实际航行方向与水流方向成30°角,求水流速度和船实际速度.【答案】5√3km/ℎ【解析】如图,设AD →表示船垂直于对岸的速度,AB →表示水流的速度,以AD ,AB 为邻边作平行四边形ABCD ,则AC →就是船实际航行的速度.在Rt△ABC 中,∠CAB =30°,|AD →|=|BC →|=5,∴|AC →|=|BC →|sin30°=10,|AB →|=|BC →|tan30°=5√3.故船实际航行速度的大小为10km/ℎ,水流速度5√3km/ℎ.4 (★★)一个物体受到同一平面内三个力F 1、F 2、F 3的作用,沿北偏东45°的方向移动了8m .已知|F 1|=2N ,方向为北偏东30°;|F 2|=4N ,方向为东偏北30°;|F 3|=6N ,方向为西偏北60°,求这三个力的合力F 所做的功.【答案】24√6 J【解析】 以三个力的作用点为原点,正东方向为x 轴正半轴,建立直角坐标系. 则由已知可得OF 1→=(1,√3),OF 2→=(2√3,2),OF 3→=(﹣3,3√3).∴OF →=OF 1→+OF 2→+OF 3→=(2√3−2,4√3+2).又位移OS →=(4√2,4√2).∴OF →•OS →=(2√3−2)×4√2+(4√3+2)×4√2=24√6(J).。
高一下期公式过关3——第五章 平面向量3.1 平面向量1.向量的有关概念(1)向量:既有 大小 又有 方向 的量叫做向量,向量的大小叫做向量的 模 .向量AB →的模记作 |AB →| .(2)零向量:长度为 0 的向量,其方向是 任意 的.记作 0 .(手写体: 0→ )(3)单位向量:长度等于 1个单位 的向量.(4)平行向量:方向 相同或相反 的非零向量,又叫共线向量,规定:0与任一向量 共线 .(5)相等向量:长度 相等 且方向 相同 的向量.(6)相反向量:长度 相等 且方向 相反 的向量.(7)概念拓展:①单位向量:向量a (a ≠0)的单位向量 ±a |a | ,向量AB →的单位向量 ±AB →|AB →|. ②相反向量:a 与-a 互为相反向量,即- (-a )= a ;a + (-a )= 0 .③对于零向量与任一向量a 的和有:a +0=0+a = a .④零向量的相反向量仍是 零向量 .⑤向量不能直接 比较 大小.2.向量的线性运算(1)加法法则——三角形法则: 首尾 相连,和向量为 第三边 .(2)加法法则——平行四边形法则: 首首 相连,和向量为同起点的 对角线 .(3)减法法则——三角形法则: 首首 相连,差向量为 第三边 ,指向 被减 向量.(4)向量加法运算律:a +b = b +a ,(a +b )+c = a +(b +c ) .(5)①AB →+BC →= AC → ,AB →+BA →= 0 ,AB →-AC →= CB → ,②A 1A 2→+A 2A 3→+…+A n -1A n →+A n A 1→= 0 .(6)向量形式的三角不等式: ||a |-|b ||≤|a ±b |≤|a |+|b | .(原理:三角形三边关系)当a 、b 同向,||a |-|b ||=|a -b |,|a +b |=|a |+|b |;当a 、b 反向,||a |-|b ||=|a +b |;|a -b |=|a |+|b |.(7)数乘:实数λ与向量a 的积是一个 向量 ,叫做向量的 数乘 ,记作 λa ,其长度与方向规定如下: ①|λa |= |λ||a | ;②当λ>0时,λa 与a 的方向 相同 ;当λ<0时,λa 与a 的方向 相反 ;③特别地,当λ=0或a =0时,0a = 0 或λ0= 0 .(8)向量数乘的运算律:λ(μa )= (λμ)a ;(λ+μ)a = λa +μa ;λ(a +b )= λa +λb .3.向量共线定理(1)向量a (a ≠0)与b 共线,当且仅当有 唯一一个 实数λ,使 b =λa .(2)向量共线的判定定理:如果存在唯一一个实数λ,使得 b =λa (a ≠0) ,即 a ∥b .(3)向量共线的性质定理:如果a ∥b (a ≠0),那么存在 唯一一个 实数λ,使得 b =λa .(4)若存在非零实数λ,使得AB →= λAC → 或AB →= λBC → 或AC →= λBC → ,则A ,B ,C 三点共线.(5)共线定理的推论:①若 OP →=mOA →+nOB → (m ,n ∈R ),则A ,P ,B 三点共线 ⇔ m +n =1 .②若A ,P ,B 三点共线,则可设OP →=xOA →+ (1-x )OB → .(6)向量形式的中点公式:若P 为AB 的中点,则OP →=12(OA →+OB →). (7)若a 、b 不共线,且λa =μb ,则 λ=μ=0 .4.平面向量基本定理如果e 1,e 2是同一平面内的两个 不共线 向量,那么对于这一平面内的任意向量a , 有且只有 一对实数λ1,λ2,使a = λ1e 1+λ2e 2 .其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组 基底 .(1)若 a =λ1e 1+λ2e 2,当λ2=0,则a 与e 1 共线 ;当λ1=0,则a 与e 2 共线 .(2) a =λ1e 1+λ2e 2=0 ⇔ λ1=λ2=0 .5.两向量的夹角与垂直(1)夹角( 首首 相连,找夹角):已知两个 非零 向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角. 当θ=0°时,a 与b 同向 ;当θ=180°时,a 与b 反向 .(2)垂直:如果a 与b 的夹角是90°,则称a 与b 垂直 ,记作a ⊥b .(规定:零向量可与任一向量垂直)(3)夹角取值范围: 0°≤θ≤180° . (4)若|a -b |=|a +b |,则 a ⊥b ,即 a·b =0 .若|a ±b |2=|a |2+|b |2,则 a ⊥b ,即 a·b =0 .6.平面向量数量积的定义 非零向量a ,b 的夹角为θ,数量 |a ||b |cos θ 叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ ,特别地,零向量与任意向量的数量积等于 0 ,即0·a = 0 .7.平面向量数量积的几何意义(1)a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与 b 在a 的方向上的投影|b |cos θ 的乘积. (2)投影: b 在a 方向上的射影为 |b |cos θ=a ·b |a | ,a 在b 方向上的射影为 |a |cos θ=a ·b |b |. (3)a 在b 方向上的投影是一个 数量 ,不是 向量 .当θ∈⎣⎡⎭⎫0,π2 时,它是 正值 ;当θ∈⎝⎛⎦⎤π2,π 时,它是 负值 ;当θ=π2时,它是 0 . 8.平面向量数量积的运算律(1)a ·b = b ·a .(2)(λa )·b =λ·(a ·b )= a ·(λb ) .(3)(a +b )·c = a ·c +b ·c .9.平面向量数量积的性质(1)a ⊥b ⇔ a ·b =0 ;(2)a·a = |a |2 或|a | (3)当a ∥b 时,a ·b =⎩⎪⎨⎪⎧ |a ||b |,a 与b 同向,-|a ||b |,a 与b 反向. 10.平面向量的坐标运算(1)若A (x 1,y 1),B (x 2,y 2),则AB →= (x 2-x 1,y 2-y 1) ;|AB →|(2)已知非零向量a =(x 1,y 1),b =(x 2,y 2),① a ±b = (x 1±x 2,y 1±y 2) ; ②λa = (λx 1,λy 1) ; ③a ·b = |a ||b |cos θ = x 1x 2+y 1y 2 ;④|a |=x 21+y 21; ⑤cos θ= a·b |a||b| =x 1x 2+y 1y 2x 21+y 21·x 22+y 22. (3) a ⊥b 的充要条件:a ⊥b ⇔ a·b =0 ⇔ x 1x 2+y 1y 2=0 .(4) a ∥b 的充要条件:a ∥b ⇔ x 1y 2-x 2y 1=0 (即 x 1y 2=x 2y 1 ).(5) a =b 的充要条件:a =b ⇔ x 1=x 2 ,且 y 1=y 2 .(6)|a ·b |≤|a ||b |⇔ (x 1x 2+y 1y 2)2≤(x 21+y 21)·(x 22+y 22) .▲(7)定比分点坐标公式:①设点P 是线段P 1P 2上的一点,且P 1(x 1,y 1),P 2(x 2,y 2),P (x ,y ),当P 1P →=λPP 2→时,点P 的坐标(x ,y )=⎝ ⎛⎭⎪⎫x 1+λx 21+λ,y 1+λy 21+λ. ②中点坐标:若A (x 1,y 1),B (x 2,y 2),则AB 的中点M 坐标为(x 1+x 22,y 1+y 22) .(即λ=12时) ③重心坐标:若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 重心G 坐标为(x 1+x 2+x 33,y 1+y 2+y 33). 11.数量与向量的转化(平方法)(1)求|λa +μb |时:利用|λa +μb |(2)已知|λa +μb |=m (m 为常数)时:利用 |λa +μb |2=m 2 可求a 与b 的 数量积 , 夹角 . (3)对于a +b +c =0,通过 移项平方 或 同乘其中一个向量 ,总可以求得某个向量的模,或者某两个向量的夹角.12.平面向量中值得注意的地方 (1)若a ∥b ,b ∥c ,则a 不一定 平行c .(原因:b 可以是 零 向量.)(2)若a ·b =b ·c ,则 不一定 有 a =c .(原因:b 可以是 零 向量.)(3) (a ·b )·c ≠ a ·(b ·c ).(原因:(a ·b )·c 是c 的共线向量,a ·(b ·c ) 是a 的共线向量.)(4) CA →·AB →= -AC →·AB → .(这样转化,向量夹角不易出错.)(5)a ·b =a ·c ⇔ a ·(b -c )=0 ⇔ a ⊥(b -c ) .(6)①若向量a 与b 的夹角θ为锐角,则a ·b > 0,且排除 a ∥b (或a 、b 同向) 的情况;②若向量a 与b 的夹角θ为钝角,则a ·b < 0,且排除 a ∥b (或a 、b 反向) 的情况.(7)与u =(x ,y )垂直的向量v :可设为v = λ(-y ,x ) ,λ≠0.(8)与单位向量u =(x ,y )垂直的单位向量v :v = (-y ,x ) 或v = (y ,-x ) .13.三角形的“心”的向量表示及应用(1)三角形各心重心:三角形的三条中线的交点;重心将中线长度分成2∶1;垂心:三角形的三条高线的交点;垂线与对应边垂直;内心:三角形的三个内角角平分线的交点(三角形内切圆的圆心);内心到三角形三边的距离相等; 外心:三角形的三条边的中垂线的交点(三角形外接圆的圆心) ;外心到三角形三顶点的距离相等.(2)三角形各心的向量表示(1)若G 是△ABC 的重心 ⇔①GA →+GB →+GC →= 0 ;②设AB 中点为D ,则GC →= -2GD → ;③PG →= 13(PA →+PB →+PC →) (P 为平面内任意一点); ④AG →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|sin B +AC →|AC →|sin C (即直线AG 过重心)(由|AC →|sin B =|AB →|sin C 或作出高AH 知两分式的分母相等);⑤使GA →2+GB →2+GC →2取最 小 值时,G 是△ABC 的 重心 .(坐标法易证)(2)H 是△ABC 的垂心 ⇔①HA →·HB →=HB →·HC →=HC →·HA →;(HA →·BC →=0,其余同理)②AB 2+HC 2=AC 2+HB 2=BC 2+HA 2.(坐标法、向量法可证)③AH →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C (即直线AG 过垂心)(因为AH →·BC →=0或作出高AD 后,把AB →=AD →+DB →,AC →=AD →+DC →带入化简,可知AH →,AD →共线) .(3)O 是△ABC 的外心 ⇔①|OA →|=|OB →|=|OC →| (或OA →2=OB →2=OC →2);②AC →·AO →=|AC →|·|AO →|cos ∠OAC =12AC →2,AB →·AO →=|AB →|·|AO →|cos ∠OAB =12AB →2.(4)O 是△ABC 的内心 ⇔①OA →·⎝ ⎛⎭⎪⎪⎫AB →|AB →|-AC →|AC →|=OB →·⎝ ⎛⎭⎪⎪⎫BA →|BA →|-BC →|BC →|=OC →·⎝ ⎛⎭⎪⎪⎫CA →|CA →|-CB →|CB →|= 0 . ②aOA →+bOB →+cOC →= 0 ;(CO →=ab a +b +c ⎝ ⎛⎭⎪⎪⎫CA →|CA →|+CB →|CB →|,其余同理) ③AO →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|(即直线AO 过内心)(即直线AO 是∠BAC 的角平分线所在直线) ④∠BAC 的角平分线向量AD →的方向向量:v =AB →|AB →|+AC →|AC →|.。
平面向量的应用(教案)【第一课时】教学重难点教学目标核心素养向量在平面几何中的应用会用向量方法解决平面几何中的平行、 垂直、长度、夹角等问题数学建模、逻辑推理向量在物理中的应用 会用向量方法解决物理中的速度、力学问题数学建模、数学运算一、问题导入预习教材内容,思考以下问题:1.利用向量可以解决哪些常见的几何问题? 2.如何用向量方法解决物理问题? 二、新知探究 探究点1:向量在几何中的应用角度一:平面几何中的垂直问题例1:如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,求证:AF ⊥DE . 证明:法一:设AD →=a ,AB →=b , 则|a |=|b |,a·b =0,又DE →=DA →+AE →=-a +12b ,AF →=AB →+BF →=b +12a ,所以AF →·DE →=⎝⎛⎭⎫b +12a ·⎝⎛⎭⎫-a +12b =-12a 2-34a ·b +12b 2=-12|a |2+12|b |2=0. 故AF →⊥DE →,即AF ⊥DE .法二:如图,建立平面直角坐标系,设正方形的边长为2,则A (0,0),D (0,2),E (1,0),F (2,1),AF →=(2,1),DE →=(1,-2).因为AF →·DE →=(2,1)·(1,-2)=2-2=0, 所以AF →⊥DE →,即AF ⊥DE .角度二:平面几何中的平行(或共线)问题:如图,点O 是平行四边形ABCD 的中心,E ,F 分别在边CD ,AB 上,且CE ED =AF FB =12.求证:点E ,O ,F在同一直线上.证明:设AB →=m ,AD →=n , 由CE ED =AF FB =12,知E ,F 分别是CD ,AB 的三等分点,所以FO →=F A →+AO →=13BA →+12AC →=-13m +12(m +n )=16m +12n ,OE →=OC →+CE →=12AC →+13CD →=12(m +n )-13m =16m +12n . 所以FO →=OE →.又O 为FO →和OE →的公共点,故点E ,O ,F 在同一直线上. 角度三:平面几何中的长度问题:如图,平行四边形ABCD 中,已知AD =1,AB =2,对角线BD =2,求对角线AC 的长. 解:设AD →=a ,AB →=b ,则BD →=a -b ,AC →=a +b ,而|BD →|=|a -b |=a 2-2a ·b +b 2=1+4-2a ·b =5-2a ·b =2,所以5-2a ·b =4,所以a ·b =12,又|AC →|2=|a +b |2=a 2+2a ·b +b 2=1+4+2a ·b =6,所以|AC →|=6,即AC =6.用向量方法解决平面几何问题的步骤向量在物理中的应用:(1)在长江南岸某渡口处,江水以12.5 km/h 的速度向东流,渡船的速度为25 km/h .渡船要垂直地渡过长江,其航向应如何确定?(2)已知两恒力F 1=(3,4),F 2=(6,-5)作用于同一质点,使之由点A (20,15)移动到点B (7,0),求F 1,F 2分别对质点所做的功.解:(1)如图,设AB →表示水流的速度,AD →表示渡船的速度,AC →表示渡船实际垂直过江的速度. 因为AB →+AD →=AC →,所以四边形ABCD 为平行四边形. 在Rt △ACD 中,∠ACD =90°,|DC →|=|AB →|=12.5.|AD →|=25,所以∠CAD =30°,即渡船要垂直地渡过长江,其航向应为北偏西30°. (2)设物体在力F 作用下的位移为s ,则所做的功为W =F ·s . 因为AB →=(7,0)-(20,15)=(-13,-15).所以W 1=F 1·AB →=(3,4)·(-13,-15) =3×(-13)+4×(-15)=-99(焦), W 2=F 2·AB →=(6,-5)·(-13,-15) =6×(-13)+(-5)×(-15)=-3(焦).用向量方法解决物理问题的“三步曲”三、课堂总结1.用向量方法解决平面几何问题的“三个步骤”2.向量在物理学中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的减法和加法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,即为力F 与位移s 的数量积,即W =F·s =|F ||s |cos θ(θ为F 与s 的夹角). 四、课堂检测1.河水的流速为2 m/s ,一艘小船以垂直于河岸方向10 m/s 的速度驶向对岸,则小船在静水中的速度大小为( ) A .10 m/s B .226 m/s C .4 6 m/sD .12 m/s解析:选B .由题意知|v 水|=2 m/s ,|v 船|=10 m/s ,作出示意图如图. 所以小船在静水中的速度大小 |v |=102+22=226(m/s ).2.已知三个力f 1=(-2,-1),f 2=(-3,2),f 3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力f 4,则f 4=( ) A .(-1,-2) B .(1,-2) C .(-1,2)D .(1,2)解析:选D .由物理知识知f 1+f 2+f 3+f 4=0,故f 4=-(f 1+f 2+f 3)=(1,2).3.设P ,Q 分别是梯形ABCD 的对角线AC 与BD 的中点,AB ∥DC ,试用向量证明:PQ ∥AB . 证明:设DC →=λAB →(λ>0且λ≠1),因为PQ →=AQ →-AP →=AB →+BQ →-AP →=AB →+12(BD →-AC →)=AB →+12[(AD →-AB →)-(AD →+DC →)]=AB →+12(CD →-AB →)=12(CD →+AB →)=12(-λ+1)AB →, 所以PQ →∥AB →,又P ,Q ,A ,B 四点不共线,所以PQ ∥AB .【第二课时】一、问题导入预习教材内容,思考以下问题: 1.余弦定理的内容是什么? 2.余弦定理有哪些推论? 二、新知探究已知两边及一角解三角形:(1)(2018·高考全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( )A .42B .30C .29D .25(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =5,c =2,cos A =23,则b =( )A .2B .3C .2D .3解析:(1)因为cos C =2cos 2 C 2-1=2×15-1=-35,所以由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos C =25+1-2×5×1×⎝⎛⎭⎫-35=32,所以AB =42,故选A . (2)由余弦定理得5=22+b 2-2×2b cos A ,因为cos A =23,所以3b 2-8b -3=0,所以b =3⎝⎛⎭⎫b =-13舍去.故选D . 答案:(1)A (2)D 互动探究:变条件:将本例(2)中的条件“a =5,c =2,cos A =23”改为“a =2,c =23,cos A =32”,求b 为何值?解:由余弦定理得: a 2=b 2+c 2-2bc cos A ,所以22=b 2+(23)2-2×b ×23×32, 即b 2-6b +8=0,解得b =2或b =4. 规律方法:解决“已知两边及一角”解三角问题的步骤(1)用余弦定理列出关于第三边的等量关系建立方程,运用解方程的方法求出此边长. (2)再用余弦定理和三角形内角和定理求出其他两角. 探究点2:已知三边(三边关系)解三角形:(1)在△ABC 中,已知a =3,b =5,c =19,则最大角与最小角的和为( ) A .90° B .120° C .135°D .150°(2)在△ABC 中,若(a +c )(a -c )=b (b -c ),则A 等于( ) A .90° B .60° C .120°D .150°解析:(1)在△ABC 中,因为a =3,b =5,c =19, 所以最大角为B ,最小角为A ,所以cos C =a 2+b 2-c 22ab =9+25-192×3×5=12,所以C =60°,所以A +B =120°,所以△ABC 中的最大角与最小角的和为120°.故选B .(2)因为(a +c )(a -c )=b (b -c ),所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12.因为A ∈(0°,180°),所以A =60°. 答案:(1)B (2)B已知三角形的三边解三角形的方法先利用余弦定理的推论求出一个角的余弦,从而求出第一个角;再利用余弦定理的推论求出第二个角;最后利用三角形的内角和定理求出第三个角.注意:若已知三角形三边的比例关系,常根据比例的性质引入k ,从而转化为已知三边求解. 探究点3: 判断三角形的形状:在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状. 解:将已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B cos C . 由余弦定理并整理,得 b 2+c 2-b 2⎝⎛⎭⎫a 2+b 2-c 22ab 2-c 2⎝⎛⎭⎫a 2+c 2-b 22ac 2=2bc ×a 2+c 2-b 22ac ×a 2+b 2-c 22ab ,所以b 2+c 2=[(a 2+b 2-c 2)+(a 2+c 2-b 2)]24a 2=4a 44a2=a 2.所以A =90°.所以△ABC 是直角三角形. 规律方法:(1)利用余弦定理判断三角形形状的两种途径①化边的关系:将条件中的角的关系,利用余弦定理化为边的关系,再变形条件判断. ②化角的关系:将条件转化为角与角之间的关系,通过三角变换得出关系进行判断. (2)判断三角形时经常用到以下结论①△ABC 为直角三角形⇔a 2=b 2+c 2或c 2=a 2+b 2或b 2=a 2+c 2. ②△ABC 为锐角三角形⇔a 2+b 2>c 2,且b 2+c 2>a 2,且c 2+a 2>b 2. ③△ABC 为钝角三角形⇔a 2+b 2<c 2或b 2+c 2<a 2或c 2+a 2<b 2. ④若sin 2A =sin 2B ,则A =B 或A +B =π2.三、课堂总结 1.余弦定理cos A =b 2+c 2-a 22bc ;cos B =a 2+c 2-b 22ac;cos C =a 2+b 2-c 22ab .3.三角形的元素与解三角形 (1)三角形的元素三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素. (2)解三角形已知三角形的几个元素求其他元素的过程叫做解三角形. 四、课堂检测1.在△ABC 中,已知a =5,b =7,c =8,则A +C =( ) A .90° B .120° C .135°D .150°解析:选B .cos B =a 2+c 2-b 22ac =25+64-492×5×8=12.所以B =60°,所以A +C =120°.2.在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,则角A 等于( ) A .30° B .60° C .120°D .150°解析:选B .因为(b +c )2-a 2=b 2+c 2+2bc -a 2=3bc , 所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12,所以A =60°.3.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab =________. 解析:因为C =60°,所以c 2=a 2+b 2-2ab cos 60°, 即c 2=a 2+b 2-ab .① 又因为(a +b )2-c 2=4, 所以c 2=a 2+b 2+2ab -4.②由①②知-ab =2ab -4,所以ab =43.答案:434.在△ABC 中,a cos A +b cos B =c cos C ,试判断△ABC 的形状.解:由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca ,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·c 2+a 2-b 22ca +c ·c 2-a 2-b 22ab=0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.所以a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2.根据勾股定理知△ABC 是直角三角形.【第三课时】一、问题导入预习教材内容,思考以下问题:1.在直角三角形中,边与角之间的关系是什么? 2.正弦定理的内容是什么? 二、新知探究已知两角及一边解三角形:在△ABC 中,已知c =10,A =45°,C =30°,解这个三角形. 【解】因为A =45°,C =30°,所以B =180°-(A +C )=105°. 由a sin A =c sin C 得a =c sin A sin C =10×sin 45°sin 30°=102. 因为sin 75°=sin (30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64,所以b =c sin B sin C =10×sin (A +C )sin 30°=20×2+64=52+56.已知三角形的两角和任一边解三角形的思路(1)若所给边是已知角的对边时,可由正弦定理求另一角所对的边,再由三角形内角和定理求出第三个角. (2)若所给边不是已知角的对边时,先由三角形内角和定理求出第三个角,再由正弦定理求另外两边.已知两边及其中一边的对角解三角形已知△ABC 中的下列条件,解三角形: (1)a =10,b =20,A =60°; (2)a =2,c=6,C =π3.解:(1)因为b sin B =asin A,所以sin B =b sin A a =20sin 60°10=3>1,所以三角形无解.(2)因为a sin A =c sin C ,所以sin A =a sin C c =22.因为c >a ,所以C >A .所以A =π4.所以B =5π12,b = c sin Bsin C =6·sin 5π12sin π3=3+1.互动探究:变条件:若本例(2)中C =π3改为A =π4,其他条件不变,求C ,B, b .解:因为a sin A =c sin C ,所以sin C =c sin A a =32.所以C =π3或2π3.当C =π3时,B =5π12,b =a sin B sin A =3+1.当C =2π3时,B =π12,b =a sin B sin A=3-1.(1)已知两边及其中一边的对角解三角形的思路 ①首先由正弦定理求出另一边对角的正弦值;②如果已知的角为大边所对的角时,由三角形中大边对大角,大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求锐角;③如果已知的角为小边所对的角时,则不能判断另一边所对的角为锐角,这时由正弦值可求两个角,要分类讨论.(2)已知两边及其中一边的对角判断三角形解的个数的方法①应用三角形中大边对大角的性质以及正弦函数的值域判断解的个数;②在△ABC 中,已知a ,b 和A ,以点C 为圆心,以边长a 为半径画弧,此弧与除去顶点A 的射线AB 的公共点的个数即为三角形解的个数,解的个数见下表:判断三角形的形状:已知在△ABC 中,角A ,B 所对的边分别是a 和b ,若a cos B =b cos A ,则△ABC 一定是( )A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形解析:由正弦定理得:a cos B=b cos A⇒sin A cos B=sin B cos A⇒sin(A-B)=0,由于-π<A-B<π,故必有A-B=0,A=B,即△ABC为等腰三角形.答案:A互动探究:变条件:若把本例条件变为“b sin B=c sin C”,试判断△ABC的形状.解:由b sin B=c sin C可得sin2B=sin2C,因为三角形内角和为180°,所以sin B=sin C.所以B=C.故△ABC为等腰三角形.判断三角形形状的两种途径注意:在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.三、课堂总结1.正弦定理对正弦定理的理解(1)适用范围:正弦定理对任意的三角形都成立.(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式.(3)揭示规律:正弦定理指出的是三角形中三条边与其对应角的正弦之间的一个关系式,它描述了三角形中边与角的一种数量关系.2.正弦定理的变形若R为△ABC外接圆的半径,则(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)sin A∶sin B∶sin C=a∶b∶c;(4)a+b+csin A+sin B+sin C=2R.四、课堂检测1.(2019·辽宁沈阳铁路实验中学期中考试)在△ABC中,AB=2,AC=3,B=60°,则cos C=()A.33B.63C.32D.62解析:选B.由正弦定理,得ABsin C=ACsin B,即2sin C=3sin 60°,解得sin C=33.因为AB<AC,所以C<B,所以cos C=1-sin2C=6 3.2.在△ABC中,角A,B,C的对边分别为a,b,c,且A∶B∶C=1∶2∶3,则a∶b∶c=()A.1∶2∶3B.3∶2∶1C.2∶3∶1D.1∶3∶2解析:选D.在△ABC中,因为A∶B∶C=1∶2∶3,所以B=2A,C=3A,又A+B+C=180°,所以A=30°,B =60°,C=90°,所以a∶b∶c=sin A∶sin B∶sin C=sin 30°∶sin 60°∶sin 90°=1∶3∶2.3.在△ABC中,角A,B,C的对边分别是a,b,c,若c-a cos B=(2a-b)cos A,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形解析:选D.已知c-a cos B=(2a-b)cos A,由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,所以sin(A+B)-sin A cos B=2sin A cos A-sin B cos A,化简得cos A(sin B-sin A)=0,所以cos A=0或sin B-sin A=0,则A=90°或A=B,故△ABC为等腰三角形或直角三角形.【第四课时】一、问题导入预习教材内容,思考以下问题:1.什么是基线?2.基线的长度与测量的精确度有什么关系?3.利用正、余弦定理可解决哪些实际问题?二、新知探究测量距离问题:海上A ,B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 岛与C 岛间的距离是________.解析:如图,在△ABC 中,∠C =180°-(∠B +∠A )=45°, 由正弦定理,可得BC sin 60°=ABsin 45°,所以BC =32×10=56(海里). 答案:56海里变条件:在本例中,若“从B 岛望C 岛和A 岛成75°的视角”改为“A ,C 两岛相距20海里”,其他条件不变,又如何求B 岛与C 岛间的距离呢?解:由已知在△ABC 中,AB =10,AC =20,∠BAC =60°,即已知两边和两边的夹角,利用余弦定理求解即可. BC 2=AB 2+AC 2-2AB ·AC ·cos 60°=102+202-2×10×20×12=300.故BC =103.即B ,C 间的距离为103海里.测量距离问题的解题思路求解测量距离问题的方法是:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.构造数学模型时,尽量把已知元素放在同一个三角形中.测量高度问题:如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m . 解析:由题意,在△ABC 中,∠BAC =30°,∠ABC =180°-75°=105°,故∠ACB =45°. 又AB =600 m ,故由正弦定理得600sin 45°=BCsin 30°,解得BC =300 2 m .在Rt △BCD 中,CD =BC ·tan 30°=3002×33=1006(m ). 答案:1006 互动探究:变问法:在本例条件下,汽车在沿直线AB 方向行驶的过程中,若测得观察山顶D 点的最大仰角为α,求tan α的值.解:如图,过点C ,作CE ⊥AB ,垂足为E ,则∠DEC =α,由例题可知, ∠CBE =75°,BC =3002, 所以CE =BC ·sin ∠CBE=3002sin 75° =3002×2+64=150+1503.所以tan α=DC CE =1006150+1503=32-63.测量高度问题的解题思路高度的测量主要是一些底部不能到达或者无法直接测量的物体的高度问题.常用正弦定理或余弦定理计算出物体的顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.这类物体高度的测量是在与地面垂直的竖直平面内构造三角形或者在空间构造三棱锥,再依据条件利用正、余弦定理解其中的一个或者几个三角形,从而求出所需测量物体的高度.测量角度问题:岛A 观察站发现在其东南方向有一艘可疑船只,正以每小时10海里的速度向东南方向航行(如图所示),观察站即刻通知在岛A 正南方向B 处巡航的海监船前往检查.接到通知后,海监船测得可疑船只在其北偏东75°方向且相距10海里的C 处,随即以每小时103海里的速度前往拦截. (1)问:海监船接到通知时,在距离岛A 多少海里处?(2)假设海监船在D 处恰好追上可疑船只,求它的航行方向及其航行的时间. 解:(1)根据题意得∠BAC =45°,∠ABC =75°,BC =10, 所以∠ACB =180°-75°-45°=60°, 在△ABC 中,由AB sin ∠ACB =BCsin ∠BAC ,得AB =BC sin ∠ACB sin ∠BAC=10sin 60°sin 45°=10×3222=56. 所以海监船接到通知时,在距离岛A 5 6 海里处.(2)设海监船航行时间为t 小时,则BD =103t ,CD =10t , 又因为∠BCD =180°-∠ACB =180°-60°=120°, 所以BD 2=BC 2+CD 2-2BC ·CD cos 120°, 所以300t 2=100+100t 2-2×10×10t ·⎝⎛⎭⎫-12, 所以2t 2-t -1=0,解得t =1或t =-12(舍去).所以CD =10,所以BC =CD ,所以∠CBD =12(180°-120°)=30°,所以∠ABD =75°+30°=105°.所以海监船沿方位角105°航行,航行时间为1个小时. (或海监船沿南偏东75°方向航行,航行时间为1个小时)测量角度问题的基本思路(1)测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,在图形中标出相关的角和距离. (2)根据实际选择正弦定理或余弦定理解三角形,然后将解得的结果转化为实际问题的解. 三、课堂总结 1.基线在测量过程中,我们把根据测量的需要而确定的线段叫做基线 实际测量中的有关名称、术语南偏西60°(指以正南方向为始边,转向目标方向线形成的角)1.若P 在Q 的北偏东44°50′方向上,则Q 在P 的( ) A .东偏北45°10′方向上 B .东偏北45°50′方向上 C .南偏西44°50′方向上 D .西偏南45°50′方向上解析:选C .如图所示.2.如图,D ,C ,B 三点在地面同一直线上,从地面上C ,D 两点望山顶A ,测得它们的仰角分别为45°和30°,已知CD =200米,点C 位于BD 上,则山高AB 等于( )A .1002米B .50(3+1)米C .100(3+1)米D .200米解析:选C .设AB =x 米,在Rt △ACB 中,∠ACB =45°, 所以BC =AB =x .在Rt △ABD 中,∠D =30°,则BD =3AB =3x . 因为BD -BC =CD ,所以3x -x =200, 解得x =100(3+1).故选C .3.已知台风中心位于城市A 东偏北α(α为锐角)度的150公里处,以v 公里/小时沿正西方向快速移动,2.5小时后到达距城市A 西偏北β(β为锐角)度的200公里处,若cos α=34cos β,则v =( )A .60B .80C .100D .125解析:选C .画出图象如图所示,由余弦定理得(2.5v )2=2002+1502+2×200×150cos (α+β)①,由正弦定理得150sin β=200sin α,所以sin α=43sin β.又cos α=34 cos β,sin 2 α+cos 2 α=1,解得sin β=35,故cos β=45,sin α=45,cos α=35,故cos (α+β)=1225-1225=0,代入①解得v =100.4.某巡逻艇在A 处发现在北偏东45°距A 处8海里处有一走私船,正沿南偏东75°的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以123海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船,并指出巡逻艇的航行方向.解:设经过t 小时在点C 处刚好追上走私船,依题意:AC =123t ,BC =12t ,∠ABC =120°, 在△ABC 中,由正弦定理得123t sin 120°=12tsin ∠BAC,所以sin ∠BAC =12,所以∠BAC =30°,所以AB =BC =8=12t ,解得t =23,航行的方向为北偏东75°.即巡逻艇最少经过23小时可追到走私船,沿北偏东75°的方向航行.坚持希望一天,一个瞎子和一个瘸子结伴去寻找那种仙果,他们一直走呀走,途中他们翻山越岭。
▼知识点:(1)证明线段相等平行,常运用向量加法的三角形法则、平行四边形法则,有时也用到向量减法的定义;(2)证明线段平行,三角形相似,判断两直线(或线段)是否平行,常运用到向量共线的条件;(3)证明垂直问题,常用向量垂直的充要条件;1、向量在三角函数中的应用:(1)以向量为载体研究三角函数中最值、单调性、周期等三角函数问题;(2)通过向量的线性运算及数量积、共线来解决三角形中形状的判断、边角的大小与关系。
2、向量在物理学中的应用:由于力、速度是向量,它们的分解与合成与向量的加法相类似,可以用向量方法来解决,力做的功就是向量中数量积的一种体现。
3、向量在解析几何中的应用:(1)以向量为工具研究平面解析几何中的坐标、性质、长度等问题;(2)以向量知识为工具研究解析几何中常见的轨迹与方程问题。
平面向量在几何、物理中的应用1、用向量解决几何问题的步骤:(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如:距离,夹角等;(3)把运算结果“翻译”成几何关系。
2、用向量中的有关知识研究物理中的相关问题,步骤如下:(1)问题的转化,即把物理问题转化为数学问题;(2)模型的建立,即建立以向量为主题的数学模型;(3)求出数学模型的有关解;(4)将问题的答案转化为相关的物理问题。
高中数学平面向量的应用知识点总结(二)1.向量的概念(1)定义:既有大小又有方向的量叫做向量,向量可以用字母a、b、c等表示,也可以用表示向量的有向线段的起点和终点字母表示,如(A为起点,B为终点)(2)向量的大小(或称模):也就是向量的长度,记作||(3)向量的两个要素:大小和方向(4)零向量:长度为零的向量,记作0(5)单位向量:长度等于一个长度单位的向量(6)平行向量:方向相同或相反的非零向量叫做平行向量(也叫共线向量)规定0与任何向量平行(7)相等向量:长度相等且方向相同的向量叫相等向量,记作a=b(8)相反向量:长度相等且方向相反的向量叫相反向量2.向量的运算(1)向量的加法(3)实数与向量的积(4)平面向量基本定律:如果e1和e2是同一平面内的两个不共线向量,那么该平面内任一向量a,有且只有一对实数我们把不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底教案:教材分析向量概念有明确的几何背景:有向线段,可以说向量概念是从几何背景中抽象而来的,正因为如此,运用向量可以解决一些几何问题,例如利用向量解决平面内两条直线平行、垂直位置关系的判定等问题。
§5.4
平面向量的综合应用最新考纲考情考向分析
1.会用向量方法解决某些简单的平面几
何问题.
2.会用向量方法解决简单的力学问题及
其他一些实际问题. 主要考查平面向量与函数、三角函数、不等
式、数列、解析几何等综合性问题,求参数范围、最值等问题是考查的热点,一般以选择题、填空题的形式出现,偶尔会出现在解答题中,属于中档题.
1.向量在平面几何中的应用
(1)用向量解决常见平面几何问题的技巧:
问题类型所用知识公式表示
线平行、点共线等问题共线向量定理a ∥b ?a =λb ?x 1y 2-x 2y 1=0,
其中a =(x 1,y 1),b =(x 2,y 2),b
≠0
垂直问题数量积的运算性质a ⊥b ?a ·b =0?x 1x 2+y 1y 2=0,
其中a =(x 1,y 1),b =(x 2,y 2),
且a ,b 为非零向量
夹角问题数量积的定义cos θ=a ·b |a ||b |
(θ为向量a ,b 的夹角),其中a ,b 为非零向量
长度问题数量积的定义|a |=a 2=x 2+y 2
,其中a =(x ,y ),a 为非零向量
(2)用向量方法解决平面几何问题的步骤
平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题.
2.向量在解析几何中的应用
向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量。
1、判断下列结论是否正确(请在括号中打“√”或“×”) (1)若AB →∥AC →,则A ,B ,C 三点共线.( √ ) (2)向量b 在向量a 方向上的投影是向量.( × )(3)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( × ) (4)在△ABC 中,若AB →·BC →<0,则△ABC 为钝角三角形.( × )(5)已知平面直角坐标系内有三个定点A (-2,-1),B (0,10),C (8,0),若动点P 满足:OP →=OA →+t (AB →+AC →),t ∈R ,则点P 的轨迹方程是x -y +1=0.( √ )2、已知△ABC 的三个顶点的坐标分别为A (3,4),B (5,2),C (-1,-4),则该三角形为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形答案 B解析 AB →=(2,-2),AC →=(-4,-8),BC →=(-6,-6), ∴|AB →|=22+(-2)2=22,|AC →|=16+64=45, |BC →|=36+36=62,第1课时进门测∴|AB →|2+|BC →|2=|AC →|2, ∴△ABC 为直角三角形.3、已知在△ABC 中,|BC →|=10,AB →·AC →=-16,D 为边BC 的中点,则|AD →|等于( ) A .6 B .5 C .4 D .3答案 D解析 在△ABC 中,由余弦定理可得AB 2+AC 2-2AB ·AC ·cos A =BC 2,又AB →·AC →=|AB →|·|AC →|·cos A =-16,所以AB 2+AC 2+32=100,AB 2+AC 2=68.又D 为边BC 的中点,所以AB →+AC →=2AD →,两边平方得4|AD →|2=68-32=36,解得|AD →|=3,故选D.4、若向量a ,b 满足|a |=|2a +b |=2,则a 在b 方向上投影的最大值是( ) A. 3 B .-3 C. 6 D .-6 答案 B解析 由题意得|2a +b |2=4|a |2+4|a||b |cos 〈a ,b 〉+|b |2=16+8|b |cos 〈a ,b 〉+|b |2=4,则cos 〈a ,b 〉=-|b |2-128|b |=-(|b |8+32|b |)≤-2|b |8·32|b |=-32,当且仅当|b |=23时等号成立,所以向量a 在向量b 方向上投影的最大值是|a |cos 〈a ,b 〉=- 3.5、平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足OP → ·OA →=4,则点P 的轨迹方程是____________. 答案 x +2y -4=0解析 由OP →·OA →=4,得(x ,y )·(1,2)=4,即x +2y =4.无题型一 向量在平面几何中的应用 命题点1 向量和平面几何知识的综合例1 (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB =________.(2)已知在直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________. 答案 (1)12(2)5解析 (1)在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →,∴BE →=FD →=AD →-12AB →,又∵AC →=AD →+AB →,作业检查阶段训练第2课时∴AC →·BE →=(AD →+AB →)·(AD →-12AB →)=AD →2-12AD →·AB →+AD →·AB →-12AB →2=|AD →|2+12|AD →||AB →|cos 60°-12|AB →|2=1+12×12|AB →|-12|AB →|2=1.∴⎝⎛⎭⎫12-|AB →||AB →|=0,又|AB →|≠0,∴|AB →|=12. (2)以D 为原点,分别以DA ,DC 所在直线为x 轴,y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =y .则D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,y ), P A →=(2,-y ),PB →=(1,a -y ), 则P A →+3PB →=(5,3a -4y ), 即|P A →+3PB →|2=25+(3a -4y )2, 由点P 是腰DC 上的动点,知0≤y ≤a . 因此当y =34a 时,|P A →+3PB →|2取最小值25.故|P A →+3PB →|的最小值为5. 命题点2 三角形的“四心”例2 已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( ) A .内心 B .外心 C .重心 D .垂心 答案 C解析 由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心. 引申探究1.在本例中,若动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,λ∈(0,+∞),则如何选择? 答案 A解析 由条件,得OP →-OA →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,即AP →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →平分∠BAC ,所以点P 的轨迹必过△ABC 的内心.2.在本例中,若动点P 满足OP →=OA →+λ(AB →|AB →|cos B +AC →|AC →|cos C ),λ∈(0,+∞),则如何选择?答案 D解析 由条件,得AP →=λ(AB →|AB →|cos B +AC →|AC →|cos C ),从而AP →·BC →=λ(AB →·BC →|AB →|cos B +AC →·BC →|AC →|cos C)=λ·|AB →|·|BC →|cos (180°-B )|AB →|cos B +λ·|AC →|·|BC →|cos C |AC →|cos C =0,所以AP → ⊥BC →,则动点P 的轨迹一定通过△ABC 的垂心. 命题点3 平面向量数量积与余弦定理例3 在△ABC 中,AB =8,AC =6,AD 垂直BC 于点D ,E ,F 分别为AB ,AC 的中点,若DE →·DF →=6,则BC 等于( ) A .213 B .10 C .237 D .14答案 A解析 由题意,知DE =AE ,DF =AF , ∵DE →·DF →=|DE →|·|DF →|·cos ∠EDF =|DE →|·|DF →|·|DE →|2+|DF →|2-|EF →|22|DE →|·|DF →|=|AE →|2+|AF →|2-|EF →|22=16+9-|EF →|22=6,∴|EF →|=13,∴BC =213.【同步练习】(1)在△ABC 中,已知向量AB →与AC →满足(AB →|AB →|+AC →|AC →|)·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( )A .等边三角形B .直角三角形C .等腰非等边三角形D .三边均不相等的三角形(2)在△ABC 中,AB →=(2,3),AC →=(1,2),则△ABC 的面积为________.答案 (1)A (2)1-32解析 (1)AB →|AB →|,AC →|AC →|分别为平行于AB →,AC →的单位向量,由平行四边形法则可知AB →|AB →|+AC →|AC →|为∠BAC 的角平分线.因为(AB →|AB →|+AC →|AC →|)·BC →=0,所以∠BAC 的角平分线垂直于BC ,所以AB =AC .又AB →|AB →|·AC →|AC →|=⎪⎪⎪⎪⎪⎪AB →|AB →|·⎪⎪⎪⎪⎪⎪AC →|AC →|·cos ∠BAC =12, 所以cos ∠BAC =12,又0<∠BAC <π,故∠BAC =π3,所以△ABC 为等边三角形.(2)cos ∠BAC =AB →·AC→|AB →||AC →|=2+615,∴sin ∠BAC =2-315,∴S △ABC =12|AB →|·|AC →|·sin ∠BAC =1-32.题型二 向量在解析几何中的应用 命题点1 向量与解析几何知识的综合例4 (1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A ,B ,C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________________.(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则y x =___________.答案 (1)2x +y -3=0 (2)±3解析 (1)∵AB →=OB →-OA →=(4-k ,-7), BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6×7=0, 解得k =-2或k =11.由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0. (2)∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx ,由|2k |1+k 2=3,得k =±3,即yx =± 3.命题点2 轨迹问题例5 已知平面上一定点C (2,0)和直线l :x =8,P 为该平面上一动点,作PQ ⊥l ,垂足为Q ,且(PC →+12PQ →)·(PC →-12PQ →)=0. (1)求动点P 的轨迹方程;(2)若EF 为圆N :x 2+(y -1)2=1的任意一条直径,求PE →·PF →的最值. 解 (1)设P (x ,y ),则Q (8,y ). 由(PC →+12PQ →)·(PC →-12PQ →)=0,得|PC →|2-14|PQ →|2=0,即(x -2)2+y 2-14(x -8)2=0,化简得x 216+y 212=1.∴点P 在椭圆上,其方程为x 216+y 212=1.(2)∵PE →=PN →+NE →,PF →=PN →+NF →, 又NE →+NF →=0.∴PE →·PF →=PN →2-NE →2=x 2+(y -1)2-1 =16(1-y 212)+(y -1)2-1=-13y 2-2y +16=-13(y +3)2+19.∵-23≤y ≤2 3.∴当y =-3时,PE →·PF →的最大值为19, 当y =23时,PE →·PF →的最小值为12-4 3. 综上,PE →·PF →的最大值为19; PE →·PF →的最小值为12-4 3. 【同步练习】(1)如图所示,半圆的直径AB =6,O 为圆心,C 为半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(P A →+PB →)·PC →的最小值为________.(2)如图,已知F 1,F 2为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点,点P 在第一象限,且满足|F 2P→|=a ,(F 1P →+F 1F 2→)·F 2P →=0,线段PF 2与双曲线C 交于点Q ,若F 2P →=5F 2Q →,则双曲线C 的渐近线方程为( )A .y =±55x B .y =±12xC .y =±32x D .y =±33x 答案 (1)-92(2)B解析 (1)∵圆心O 是直径AB 的中点, ∴P A →+PB →=2PO →,∴(P A →+PB →)·PC →=2PO →·PC →,∵PO →与PC →共线且方向相反,∴当大小相等时,PO →·PC →最小.由条件知,当PO =PC =32时,最小值为-2×32×32=-92.(2)由(F 1P →+F 1F 2→)·F 2P →=0,可得|F 1P →|=|F 1F 2→|=2c ,则点P (x ,y )(x >0,y >0)满足⎩⎪⎨⎪⎧(x +c )2+y 2=4c 2,(x -c )2+y 2=a 2, 解得⎩⎨⎧x =c -a 24c,y =a16c 2-a 24c.又F 2P →=5F 2Q →,解得Q (c -a 220c ,a 16c 2-a 220c),又Q 在双曲线C 上,代入双曲线方程化简得80c 4-168a 2c 2+85a 4=0,则(4c 2-5a 2)(20c 2-17a 2)=0,又c >a ,所以4c 2-5a 2=0,4(a 2+b 2)-5a 2=0,则a =2b ,则双曲线C 的渐近线方程为y =±b a x =±12x ,故选B.题型四 函数与方程思想在向量中的应用例6 (1)设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则|x ||b |的最大值等于______.(2)在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB →=λAM →+μAN →,则λ+μ=________.解析 (1)因为b ≠0,所以b =x e 1+y e 2,x ≠0或y ≠0. 当x =0,y ≠0时,|x ||b |=0;当x ≠0时,|b |2=(x e 1+y e 2)2=x 2+y 2+3xy ,|x |2|b |2=x 2x 2+y 2+3xy =1y 2x 2+3·yx +1, 不妨设y x =t ,则|x |2|b |2=1t 2+3t +1,当t =-32时,t 2+3t +1取得最小值14, 此时|x |2|b |2取得最大值4,所以|x ||b |的最大值为2.综上,|x ||b |的最大值为2.(2)由AB →=λAM →+μAN →,得AB →=λ·12(AD →+AC →)+μ·12(AC →+AB →),得(μ2-1)AB →+λ2AD →+(λ2+μ2)AC →=0,得(μ2-1)AB →+λ2AD →+(λ2+μ2)(AD →+12AB →)=0,得(14λ+34μ-1)AB →+(λ+μ2)AD →=0.又因为AB →,AD →不共线,所以由平面向量基本定理得⎩⎨⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎨⎧λ=-45,μ=85.所以λ+μ=45.答案 (1)2 (2)451.向量在平面几何中的应用第3课时阶段重难点梳理(1)用向量解决常见平面几何问题的技巧:(2)用向量方法解决平面几何问题的步骤:平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题. 2.平面向量在物理中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的加法和减法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,是力F 与位移s 的数量积,即W =F·s =|F||s |cos θ(θ为F 与s 的夹角). 3.向量与相关知识的交汇平面向量作为一种工具,常与函数(三角函数),解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题. 【知识拓展】1.若G 是△ABC 的重心,则GA →+GB →+GC →=0.2.若直线l 的方程为Ax +By +C =0,则向量(A ,B )与直线l 垂直,向量(-B ,A )与直线l 平行.题型五 平面向量与三角函数 命题点1 向量与三角恒等变换的结合例1 已知a =(cos α,sin α),b =(cos β,sin β),0<β<α<π.且a +b =(0,1),则α=________,β=________.答案5π6 π6解析 因为a +b =(0,1),所以⎩⎪⎨⎪⎧cos α+cos β=0,sin α+sin β=1,由此得cos α=cos(π-β). 由0<β<π,得0<π-β<π, 又0<α<π,故α=π-β.代入sin α+sin β=1,得sin α=sin β=12.又α>β,所以α=5π6,β=π6.命题点2 向量与三角函数的结合例2 已知向量a =(sin x ,32),b =(cos x ,-1).(1)当a ∥b 时,求tan 2x 的值;重点题型训练(2)求函数f (x )=(a +b )·b 在[-π2,0]上的值域.解 (1)∵a ∥b ,∴sin x ·(-1)-32·cos x =0,即sin x +32cos x =0,tan x =-32,∴tan 2x =2tan x 1-tan 2x =125.(2)f (x )=(a +b )·b =a ·b +b 2 =sin x cos x -32+cos 2x +1=12sin 2x -32+12cos 2x +12+1 =22sin(2x +π4). ∵-π2≤x ≤0,∴-π≤2x ≤0,-3π4≤2x +π4≤π4,∴-22≤22sin(2x +π4)≤12, ∴f (x )在[-π2,0]上的值域为[-22,12].命题点3 向量与解三角形的结合例3 已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x ,1),x ∈R . (1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 与c 的值.解 (1)f (x )=2cos 2x -3sin 2x =1+cos 2x -3sin 2x =1+2cos(2x +π3),令2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),∴函数y =f (x )的单调递减区间为[k π-π6,k π+π3](k ∈Z ).(2)∵f (A )=1+2cos(2A +π3)=-1,∴cos(2A +π3)=-1,又π3<2A +π3<7π3, ∴2A +π3=π,即A =π3.∵a =7, ∴由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①∵向量m =(3,sin B )与n =(2,sin C )共线, ∴2sin B =3sin C , 由正弦定理得2b =3c ,②由①②得b =3,c =2.【同步练习】(1)函数y =sin(ωx +φ)在一个周期内的图象如图所示,M ,N 分别是 最高点、最低点,O 为坐标原点,且OM →·ON →=0,则函数f (x )的最小正周期是______.(2)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,已知c =6,sin A -sin C =sin(A -B ),若1≤a ≤6,则sin C 的取值范围是________.答案 (1)3 (2)[32,1]解析 (1)由图象可知,M (12,1),N (x N ,-1),所以OM →·ON →=(12,1)·(x N ,-1)=12x N -1=0,解得x N =2,所以函数f (x )的最小正周期是2×⎝⎛⎭⎫2-12=3. (2)由sin A -sin C =sin(A -B ),得sin A =sin C +sin(A -B )=sin(A +B )+sin(A -B )=2sin A cos B , 又sin A ≠0,所以cos B =12.当a =6cos B =3∈[1,6]时,sin C =1;当a =1时,b 2=a 2+c 2-2ac cos B =1+36-2×1×6×12=31,所以b =31,于是6sin C =31sin π3,得sin C =39331;当a =6时,△ABC 为等边三角形,则sin C =32,39331>32, 从而得到sin C 的取值范围是[32,1]. 题型六 向量与学科知识的交汇 命题点1 向量与不等式相结合例4 (1)设e 1,e 2是平面内两个不共线的向量,AB →=(a -1)e 1+e 2,AC →=b e 1-2e 2(a >0,b >0),若A ,B ,C 三点共线,则1a +2b 的最小值是( )A .2B .4C .6D .8 (2)已知x ,y 满足⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥a ,若OA →=(x,1),OB →=(2,y ),且OA →·OB →的最大值是最小值的8倍,则实数a 的值是________. 答案 (1)B (2)18解析 (1)因为A ,B ,C 三点共线, 所以(a -1)×(-2)=1×b ,所以2a +b =2.因为a >0,b >0,所以1a +2b =2a +b 2·(1a +2b )=2+2a b +b2a ≥2+22a b ·b 2a =4(当且仅当2a b =b2a,即a =12,b =1时取等号). (2) 因为OA →=(x,1),OB →=(2,y ),所以OA →·OB →=2x +y ,令z =2x +y ,依题意,不等式组所表示的可行域如图中阴影部分所示(含边界),观察图象可知,当直线z =2x +y 过点C (1,1)时,z max =2×1+1=3,目标函数z =2x +y 过点F (a ,a )时,z min =2a +a =3a ,所以3=8×3a ,解得a =18.命题点2 向量与数列结合例5 设数列{x n }的各项都为正数且x 1=1.如图,△ABC 所在平面上的点P n (n ∈N *)均满足△P n AB 与△P n AC 的面积比为3∶1,若(2x n +1)P n C →+P n A →=13x n +1P n B →,则x 5的值为( )A .31B .33C .61D .63答案 A解析 在(2x n +1)P n C →+P n A →=13x n +1P n B →中,令P n D →=(2x n +1)P n C →,作出图形如图所示,则(2x n +1)P n C→+P n A →=P n E →=13x n +1P n B →,所以|P n E →||P n B →|=13x n +1, n n P AE P ABS S=13x n +1.又|P n C →||P n D →|=P n C AE =12x n +1, 所以n n P AC P ADS S=n n P AC P AES S=12x n +1,则n n P AC P ABS S=x n +13(2x n +1)=13,所以x n +1=2x n +1,x n +1+1=2(x n +1),故{x n +1}构成以2为首项、2为公比的等比数列,所以x 5+1=2×24=32,则x 5=31,故选A.【同步练习】(1)已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定.若M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为( ) A .3 B .4 C .3 2D .42(2)角A ,B ,C 为△ABC 的三个内角,向量m 满足|m |=62,且m =(2sin B +C 2,cos B -C 2),当角A 最大时,动点P 使得|PB →|,|BC →|,|PC →|成等差数列,则|P A →||BC →|的最大值是( )A.233B.223C.24D.324答案 (1)B (2)A 解析 (1)由线性约束条件⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y画出可行域如图阴影部分所示(含边界),目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图象可知,当直线z =2x +y 过点(2,2)时,z 最大,将点(2,2)代入z =2x +y ,得z 的最大值为4.(2)设BC =2a ,BC 的中点为D .由题意得|m |2=(2sinB +C 2)2+(cos B -C 2)2=1-cos(B +C )+12[1+cos(B -C )]=32-12cos B cos C +32sin B sin C =32, 则12cos B cos C =32sin B sin C ,化简得tan B tan C =13,则tan A =-tan(B +C )=-tan B +tan C 1-tan B tan C =-32(tan B +tan C )≤-32×2tan B tan C =-3,当且仅当tan B =tan C =33时,等号成立,所以当角A 最大时,A =2π3,B =C =π6,则易得AD =3a 3.因为|PB →|,|BC →|,|PC →|成等差数列,所以2|BC →|=|PB →|+|PC →|,则点P 在以B ,C 为焦点,以2|BC →|=4a 为长轴的椭圆上,由图(图略)易得当点P 为椭圆的与点A 在直线BC 的异侧的顶点时,|P A →|取得最大值,此时|PD →|=(2a )2-a 2=3a ,则|P A →|=|PD →|+|AD →|=43a3,所以|P A →||BC →|=43a 32a =233,故选A.题型六 和向量有关的创新题例6 称d (a ,b )=|a -b |为两个向量a ,b 间的“距离”.若向量a ,b 满足:①|b |=1;②a ≠b ;③对任意的t ∈R ,恒有d (a ,t b )≥d (a ,b ),则( ) A .a ⊥b B .b ⊥(a -b ) C .a ⊥(a -b ) D .(a +b )⊥(a -b )答案 B解析 由于d (a ,b )=|a -b |,因此对任意的t ∈R ,恒有d (a ,t b )≥d (a ,b ), 即|a -t b |≥|a -b |,即(a -t b )2≥(a -b )2,t 2-2t a ·b +(2a ·b -1)≥0对任意的t ∈R 都成立,因此有(-2a ·b )2-4(2a ·b -1)≤0, 即(a ·b -1)2≤0, 得a ·b -1=0,故a ·b -b 2=b ·(a -b )=0, 故b ⊥(a -b ).思维升华 解答创新型问题,首先需要分析新定义(新运算)的特点,把新定义(新运算)所叙述的问题的本质弄清楚,然后应用到具体的解题过程之中,这是破解新定义(新运算)信息题难点的关键所在.【同步练习】定义一种向量运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ·b ,当a ,b 不共线时,|a -b |,当a ,b 共线时(a ,b 是任意的两个向量).对于同一平面内向量a ,b ,c ,e ,给出下列结论: ①a ⊗b =b ⊗a ;②λ(a ⊗b )=(λa ) ⊗b (λ∈R ); ③(a +b ) ⊗c =a ⊗c +b ⊗c ; ④若e 是单位向量,则|a ⊗e |≤|a |+1.以上结论一定正确的是________.(填上所有正确结论的序号) 答案 ①④解析 当a ,b 共线时,a ⊗b =|a -b |=|b -a |=b ⊗a ,当a ,b 不共线时,a ⊗b =a ·b =b ·a =b ⊗a ,故①是正确的;当λ=0,b ≠0时,λ(a ⊗b )=0,(λa )⊗b =|0-b |≠0,故②是错误的;当a +b 与c 共线时,存在a ,b 与c 不共线,(a +b )⊗c =|a +b -c |,a ⊗c +b ⊗c =a ·c +b ·c ,显然|a +b -c |≠a ·c +b ·c ,故③是错误的;当e 与a 不共线时,|a ⊗e |=|a ·e |<|a |·|e |<|a |+1,当e 与a 共线时,设a =u e ,u ∈R ,|a ⊗e |=|a -e |=|u e -e |=|u -1|≤|u |+1,故④是正确的. 综上,结论一定正确的是①④.例7 已知A ,B ,C ,D 是函数y =sin(ωx +φ)(ω>0,0<φ<π2)一个周期内的图象上的四个点,如图所示,A ⎝⎛⎭⎫-π6,0,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的投影为π12,则ω,φ的值为( )A .ω=2,φ=π3B .ω=2,φ=π6C.ω=12,φ=π3D.ω=12,φ=π6E为函数图象的对称中心,C为图象最低点――――――――→作出点C的对称点MD、B两点对称CD和MB对称―――――――→CD在x轴上的投影是π12BM在x轴上的投影OF=π12―――――――→π(,0)6A-AF=π4―→T=π―→ω=2―――――――――→y=sin(2x+φ)和y=sin 2x图象比较φ2=π6―→φ=π3解析由E为该函数图象的一个对称中心,作点C的对称点M,作MF⊥x轴,垂足为F,如图.B 与D关于点E对称,CD→在x轴上的投影为π12,知OF=π12.又A⎝⎛⎭⎫-π6,0,所以AF=T4=π2ω=π4,所以ω=2.同时函数y=sin(ωx+φ)图象可以看作是由y=sin ωx 的图象向左平移得到,故可知φω=φ2=π6,即φ=π3.答案A一、向量与平面几何综合问题的解法(1)坐标法思导总结把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.(2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解.二、向量在解析几何中的“两个”作用(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题的关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a⊥b⇔a·b=0(a,b为非零向量),a∥b⇔a=λb(b≠0),可解决垂直、平行问题,特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较简捷的方法.三、向量最值求向量模的最值或范围问题往往将模表示成某一变量的函数,采用求函数值域的方法确定最值或范围;在向量分解问题中,经常需要用已知向量来表示其他向量,此时可通过三点共线建立向量之间的关系,比较基向量的系数建立方程组求解.1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足2AB →·AC →=a 2-(b +c )2,a cos B +b cos A =2c sin C ,b =23,则△ABC 的面积为( ) A.334 B.332 C .3 3 D .63答案 C解析 由已知得2bc ·cos A =a 2-(b +c )2, 又a 2=b 2+c 2-2bc ·cos A ,∴cos A =-12,∵0<A <π,∴A =23π.又sin A cos B +cos A sin B =2sin 2C ,0<C <π, 可得C =π6,∴B =C =π6,b =c =23,∴S △ABC =12bc sin A =3 3.2.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若20aBC →+15bCA →+12cAB →=0,则△ABC 最小角的正弦值等于( ) A.45 B.34 C.35 D.74 答案 C作业布置解析 ∵20aBC →+15bCA →+12cAB →=0, ∴20a (AC →-AB →)+15bCA →+12cAB →=0, ∴(20a -15b )AC →+(12c -20a )AB →=0, ∵AC →与AB →不共线,∴⎩⎪⎨⎪⎧20a -15b =0,12c -20a =0,⇒⎩⎨⎧b =43a ,c =53a ,∴△ABC 最小角为角A , ∴cos A =b 2+c 2-a 22bc=169a 2+259a 2-a 22×43a ×53a =45,又0<A <π, ∴sin A =35,故选C.3. 函数y =tan(πx 4-π2)(0<x <4)的图象如图所示,A 为图象与x 轴的交点,过点A 的直线l 与函数的图象交于C ,B 两点.则(OB →+OC →)·OA →等于( )A .-8B .-4C .4D .8答案 D解析 因为函数y =tan(πx 4-π2)(0<x <4)的图象对称中心是(4k +2,0)(k ∈Z ),所以点A 的坐标是(2,0).因为点A 是对称中心,所以点A 是线段BC 的中点, 所以OC →+OB →=2OA →,所以(OB →+OC →)·OA →=2OA →·OA →=2(OA →)2=2×4=8.故选D.4.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种运算:a ⊗b =(a 1,a 2)⊗(b 1,b 2)=(a 1b 1,a 2b 2).已知向量m =(12,4),n =(π6,0).点P 在y =cos x 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ→=m ⊗OP →+n (其中O 为坐标原点),则y =f (x )在区间[π6,π3]上的最大值是( )A .4B .2C .2 2D .23 答案 A解析 设OP →=(x 0,y 0),OQ →=(x ,y ),由题意可得y 0=cos x 0,OQ →=(x ,y )=m ⊗OP →+n =(12,4)⊗(x 0,y 0)+(π6,0)=(12x 0,4y 0)+(π6,0)=(12x 0+π6,4y 0),即x =12x 0+π6,y =4y 0,即x 0=2x -π3,y 0=14y ,所以14y =cos(2x -π3),即y =4cos(2x -π3).因为点Q 在y =f (x )的图象上运动,所以f (x )=4cos(2x -π3),当π6≤x ≤π3时,0≤2x -π3≤π3,所以当2x -π3=0时,f (x )取得最大值4.5.记max{x ,y }=⎩⎪⎨⎪⎧ x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( )A .min{|a +b |,|a -b |}≤min{|a |,|b |}B .min{|a +b |,|a -b |}≥min{|a |,|b |}C .max{|a +b |2,|a -b |2}≤|a |2+|b |2D .max{|a +b |2,|a -b |2}≥|a |2+|b |2 答案 D解析 由于|a +b |,|a -b |与|a |,|b |的大小关系与夹角大小有关,故A ,B 错.当a ,b 夹角为锐角时,|a +b |>|a -b |,此时,|a +b |2>|a |2+|b |2;当a ,b 夹角为钝角时,|a +b |<|a -b |,此时,|a -b |2>|a |2+|b |2;当a ⊥b 时,|a +b |2=|a -b |2=|a |2+|b |2,故选D.6.如图,在扇形OAB 中,∠AOB =60°,C 为弧AB 上与A ,B 不重合的一个动点,且OC →=xOA →+yOB →,若u =x +λy (λ>0)存在最大值,则λ的取值范围为( )A .(1,3)B .(13,3)C .(12,1)D .(12,2)答案 D解析 设∠BOC =α,则∠AOC =π3-α,因为OC →=xOA →+yOB →,所以⎩⎪⎨⎪⎧OB →·OC →=xOB →·OA →+yOB →2,OA →·OC →=xOA →2+yOA →·OB →,即⎩⎨⎧cos α=12x +y ,cos (π3-α)=x +12y ,解得x =-23cos α+43cos(π3-α)=233sin α,y =cos α-33sin α, 所以u =233sin α+λ(cos α-33sin α)=(233-33λ)sin α+λcos α=(233-33λ)2+λ2sin(α+β), 其中tan β=λ233-33λ,因为0<α<π3,要使u 存在最大值,只需满足β>π6,所以λ233-33λ>33,整理得2λ-12-λ>0,解得12<λ<2,故选D.7. 若函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示,M ,N 分别是这段图象的最高点和最低点,且OM →·ON →=0(O 为坐标原点),则A 等于( )A.π6B.7π12C.7π6D.7π3答案 B解析 由题意知M (π12,A ),N (7π12,-A ),又∵OM →·ON →=π12×7π12-A 2=0,∴A =7π12. 8.已知在△ABC 中,AB →=a ,AC →=b ,a·b <0,S △ABC =154,|a |=3,|b |=5,则∠BAC =________.答案 150°解析 ∵AB →·AC →<0,∴∠BAC 为钝角, 又∵S △ABC =12|a||b |sin ∠BAC =154,∴sin ∠BAC =12,又0°≤∠BAC <180°,又0°≤<BAC <180°,∴∠BAC =150°.9.已知在平面直角坐标系中,O (0,0),M (1,1),N (0,1),Q (2,3),动点P (x ,y )满足不等式0≤OP →·OM →≤1,0≤OP →·ON →≤1,则z =OQ →·OP →的最大值为________. 答案 3解析 ∵OP →=(x ,y ),OM →=(1,1),ON →=(0,1),OQ →=(2,3), ∴OP →·OM →=x +y ,OP →·ON →=y ,OQ →·OP →=2x +3y ,即在⎩⎪⎨⎪⎧0≤x +y ≤1,0≤y ≤1条件下,求z =2x +3y 的最大值,由线性规划知识,得当x =0,y =1时,z max =3.10.(2016·温州一模)已知△ABC 中,|BC →|=1,BA →·BC →=2,点P 为线段BC 上的动点,动点Q 满足PQ →=P A →+PB →+PC →,则PQ →·PB →的最小值为________. 答案 -34解析 设BP →=λBC →,λ∈[0,1],则P A →=BA →-BP →=BA →-λBC →,PB →=-λBC →,PC →=(1-λ)BC →,所以PQ →=(BA →-λBC → )-λBC →+(1-λ)BC →=BA →+(1-3λ)BC →,所以PQ → ·PB →=[BA →+(1-3λ)BC → ]·(-λBC → )=-λBC → ·BA →-λ(1-3λ)BC →2=3λ2-3λ,当λ=12时,PQ →·PB →取得最小值-34.11.设非零向量a ,b 的夹角为θ,记f (a ,b )=a cos θ-b sin θ,若e 1,e 2均为单位向量,且e 1·e 2=32,则向量f (e 1,e 2)与f (e 2,-e 1)的夹角为________. 答案 π2解析 由e 1·e 2=32, 可得 cos 〈e 1,e 2〉=e 1·e 2|e 1||e 2|=32,又〈e 1,e 2〉∈[0,π],故〈e 1,e 2〉=π6,〈e 2,-e 1〉=π-〈e 2,e 1〉=5π6.f (e 1,e 2)=e 1cos π6-e 2sin π6=32e 1-12e 2,f (e 2,-e 1)=e 2cos5π6-(-e 1)·sin 5π6=12e 1-32e 2.f (e 1,e 2)·f (e 2,-e 1)=(32e 1-12e 2)·(12e 1-32e 2)=32-e 1·e 2=0. 所以f (e 1,e 2)⊥f (e 2,-e 1),故向量f (e 1,e 2)与f (e 2,-e 1)的夹角为π2.12.已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos C 2,sin C 2),n =(cos C2,-sin C 2),且m 与n 的夹角为π3. (1)求角C ;(2)已知c =72,S △ABC =332,求a +b 的值.解 (1)∵m ·n =cos 2C 2-sin 2C2=cos C ,又m ·n =|m |·|n |·cos π3=12,0<C <π,∴C =π3.(2)∵S △ABC =12ab sin C =12ab sin π3=34ab ,∴34ab =332, ∴ab =6,由余弦定理得cos C =a 2+b 2-c 22ab,即12=(a +b )2-2ab -c 22ab =(a +b )2-12-(72)212,解得a +b =112. 13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知AB →·AC →=BA →·BC →,sin A =53.(1)求sin C 的值;(2)设D 为AC 的中点,若△ABC 的面积为85,求BD 的长. 解 (1)由AB →·AC →=BA →·BC →得AB →·(AC →+BC →)=0,即(AC →-BC →)·(AC →+BC →)=|AC →|2-|BC →|2=0, ∴|AC →|=|BC →|,∴A =B ,A 与B 都是锐角, ∴cos A =1-sin 2A =23,∴sin C =sin(π-A -B )=sin(A +B )=sin 2A =2sin A cos A =459.(2)由S =12ab sin C =259a 2=85,得a =b =6, ∴CD =3,BC =6,又cos C =cos(π-2A )=-cos 2A =-(1-2sin 2A )=19,在△BCD 中,由余弦定理得BD 2=CD 2+BC 2-2CD ·BC cos C =32+62-2·3·6·19=41,∴BD =41.。