数值计算方法 函数逼近 - 函数逼近
- 格式:ppt
- 大小:1.19 MB
- 文档页数:29
常用函数的逼近和曲线拟合在数学中,函数逼近和曲线拟合都是常见的问题。
函数逼近是指找到一个已知函数,尽可能地接近另一个函数。
而曲线拟合则是给定一组数据点,找到一条曲线来描述这些数据点的分布。
本文将讨论常用的函数逼近和曲线拟合方法。
一、函数逼近1. 插值法插值法是最简单的函数逼近方法之一。
它的基本思想是:给定一组已知点,通过构造一个多项式,使得该多项式在这些点处的函数值与已知函数值相等。
插值法的优点是精度高,缺点是易产生龙格现象。
常用的插值多项式有拉格朗日插值多项式和牛顿插值多项式。
拉格朗日插值多项式的形式为:$f(x)=\sum_{i=0}^{n}y_{i}\prod_{j=i,j\neq i}^{n}\frac{x-x_{j}}{x_{i}-x_{j}}$其中,$x_{i}$是已知点的横坐标,$y_{i}$是已知点的纵坐标,$n$是已知点的数量。
牛顿插值多项式的形式为:$f(x)=\sum_{i=0}^{n}f[x_{0},x_{1},...,x_{i}]\prod_{j=0}^{i-1}(x-x_{j})$其中,$f[x_{0},x_{1},...,x_{i}]$是已知点$(x_{0},y_{0}),(x_{1},y_{1}),...,(x_{i},y_{i})$的差商。
2. 最小二乘法最小二乘法是一种常用的函数逼近方法。
它的基本思想是:给定一组数据点,找到一个函数,在这些数据点上的误差平方和最小。
通常采用线性模型,例如多项式模型、指数模型等。
最小二乘法的优点是适用性广泛,缺点是对于非线性模型要求比较高。
最小二乘法的一般形式为:$F(x)=\sum_{i=0}^{n}a_{i}\varphi_{i}(x)$其中,$a_{i}$是待求的系数,$\varphi_{i}(x)$是一组已知的基函数,$n$是基函数的数量。
最小二乘法的目标是使得$\sum_{i=1}^{m}[f(x_{i})-F(x_{i})]^{2}$最小,其中$m$是数据点的数量。
牛顿迭代法的函数逼近和拟合在数学和计算机科学中,函数逼近(function approximation)和拟合(function fitting)是重要的问题之一,它们涉及到如何用已知数据或函数来找出与之近似的函数形式。
而牛顿迭代法是一种常用的数值计算方法,可以被广泛地应用在函数逼近和拟合中。
一、牛顿迭代法简介牛顿迭代法是一种求解方程的方法,其本质是一种迭代算法,可以通过给出一个函数在某点的值以及该点的导数,迭代地求出函数的零点或者极值点。
其基本公式为:$$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$$其中,$f(x_n)$表示函数在点$x_n$处的函数值,$f'(x_n)$表示函数在点$x_n$处的导数,$x_{n+1}$是通过迭代算法得到的新的近似解。
在使用牛顿迭代法时,需要注意函数的光滑性和局部收敛性,如果函数不光滑或者在某些点处导数为零,那么迭代可能会导致发散或者收敛速度极慢。
二、牛顿迭代法在函数逼近中的应用在函数逼近中,如果我们已知一些数据点$(x_i, y_i)$,并且想要找到一个函数$f(x)$,可以用这些数据点来拟合函数,那么可以使用牛顿迭代法来实现。
具体的方法如下:1.首先定义一个函数$g(x)$,它满足$g(x_i)=y_i$;2.然后利用牛顿迭代公式,给出$f(x)$的递归式:$$f(x_{n+1})=f(x_n)+\frac{g(x_n)-f(x_n)}{g'(x_n)}$$其中,$g(x)$是一个在点$(x_i, y_i)$处值为$y_i$,在其他点处为零的光滑函数。
3.重复进行上述迭代,直到得到一个满足精度要求的近似解。
通过牛顿迭代法的函数逼近方法,我们可以得到在数据点上的逼近函数,这个函数可以用来进行插值和外推等操作,同时也可以作为一个简单的近似模型来使用。
三、牛顿迭代法在函数拟合中的应用除了函数逼近,牛顿迭代法还可以用于函数拟合,这里的函数拟合指的是通过一些给定的函数基,将一个在某些点处已知函数值的函数表示为基函数线性组合的形式。
第七章 函数逼近用简单的函数p (x )近似地代替函数f (x ),是计算数学中最基本的概念和方法之一。
近似代替又称为逼近,函数f (x )称为被逼近的函数,p (x )称为逼近函数,两者之差)()()(x p x f x R -=称为逼近的误差或余项在计算数学里,所谓简单的函数主要是指可以用加、减、乘、除四则运算进行计算的函数,如有理分式函数、多项式等。
由于多项式最简单,计算其值只需用到加、减与乘三种运算,且求其微分和积分都很方便,所以常用它来作为逼近函数,而被逼近的函数f (x )一般是一个比较复杂的不易计算的函数或以表格形式给出的函数。
第六章介绍的插值法实际上也是函数逼近的一种方法。
不过,它要求函数p (x )与f (x )在节点处具有相同的函数值 (甚至要求有相同的导数值),但在非节点处,p (x ) 虽然有可能很好地逼f (x ),但也可能使逼近f (x ) 的误差很大,如果实际问题要求p (x )在区间[a , b ] 上每一点都“很好”地逼近的话,用插值多项式p (x ) 去逼近f (x )有时就要失败,所谓龙格现象,就是典型一例。
大家知道,用f (x )的泰勒(Taylor)展开式)()()!1()()(!)()(!2)())(()()(010)1(00)(200000之间与在x x x x n f x x n x f x x x f x x x f x f x f n n n n ξξ++-++-++-''+-'+=Λ的部分和去逼近函数f (x ),也是常用的方法。
这种方法的特点是:x 越接近于x 0,误差就越小,x 越偏离x 0,误差就越大。
若要使这种逼近在整个所讨论的区间上都达到精度要求,则需取很多项,这样,计算工作量就大大增加。
因此,如何在给定精度下,求出计算量最小的近似式,这就是函数逼近要解决的问题,这个问题的一般提法是:对于函数类A 中给定的函数f (x ),要求在另一类较简单的且便于计算的函数类B (⊂ A )中寻找一个函数p (x ),使p (x )与f (x )之差在某种度量意义下最小。
数值计算方法期末总结导言数值计算是近年来发展迅速的一门学科,它研究如何利用数字近似计算数学方程和问题的解。
在科学计算、工程分析、金融建模等领域都有广泛应用。
本文将对数值计算方法进行总结,包括数值逼近、插值与外推、数值微积分、线性方程组解法、非线性方程解法、数值积分与数值微分以及随机数生成与蒙特卡洛方法。
通过总结这些方法的基本原理、优缺点和应用领域,可以帮助读者更好地理解和运用数值计算方法。
一、数值逼近数值逼近是指通过有限次数的计算,利用某一数列逐步逼近函数的值。
数值逼近可以分为插值和外推。
插值是在给定的有限个数据点之间找到一个函数,使得函数经过这些数据点。
而外推是利用已知数据点的决策逐渐增加,以获得更精确的近似值。
在实际应用中,数值逼近被广泛应用于数据处理和数据分析中,常用于构造曲线拟合、图像处理和信号处理中。
数值逼近的方法有拉格朗日插值、牛顿插值和埃尔米特插值等。
二、插值与外推插值与外推是数值计算中用于估计未知函数值的重要工具。
插值是在给定数据点之间构造一个模型函数,使得函数经过这些数据点。
外推是利用一些已知数据点的决策逐渐逼近未知函数的方向。
常用的插值与外推方法有多项式外推、样条插值、最小二乘法、有限差分法等。
它们可以用于函数逼近、数据拟合和数值求解等问题。
三、数值微积分数值微积分是一种利用数值方法来近似计算积分和求解微分方程的方法。
数值微积分广泛应用于工程计算、金融建模和科学研究等领域,是计算机辅助设计和分析的关键技术之一。
在数值微积分中,常用的方法有数值积分和数值微分。
数值积分主要用于求解曲线下面积和计算函数的平均值等问题,常用方法有复合梯形公式、复合辛普森公式、复合高斯公式等。
而数值微分主要用于近似计算函数的导数,常用方法有有限差分法、龙贝格公式和微分方程的数值解法等。
四、线性方程组解法线性方程组是科学计算中的重要问题之一,其求解方法的好坏直接影响到计算结果的精度和稳定性。
线性方程组的求解方法有直接法和迭代法两种。
利用逼近法解决函数近似问题随着科技的不断发展,逼近法在数值计算中的应用也越来越广泛。
逼近法是一种重要的数值计算方法,能够有效地解决函数近似问题,为实际问题的求解提供了很大的帮助。
本文将介绍逼近法及其在函数近似问题中的应用。
一、逼近法的基本原理
逼近法是通过构造逼近函数来近似原函数的方法。
逼近函数可以是多项式、三角函数、指数函数等,构造逼近函数的目的是在给定的点上与原函数的函数值和导数值相等或相近。
其中,多项式逼近法是最为常用的一种方法。
二、多项式逼近法
多项式逼近法是通过在给定的点上构造一个多项式函数来近似原函数。
常用的多项式逼近方法有拉格朗日插值法、牛顿插值法和最小二乘法,其中最小二乘法是最为通用的方法。
最小二乘法是通过最小化误差平方和来确定逼近多项式的系数,具有较好的稳定性和精度。
三、函数近似问题的应用
函数近似问题在实际应用中非常广泛,如在数值积分、微分方程求解、信号处理、图像处理等领域都有广泛的应用。
以信号处理领域为例,通过对原信号进行函数逼近,我们可以更好地分析信号的特性和应用价值。
四、逼近法的优缺点
逼近法具有一定的优缺点。
优点在于能够高效地解决函数近似问题,并且在一定条件下具有良好的精度和稳定性;缺点在于在求解高阶逼
近函数时,计算量较大且计算复杂度较高。
综上所述,逼近法是一种重要的数值计算方法,能够有效地解决函
数近似问题。
多项式逼近法是其中最为常用的一种方法,通过构造多
项式函数来近似原函数。
逼近法在实际应用中有广泛的应用领域,在
处理实际问题时非常有用。
第六章 函数逼近用简单的函数近似代替复杂函数,是计算数学中最基本的方法之一。
近似又称为逼近,被逼近的函数与逼近函数之差)()()(x p x f x R -=称为逼近的误差或余项。
简单函数:仅用加、减、乘、除。
多项式是简单函数。
插值也可以理解为一种逼近形式。
用Taylor展开:10)1(00)(000)()!1()()(!)())(()()(++-++-+-'+=n n nn x x n f x x n x fx x x f x f x f ξ 的部分和逼近f (x )也是一种逼近方法,其特点是:x 越接近于x 0,误差就越小。
如何在给定精度下求出计算量最小的近似式,这就是函数逼近要解决的问题。
逼近的度量标准有:一致逼近和平方逼近。
6.1 函数内积本节介绍几个基本定义:权函数、内积、正交、正交函数系。
定义1 设ρ (x )定义在有限或无限区间[a , b ]上,若具有下列性质:(1) ρ(3) 对非负的连续函数g (x ),若⎰=ba dx x x g 0)()(ρ,则在(a ,b )上g (x ) ≡ 0,称ρ (x )为[a , b ]上的权函数。
常用权函数有:211)(],1,1[xx -=-ρ;x e x -=∞)(],,0[ρ;2)(],,[x e x -=∞+-∞ρ;1)(],1,1[=-x ρ等。
定义2 设f (x ),g (x ) ∈ C [a , b ],ρ (x )是[a , b ]上的权函数,则称⎰=ba dx x g x f x g f )()()(),(ρ为f (x )与g (x )在[a ,b ]上以ρ (x )为权函数的内积。
内积有如下性质:(1) (f , f )≥0,且(f , f )=0 ⇔ f = 0;(2) (f , g ) = (g , f );(3) (f 1 + f 2, g ) = (f 1, g ) + (f 2,g );(4)对任意实数k ,(kf , g ) = k (f , g )。