二次函数的实际应用(拱桥问题)教师
- 格式:docx
- 大小:79.82 KB
- 文档页数:4
二次函数的应用3(拱桥问题)苏州吴中区蓝缨学校高崇理【作品简介】本节内容为苏科版九年级下册第6章第4节内容,在此之前学生已经学习了二次函数概念、性质和图象,已经掌握了二次函数的一般知识,具备实际运用的能力。
作为在苏州生活的同学,一定对苏州拱桥印象深刻,本节内容就是建立在身边熟悉的生活经验的基础上,研究课本中关于拱桥问题,进而巩固二次函数相关知识。
本作品借助于视频、几何画板、ppt等数学教学多媒体手段,讲授了二次函数应用问题之拱桥问题。
视频长8分钟左右。
【文本创作说明】1、实用对象:二次函数为苏科版九年级下知识,本节内容适合刚学完二次函数性质与图象的同学,用于预习新知;本节内容也可以作为中考复习同学,巩固二次函数相关知识,巩固数学方法解决实际问题的一般步骤。
2、内容分析:本节内容是二次函数章节的结束内容,是对前面二次函数实际问题的深入。
拱桥问题也是在中考中常出现内容,解决此类问题的方法具备代表性,它是用函数解决实际问题的典型例子,也和学生实际生活紧密相连,因此,学习本节内容对于巩固旧知和激发学生研究实际问题的乐趣具有十分重要的作用。
3、目标分析:①知识与能力目标:体会二次函数拱桥问题模型,了解数学的实际应用价值,掌握用数学解决实际问题的一般方法及步骤。
②过程与方法目标:通过引导学生对实际问题的思考,培养学生善于发现实际问题,提高学生利用数学解决实际问题的兴趣。
③情感、态度、价值观目标:本节内容建立在学生家乡桥的基础上,培养学生热爱家乡的情感,同时激发学生勇于思考,善于创新,培养积极主动利用数学解决实际问题的态度。
4、重难点分析:重点:理解二次函数解决实际问题的一般方法并能灵活运用难点:灵活运用二次函数解决实际问题。
5、其他资源:录屏软件,麦克风,几何画板,狸窝视频转换软件,会声会影视频编辑软件,ppt 等【教学设计】一、创设情景,激趣引入。
在讲课之前,给学生欣赏苏州的拱桥风景,告知学生苏州桥历史,以及桥是苏州风景的重要组成部分。
用二次函数解决抛物线型拱桥问题的教学思考
一、二次函数解决抛物线型拱桥问题
1. 抛物线型拱桥问题具有特殊的形式:抛物线型拱桥系统通常会出现
三维变形,其形态类似抛物线;
2. 二次函数可以用来解决抛物线型拱桥问题,因为它能够描述抛物线
型轮廓和大量的非线性关系;
3. 二次函数可以用来描述抛物线型拱桥的三维变形,可以进行模态变换,也可以完善抛物线型拱桥的结构模型,以便以最佳方式进行设计;
4. 通过使用二次函数,可以快速有效地解决复杂的抛物线型拱桥问题,用以描述拱桥的三维弧形特性,提高拱桥的稳定性;
5. 二次函数还可以与大量的有限元元素节点连接,以便更准确的表达
抛物线型构件的变形过程,便于拱桥本身的研究;
6. 二次函数还可以用来解决拱桥的非连续性,以提高拱桥的稳定性,
并达到最佳的结构性能。
二、二次函数解决抛物线型拱桥问题的步骤
1.首先对拱桥进行可靠的分析,实现拱桥几何图形模型的建立;
2. 建立起相关的参数模型,进行完整的原形映射,并分析拱桥的三维
变形特征;
3. 选择适当的二次函数来拟合抛物线型的拱桥特征,并结合参数模型,使拱桥获得最佳的状态;
4. 将拟合后的二次函数与有限元元素节点进行连接,实现对拱桥变形
过程的分析,以达到拱桥稳定性的最优解;
5. 最后,根据逐次考虑的设计要求,进行系统优化设计,直至抛物线型拱桥有力地满足设计要求,实现最优的结构实现。
三、总结
通过使用二次函数,可以对抛物线型拱桥采取有效的解决方案,在高效的设计过程中,更快更好的满足拱桥的设计要求,以保证拱桥的安全和有效解决拱桥的后续问题。
二次函数实际问题拱桥问题教学设计在一个阳光明媚的早晨,小镇上热闹非凡,孩子们在公园里欢快地追逐,家长们则在长椅上聊着天。
突然,有个大新闻传开了!镇上要修一个新拱桥,听说可是个了不起的工程。
大家都在猜测,这座桥到底长什么样,会不会成为镇上的新地标。
于是,镇上的老师决定趁机给孩子们上一堂生动的数学课,讲讲二次函数和拱桥的关系。
老师开始描述拱桥的形状,哎呀,真是个好比喻!想象一下,一条弯弯的河流,两岸都是青翠欲滴的树木。
桥就像一弯新月,优雅地跨越在水面上,简直美得让人心醉。
孩子们听得津津有味,心里想着:“这桥要是能给我们带来更多的玩耍地方,那就太棒了!”老师趁热打铁,接着说起二次函数,嘿,数学原来也可以这么有趣!“你们知道吗?这座桥的形状其实跟我们学的二次函数有很大关系。
”老师一边说,一边在黑板上画出一个漂亮的抛物线。
“这条线就像桥的拱顶,既稳固又美观。
你们看,这就是数学的魅力啊,能够让我们理解生活中的许多事物!”孩子们纷纷点头,心里想着:“原来数学还可以这样用,真是大开眼界!”老师开始介绍拱桥的高度和宽度,利用二次函数的公式,让孩子们算一算。
“好吧,假设桥的顶点在5米高,宽度是10米,那我们该怎么表示这个拱桥的形状呢?”孩子们开始动手,翻看书本,试图找到答案。
这个时候,有个小朋友大声说:“我觉得应该是y = ax² + bx + c!”其他小朋友也跟着附和,气氛瞬间变得热烈起来。
随着讨论的深入,孩子们开始意识到,拱桥的设计不仅仅是个数学问题,更是一个涉及力学、美学和工程学的综合挑战。
老师幽默地说:“这可不像盖个小房子,得想得周到,考虑到每一个细节,就像做一道美味的菜肴!”孩子们忍不住哈哈大笑,心里暗想:“等我们长大了,也要建这样一个桥,带着我们的梦想!”为了让孩子们更深入地理解,老师还带来了一个小实验。
她拿出一个大气球,慢慢放气,气球在重力作用下开始变形。
孩子们看到这一幕,恍若明白了:这就是拱桥的力量啊!一个好的设计,能承受多大的压力,正如同这个气球的形状。
二次函数的实际应用(拱桥问题)教师work Information Technology Company.2020YEAR二次函数中抛物线形与拱桥问题1 有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m ,拱顶距离水面4m .(1)在如图所示的直角坐标系中,求出该抛物线的表达式;(2)在正常水位的基础上,当水位上升h (m )时,桥下水面的宽度为d (m ),求出将d 表示为h 的函数表达式;(3)设正常水位时桥下的水深为2m ,为保证过往船只顺利航行,桥下水面宽度不得小于18m ,求水深超过多少米时就会影响过往船只在桥下的顺利航行.解:(1)设抛物线的解析式为y =ax 2,且过点(10,-4)∴故 (2)设水位上升h m 时,水面与抛物线交于点()则∴ (3)当d =18时,∴当水深超过2.76m 时会影响过往船只在桥下顺利航行。
2、如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽AB=10m ,如果水位上升2m ,就将达到警戒线CD ,这时水面的宽为8m.若洪水到来,水位以每小时0.1m速度上升,经过多少小时会达到拱顶解: 以AB 所在的直线为x 轴,AB 中点为原点,建立直角坐标系,则抛物线的顶点E 在y 轴上,且B 、D 两点的坐标分别为(5,0)、(4,2)-==-4101252a a ×,y x =-1252d h 24,-h d -=-412542×d h =-10418104076=-=h h ,.0762276..+=设抛物线为y=ax2+k.由B、D两点在抛物线上,有解这个方程组,得所以,顶点的坐标为(0,)则OE=÷0.1=(h)所以,若洪水到来,水位以每小时0.1m速度上升,经过小时会达到拱顶.3、如图4,有一座抛物线形拱桥,抛物线可用y=表示.在正常水位时水面AB 的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)在正常水位时,有一艘宽8m、高2.5m的小船,它能通过这座桥吗(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通过:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来的速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米?解:(1)由对称性,当x=4时,y=.当x=10时,y=.故正常水位时,AB距桥面4米,由,故小船能通过.(2)水位由CD处涨到点O的时间为1÷0.25=4小时.货车按原来的速度行驶的路程为40×1+40×4=200<280.∴货车按原来的速度行驶不能安全通过此桥.设货车速度提高到x千米/时,当4x+40×1=280时,x=60.∴要使货车安全通过此桥,货车的速度超过60千米/时。
备课人:王 帅 审核人:胡哲 授课时间:2015年10月 日
一、新知探究 : 3]:图中是抛物线形拱桥,当拱顶离水 2 m 时,水面宽 4 m . 水面下降 1 m 水面宽度增加多少? 想一想:二次函数的图象是抛物线,建立适当的坐标系,就可以求出这条抛物线表示的二次函数.从而求出水面下降
1 m 时,水面宽度增加多少?
②可设这条抛物线表示的二次函数为:
【归纳】(1)用二次函数知识解决拱桥类的
实际问题一定要建立适当的直角坐标系.解题简便.
教学内容 课前预习:1.函数y=ax 2
条_______,它的______,对称轴是______,当时,开口向上,当a______O
抛物线y=2
1x 的顶点坐标是有一座抛物线拱桥,正常水位时桥下水面20米,拱顶距离水面如图26-3-12所示的直角坐标系中,求(3)你学到了哪些思考问题的方法?1.能力培养
2.学案中课后作业部分.
22.3 实际问题与二次函数(第例3: 习题。
课题:22. 3实际问题与二次函数----拱桥问题教学设计【学习目标】1.学生能够利用二次函数知识解决拱桥问题。
2.让学生根据实际问题构建二次函数模型。
【学习重点】通过对实际问题的分析,使学生理解二次函数是解决实际问题的一重要模型。
【学习难点】灵活建立直角坐标系将拱桥问题转化为二次函数问题。
【学习过程】一、知识回顾:1.抛物线的顶点为原点,对称轴为y轴时,可设这条抛物线的关系式为_________________.坐标系中的拱桥问题如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同,正常水位时,大孔水面宽度AB=20米,顶点M距离水面6米(即M0=6米),小孔顶点N距水面45米(即NC=45米)。
当水位上涨刚好淹没小孔时,借助图中的直角坐标系,求此时大孔的水面宽度EF。
三.建立适当坐标系解决拱桥问题图中是抛物线形拱桥,当拱顶离水面2m时,,水面宽4m水面下降1m时,水面宽度增加多少?小结:建立二次函数模型求解实际问题的一般步骤: 1恰当的建立直角坐标系2将已知条件转化为点的坐标3合理的设出所求函数关系式4代入点的坐标,求出关系式5利用关系式求解问题四达标检测1某工厂大门是一抛物线形的水泥建筑物 ,大门底部宽AB=4m 顶部C 离地面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m.这辆汽车能否顺利通过大门’ 若能,请你通过计算加以说明;若不能,请简要说明理由.2如图,一单杠高2.2 米,两立柱之间的距离为1.6米,将一绳子的两端拴于立柱与铁杠结合处 ,绳子 自然下垂呈抛物线状.B111J* J 車(1)如图(1) 一身高为0.7米的小孩站在离立柱0.4米处,其头部刚好触到绳子,求绳子最低点到地 面的距离; ⑵ 如图(2),为供孩子们打秋千,把绳子剪断后,中间系一块长为0.4米的木板.除掉系木板用去的绳 子后,两边的绳子长正好各为 2米,木板与地面平行.求这时木板离地面的距离(参考数据:-1.8, V3T&4 ~ 1.9, ,/4?36 ~ 2.1).3某菜农搭建了一个横截面为抛物线的大棚,尺寸如图:(1)根据如图直角坐标系求该抛物线的解析式;(2)若菜农身高为1.50米,则在他不弯腰的情况下,在棚内的横向活动范围有几米?4你知道吗?平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线•如图,正在甩绳的甲,乙两名学生拿绳的手间距为4m,距地面均为1m,学生丙,丁分别站在距甲拿绳的手水平距离1m , 2.5m处•绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是 1.5m,则学生丁的身高为(建立的平面直角坐标系如图所示)()2.5m*4m。
二次函数实际问题之拱桥问题
拱桥问题是二次函数实际问题的典型案例之一。
拱桥是一种常见的设计结构,
常见于公路、铁路和人行通道等建筑中。
在解决拱桥问题时,使用二次函数可以帮助我们计算并优化拱桥的设计。
拱桥问题的关键在于确定拱桥的形状,使之能够承受最大的荷载。
假设我们要
设计一座高度为h、跨度为d的拱桥,该拱桥的横截面呈现出一个拱形。
为了简化
问题,我们假设拱桥是对称的。
利用二次函数,我们可以建立拱桥的高度h和距离桥中心的距离x之间的关系。
一般来说,拱桥的高度曲线可以表示为:h = ax^2 + bx + c,其中a,b和c是常数。
为了确定拱桥的形状,我们需要满足以下条件:拱桥的高度在两个支撑点处为0,即h(0) = h(d) = 0。
另外,我们还可以设置一些额外的条件,例如拱桥的最大高
度或者其他特定要求。
通过求解这些条件,我们可以得到拱桥的二次函数方程。
进一步地,我们可以
使用二次函数的性质来优化拱桥的设计,例如确定最佳的拱桥高度,使得荷载分布在拱桥结构上最为均衡。
总而言之,拱桥问题是通过二次函数来解决的实际问题之一。
通过建立二次函
数方程并利用二次函数的性质,我们可以设计出最优化的拱桥结构,以满足特定的要求和荷载要求。
这个问题的解决方法不仅有助于工程师们设计出更优秀的拱桥,也有利于我们更好地理解和应用二次函数。
二次函数中抛物线形与拱桥问题 1 有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m ,拱顶距离水面4m .
(1)在如图所示的直角坐标系中,求出该抛物线的表达式;
(2)在正常水位的基础上,当水位上升h (m )时,桥下水面的宽度为d (m ),求出将d 表示为h 的函数表达式;
(3)设正常水位时桥下的水深为2m ,为保证过往船只顺利航行,桥下水面宽度不得小于18m ,求水深超过多少米时就会影响过往船只在桥下的顺利航行.
解:(1)设抛物线的解析式为y =ax 2
,
}
且过点(10,-4) ∴ 故
(2)设水位上升h m 时,水面与抛物线交于点()
则
∴ (3)当d =18时,
∴当水深超过2.76m 时会影响过往船只在桥下顺利航行。
]
2、如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽AB=10m ,如果水 位上升2m ,就将达到警戒线CD ,这时水面的宽为8m.若洪水到来,水位以每小时0.1m 速度上升,经过多少小时会达到拱顶
?
解: 以AB 所在的直线为x 轴,AB 中点为原点,建立直角坐标系,则抛物线的
顶点E 在y 轴上,且B 、D 两点的坐标分别为(5,0)、(4,2)
设抛物线为y=ax2+k.
{
-==-
4101252a a ×,y x =-1252d h 24,-h d -=-412542
×d h =-10418104076=-=h h ,.076
2276..+=
由B、D两点在抛物线上,有
解这个方程组,得所以,
顶点的坐标为(0,)则OE=÷=(h)
所以,若洪水到来,水位以每小时0.1m速度上升,经过小时会达到拱顶.
3、如图4,有一座抛物线形拱桥,抛物线可用y=表示.在正常水位时水面AB 的宽
为20m,如果水位上升3m时,水面CD的宽是10m.
(1)在正常水位时,有一艘宽8m、高2.5m的小船,它能通过这座桥吗
(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通过:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来的速度行驶,能否安全通过此桥若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米
;
解:(1)由对称性,当x=4时,y=.当x=10时,y=.故正常水位
时,AB距桥面4米,由,故小船能通过.
(2)水位由CD处涨到点O的时间为1÷=4小时.货车按原来的速度行驶的路程为40×1+40×4=200<280.∴货车按原来的速度行驶不能安全通过此桥.设货车速度提高到x千米/时,当4x+40×1=280时,x=60.∴要使货车安全通过此桥,货车的速度超过60千米/时。
4、如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小相同。
正常水位时,大孔水面宽度AB=20米,顶点M距水面6米(即MO=6米),小孔顶点N距水面4.5米。
当水位上涨刚好淹没小孔时,借助图中的直角坐标系,求此时大孔的水面宽度EF。
(10m)
(
5、如图所示,有一座拱桥圆弧形,它的跨度为60米,拱高为18米,当洪水泛滥到跨度只有30米时,就要采取紧急措施,若拱顶离水面只有4米,即PN=4米时,是否采取紧急措施
解:不采取紧急措施。
其理由如下:
设半径OA=∵AB=60 PM=18
.
∴AM=30 OM=18
∴在Rt△AOM中,由勾股定理,得:
解得:=34 即:OA=34OM=16
连接OA,则:OA=34
ON=(PM―PN)+OM=(18―4)+16=30
∴在Rt△A ON中,由勾股定理得:
解得:A N=16 则:32>30
所以不采取紧急措施。
/
6、有一座抛物线型拱桥,其水面宽AB为18米,拱顶O离水面AB的距离OM为8米,货船在水面上的部分的横断面是矩形CDEF,如图建立平面直角坐标系.
(1)求此抛物线的解析式;
(2)如果限定矩形的长CD为9米,那么矩形的高DE不能超过多少米,才能使船通过拱桥
(3)若设EF=a,请将矩形CDEF的面积S用含a的代数式表示,并指出a的取值范围.
解:(1)
…
(2) ∵CD=9
∴点E的横坐标为,则点E的纵坐标为
∴点E的坐标为(,-2),因此要使货船能通过拱桥,则货船最大高度不能超过8-2=6米
(3)由EF=a,则E点坐标为(,),此时ED=
∴S矩形CDEF=
7、(2003•黄石)中华民族的科学文化历史悠久、灿烂辉煌,我们的祖先几千年前就能在生产实践中运用数学.1300多年前,我国隋代建筑的赵州石拱桥的桥拱是圆弧形(如图).经测量,桥拱下的水面距拱顶6 m时,水面宽34.64 m,已知桥拱跨度是37.4 m,运用你所学的知识计算出赵州桥的大致拱高.(运算时取=14 ,=20 )
解:如图,设圆弧所在圆的圆心为O
AB==14 m,CD==20 m,GE=6m
在Rt△OCE中,OE=OG-6,CE=10∵OC2=CE2+OE2,∴OC2=(10 )2+(OC-6)2
∴OC=28(m),∴OA=28
在Rt△OAF中,AF=7
∴.
∴拱高GF=28-21=7(m).
点评:注意:圆中常见的辅助线即作弦的弦心距构造直角三角形,根据垂径定理和勾股定理进行计。